
OPSS: an Overlay Peer-to-peer Streaming Simulator for large-scale
networks

Lorenzo Bracciale Francesca Lo Piccolo Dario Luzzi Stefano Salsano 1

Abstract

In this paper we present OPSS, an Overlay Peer-to-peer
Streaming Simulator designed to simulate large scale (i.e.
in the order of 100K nodes) peer-to-peer streaming systems.
OPSS is able to simulate a fair (i.e. ”TCP-like”) sharing of
the uplink and downlink bandwidth among different connec-
tions, and it guarantees extensibility by allowing the imple-
mentation of different peer-to-peer streaming algorithms as
separate modules. Source code of OPSS is available under
the GPL license.

1 Introduction

Three different approaches have been used up to now to eval-
uate performance of P2P streaming systems. Measurement-
based studies [1] have been carried out to analyze applica-
tions, such as PPLive, which are widely deployed but whose
implementation details are not under public domain. The ex-
perimental testbed PlanetLab [2][3] has been used to evalu-
ate performance of unstructured P2P streaming systems like
CoolStreaming/DONet [4] and GridMedia [5]. Packet-level
simulators have also been implemented, as it has been de-
scribed in [6]. It is possible to identify different drawbacks in
the previous approaches. Indeed, measurement-based studies
do not allow to consider different alternatives and to evaluate
performance in advance of building and deploying a system,
while experimental testbeds and the currently available simu-
lation tools suffer from scalability problems for different rea-
sons. On the one hand, experimental testbeds would require a
large network of emulator nodes, which is not easy to realize
and to manage. Due to this, the experimental results achieved
by PlanetLab and presented in [4] and [5] relate to networks
whose size is at most respectively 200 and 340 nodes. On
the other hand, even if a large number of P2P simulators
has recently emerged, either they mainly focus on simulating
the resource search phase and neglect the content distribution
phase, as it happens for instance in P2Psim [7] and Peersim
[8], or they provide a very detailed packet-level simulation
model of the underlying transport network, as GnutellaSim
simulator [9]. Moreover, the packet-level approach compro-
mises the scalability of the resulting simulation, as only a few
hundreds or thousands nodes may be properly simulated in
reasonable time with such a level of details. The authors [6]
propose in fact simulation results concerning networks of at

1University of Rome ”Tor Vergata”, Rome, Italy.

most 2048 nodes.

On basis of the above observations, in this paper we aim at
presenting OPSS[10], Overlay Peer-to-peer Streaming Sim-
ulator, a new simulative approach that makes P2P video
streaming performance evaluation scalable. Specifically the
paper is organized as follows. In section 2 we will describe
the key principles which OPSS is built on by focusing on the
simulation scalability aspects. In section 3 we will provide
some implementation details. In section 4 we will evaluate
OPSS performance in terms of both scalability and capability
of producing correct results.

2 OPSS: key concepts and scalability aspects

OPSS is a discrete-event fluid-flow simulator. It allows to
simulate the data distribution at the flow level, i.e. neglect-
ing transmissions of single packets and focusing on events,
such as start/end of a file or a file chunk transmission, which
lead to a variation in the rate of the connections among peers.
This approach dramatically reduces the number of simulation
events and the related memory and computational load with
respect to packet-level simulation, and consequently it im-
proves the simulation scalability, while retaining a satisfac-
tory accuracy in the model of the data delivery process. We
also assume that all active connections share fairly the avail-
able transmission resources, as it happens if peer nodes use
TCP as transport protocol and round trip times are of the same
order of magnitude. These assumptions justify the meaning
of ”TCP-like” sharing of the uplink and downlink bandwidth
among different connections. Under this hypothesis it is pos-
sible to use a max-min fair [11] rate allocation algorithm in
order to evaluate the available capacity for each connection,
given the link bandwidth constraints.

Evaluating the max-min fair rate allocation in a network of
hundred of thousand peers, with millions of active connec-
tions is not an easy task. In fact, the classical centralized im-
plementation of max-min fair rate allocation does not scale
well for the network dimensions of our interest. The imple-
mentation suggested in [11] requires in fact to re-compute the
allocated rates per each network node, and thus it results in
a complexity which grows linearly with the number of sim-
ulated peers. However, as it was observed in [12], when a
new connection is established or an old connection is inter-
rupted or completed, such events may affect only a subset of
the existing connections. The above observation has been ex-

ploited to develop an exact and more efficient max-min fair
rate allocation implementation under the assumption of bot-
tleneck links only in the access side of the network. More
details about such implementation may be found in [12]. The
experimental results in [12] show that the proposed algorithm
outperforms traditional max-min computation approaches by
as much as a factor 100 for a million nodes network.

We have developed OPSS starting from the implementation of
the max-min fair rate allocation algorithm proposed in [12].
As in [12] we made the assumption that rate bottlenecks occur
only in the access part of the network. Obviously, the most
serious limit in our approach is that the max-min fair band-
width allocation well approximates a steady state TCP-like
bandwidth sharing. Due to this, our approach is well suited to
the case of persistent connections between peers. In addition,
it is currently impossible to simulate Transit-Stub topologies
such as the ones generated by GT-ITM topology generator. To
overcome this last limit, extending the efficient and exact im-
plementation of max-min fair rate allocation proposed in [12]
to the case of generic topologies, even if not trivial, could be
a reasonable solution.

3 Implementation details

OPSS is written in C++ and is publicly available [10] un-
der GPL license. It was designed according to a modular
implementation logic. Figure 1 illustrates the main blocks
of the simulator architecture. It is possible to identify three
layers: User, Overlay and Network. User layer represents
the peer behavior, taking into account for example connec-
tion and disconnection policies (i.e. the ”churn” behavior).
Overlay layer is responsible to simulate the overlay network
and the overlay interactions between peers. Network layer
represents the network behavior, and it currently implements
the optimized max-min fair rate allocation approach as de-
scribed in [12]. All the above layers interact with the Engine
block, which contains the discrete-event-related classes and
mages the event executions. Engine block is also responsible
for output log file where events are dumped with the corre-
sponding time. The set of events that will be included in the
log file is customizable to prevent log files to become too big
in size. While User, Overlay, Network and Engine include
the basic structures common to any P2P streaming system,
the Algorithms block is responsible of the P2P streaming al-
gorithm and application to be simulated, including the con-
trol communication between nodes and the scheduling algo-
rithm of stream segments. It inherits the basic structures of
User, Overlay, Network and Engine, and allows to customize
them. In such a way, it allows the implementation of any
P2P live streaming mechanism. The previously described ap-
proach makes OPSS a very flexible simulator, as it offers the
possibility of implementing the logic of P2P streaming ap-
plication as separate module. Moreover, simulator users may
exploit different basic classes provided by User, Overlay, Net-
work and Engine blocks and potentially implement any kind

of P2P streaming algorithms. For further information about
how to write algorithms, please refer to the guide available on
the reference site.

Figure 1: OPSS architecture

4 OPSS performance

We simulated a trivial streaming distribution scheme, with the
purpose of easily deriving the analytical model and compar-
ing the experimental results achieved by OPSS with the ana-
lytical results. In such a way, we were able to evaluate OPSS
correctness. In the same time, an ever increasing number of
simulated nodes allowed us to investigate OPSS scalability.

Specifically, we simulated a balanced binary streaming distri-
bution tree. The stream source is the root of the tree. The
stream video is divided into segments or chunks. T and
R = 1/T denote respectively the chunk duration [s] and the
source chunk rate [chunk/s]. Each node downloads chunks
from one father, and it uploads chunks to 2 children. All
nodes (including the stream source) join the system simul-
taneously and form the distribution tree. We also assume a
static situation, in which all nodes persist through the whole
lifetime of the simulation. All nodes are assigned an access
link with uplink and downlink capacities Wup and Wdown

[chunk/s]. To simplify, we assume symmetrical access links,
that means also Wup = Wdown = W . As consequence, each
node downloads chunks at W/2 [chunk/s] from its father in
the tree. If W/2 < R, the distribution system cannot work
as each node does not have enough capacity to download the
stream of chunks. We thus restrict our attention to the case
W/2 ≥ R, in which the available portion of the father’s up-
link capacity is greater than or equal to the rate of the stream
to be received.

We now introduce the level concept. With reference to a node,
the level l represents its distance from stream source as num-
ber of hops in the overlay tree. The level of the stream source
is l = 0, while the last level is denoted as l = L. If all levels
are complete, the number of nodes at level l is M l and the
total number of nodes is

∑L
l=0 M l. In the following, we will

always consider trees with complete levels.

Due to the characteristics of the simulated application, we
consider performance metrics related to the delay of the re-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 2 4 6 8 10 12 14 16

C
D

F
 o

f a
ve

ra
ge

 c
hu

nk
 d

el
ay

 (
pe

r
ch

un
k)

Chunk play delay [sec]

255 nodes
2047 nodes

16383 nodes
131071 nodes

Figure 2: Cumulative distribution function of average chunk delay
for a given chunk

ceived chunks. Specifically, with reference to a chunk c and a
node n, we define chunk delay d(c, n) the difference between
the time instant at which the download of chunk c is complete
at node n and time instant of chunk c generation at node n.
It is convenient to express the delay of chunk c at node n in
terms of the corresponding node level l. The reason is that all
nodes at the same level perceive the same delay. Specifically,
given the level l, l = 1, 2, ..., L, and the chunk c, the corre-
sponding chunk delay is d(c, l) = l × W/2. Starting from
the chunk delay, we consider the average chunk delay for a
chunk c, which can be evaluated by averaging the delay over
all nodes that received that chunk.

d(c) =
∑L

i=1 M l · d(c, l)∑L
i=1 M l

(1)

=
M{M l[L(M − 1) − 1] + 1}

W (M − 1) (M l − 1)

It could be interesting to consider the perspective of a given
node n. The average chunk delay perceived by a generic node
n at level l is reported in (2). The assumption is that C chunks
are generated during the simulation period.

d
node

(l) =
1
C

C∑
c=1

d(c, l) =
2
W

· l (2)

With regard to the experimental results, figure 2 and figure
3 show the cumulative distribution function of the average
chunk delay for a given chunk and the average chunk de-
lay perceived by the generic node. The presented results re-
fer to binary trees whose the node number ranges from 255
to 131171. There is a perfect matching between the values
achieved by equations (1) and (2) and the values achieved by
simulation. Indeed, figure 2 confirms in fact that the average
chunk delay is constant across the tree levels, while given a
number of simulated nodes, the steps in figure 3 correspond
to the different tree levels and their probability values may be
deduced from the ratio between the number of nodes in that
level and the total number of nodes.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 2 4 6 8 10 12 14 16

C
D

F
 o

f a
ve

ra
ge

 c
hu

nk
 d

el
ay

 (
pe

r
no

de
)

Chunk play delay [sec]

255 nodes
2047 nodes

16383 nodes
131071 nodes

Figure 3: Cumulative distribution function of average chunk delay
at a given level

References
[1] X. Hei, C. Liang, J. Liang, Y. Liu, K.W. Ross, Insights
into PPLive: A measurement study of a large-scale P2P IPTV
system, in Workshop on Internet Protocol TV (IPTV) Services
over World Wide Web, Edinburgh, Scotland, May 2006

[2] PlanetLab web site, http://www.planet-lab.
org/

[3] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peter-
son, M. Wawrzoniak, M. Bowman, PlanetLab: An Over-
lay Testbed for Broad-Coverage Services, in ACM Computer
Communications Review, vol. 33, no. 3, 2003

[4] X. Zhang, J.C. Liu, B. Li, P. Yum, CoolStream-
ing/DONet: A data-driven overlay network for efficient live
media streaming, In Proceedings of IEEE INFOCOM, Mi-
ami, FL, USA, 2005

[5] M. Zhang, L. Zhao, Y. Tang, J. Luo, S. Yang, Large-
Scale Live Media Streaming over Peer-to-Peer Networks
through Global Internet, in Proceedings of ACM Multimedia
2005, Singapore, Singapore, 2005

[6] S. Banerjee, B. Bhattacharjee, C. Kommareddy, Scal-
able application layer multicast, in Proceedings of ACM SIG-
COMM, Pittsburgh, PA, USA, 2002

[7] T. M. Gil, F. Kaashoek, J. Li, R. Morris, J. Stri-
bling, P2Psim simulator, http://pdos.csail.mit.
edu/p2psim/

[8] M. Jelasity, G. P. Jesi, A. Montresor, S. Voulgaris,
PeerSim simulator, http://peersim.sourceforge.
net/

[9] Q. He, M. Ammar, G. Riley, H. Raj, R. Fujimoto,
GnutellaSim simulator, http://www-static.cc.
gatech.edu/computing/compass/gnutella/

[10] OPSS simulator, http://minerva.netgroup.
uniroma2/p2p

[11] D. Bertsekas, R. Gallager, Data Networks, Prentice
Hall, Englewood Cliffs, NJ, 1987

[12] F. Lo Piccolo, G. Bianchi, S. Cassella, Efficient sim-
ulation of bandwidth allocation dynamics in P2P Networks,
in Proceedings of Globecom 2006, San Francisco, CA, USA,
2006

