
OSHI - Open Source Hybrid IP/SDN networking and
Mantoo - Management tools for SDN experiments

Stefano Salsano(1), Pier Luigi Ventre(2), Francesco Lombardo(1), Giuseppe Siracusano(1),
Matteo Gerola(3), Elio Salvadori(3), Michele Santuari(3), Mauro Campanella(2), Luca Prete(4)
(1) CNIT / Univ. of Rome Tor Vergata - (2) Consortium GARR - (3) CREATE-NET – (4) ON.Lab

Submitted paper under second round of revision – September 2015

Abstract – The introduction of SDN in large-scale IP provider
networks is still an open issue and different solutions have been
suggested so far. In this paper we propose a hybrid approach
that allows the coexistence of traditional IP routing with SDN
based forwarding within the same provider domain. The solution
is called OSHI – Open Source Hybrid IP/SDN networking as we
have fully implemented it combining and extending Open Source
software. We discuss the OSHI system architecture and the
design and implementation of advanced services like Pseudo
Wires and Virtual Switches. In addition, we describe a set of
Open Source management tools for the emulation of the
proposed solution using the Mininet emulator and in distributed
physical testbeds. We refer to this suite of tools as Mantoo
(Management tools). Mantoo includes an extensible web-based
graphical topology designer, which provides different layered
network “views” (e.g. from physical links to service relationships
among nodes). The suite can validate an input topology,
automatically deploy it over a Mininet emulator or a distributed
SDN testbed and allows access to emulated nodes by opening
consoles in the web GUI. Mantoo provides also tools to evaluate
the performance of the deployed nodes.

Keywords - Software Defined Networking, Open Source,
Network management tools, Emulation.

I. INTRODUCTION

Software Defined Networking (SDN) [1] [2] is a new
paradigm proposed in data networking that may drastically
change the way IP networks run today. Significant use cases
include Data Centers and corporate/campus scenarios. SDN
applicability in wide area IP networks of large providers is
being considered. At present, these networks are operated
with a combination of IP and MPLS technologies. IP/MPLS
control and forwarding planes are capable to operate on large-
scale networks with carrier-grade quality, while SDN
technology has not reached the same maturity level. The
advantage of introducing SDN technology in a carrier grade
IP is not related to performance improvements for current
services on IP/MPLS backbones. Data Plane forwarding
performances, restoration times in case of failures, several
Control Plane aspects (e.g. routing convergence time) have all
been optimized for the IP/MPLS backbones by the major
equipment vendors in the years. We rather believe that the
openness of the SDN approach simplifies the need of complex
distributed Control Plane architectures and avoids proprietary
implementations and interoperability issues. The new
approach will facilitate the development of new services and
foster innovation. The importance of Open Source in SDN is
highlighted in [3] and the rising interest on white box
networking [4] confirms its relevance in current and near
future networking arena.

Taking the openness as the main driver for moving to
SDN, the scientific and technological question “what is the
best way to introduce SDN in large-scale IP Service Providers

(ISP) networks?” is definitely still open and different
solutions have been proposed. The OSHI (Open Source
Hybrid IP/SDN) networking architecture, first introduced in
[5], addresses the above question, providing an Open Source
reference implementation complemented with a rich set of
services and management tools.

The introduction of SDN in wide area ISP networks
implies finding solutions to critical requirements and issues,
such as: i) how to provide the scalability and fault tolerance
required in operators’ environments; ii) how to cope with the
high latency in the control plane (due to the geographically
distributed environment); iii) how to provide the connectivity
in the Control Plane between SDN controllers and the
switches in the WAN (i.e. in-band vs. out-of-band solution)

In order to support both the development/testing aspects
and the evaluation of different solutions it is fundamental to
have a realistic emulator platform. The platform should allow
scaling up to hundreds of nodes and links, to emulate a large
scale IP carrier network. Performing experiments has to be
affordable for research and academic teams, not only for
corporate developers. Therefore, we advocate the need of an
Open Source reference node implementation and of Open
Source emulation platforms. The management of these
emulation platforms and the tools for setting up and
controlling experiments are also non-trivial problems, which
is why we propose an Open Source set of tools called Mantoo
(Management tools). The Mininet emulator is widely used by
the SDN community, but its fidelity cannot be taken for
granted especially for large scale topologies. The emulation
over distributed SDN testbeds is in general more scalable and
can allow to gather more realistic details on specific
performance aspects. Mantoo is able to support both cases
with a unified design and modelling approach.

The main contributions of this paper are:
1. The design of a hybrid IP/SDN architecture called Open

Source Hybrid IP/SDN (OSHI).
2. The design and implementation of a hybrid IP/SDN node

made of Open Source components.
3. Mantoo, a set of management tools to deploy and test the

OSHI framework and services on Mininet emulator and
on distributed SDN testbeds

4. Evaluation of some performance aspects of the OSHI
prototype implementation over distributed SDN testbeds.

On top of the proposed OSHI framework and Mantoo tools
the researcher/developer is able to design and deploy new
services and to experiment on SDN Control Plane solutions
with a minimal effort. The paper is structured as follows:
section II describes the scenarios related to the introduction of
SDN in IP Service Providers networks; section III defines the
main concepts of the proposed hybrid IP/SDN networking
architecture; section IV provides a detailed description of the

OSHI nodes implementation and of the services that such a
solution can offer; section V identifies some limitations of
current SDN ecosystem along with the needed extensions, it
also reports how our framework is being used to experiment
on new services; section VI describes the Mantoo suite, that
allows to design, deploy and control experimental topologies
in a local emulator (Mininet) or on distributed testbeds,
supporting the collection of performance measurements;
section VII provides an evaluation of some performance
aspects; section VIII reports on related work and explains the
main differences with respect to our previous work; in section
IX we draw some conclusions and highlight how we are
porting OSHI over white box switches, potentially stepping
from experiments to production networks.

The source code of all the components of the OSHI node
prototypes and of the Mantoo suite is freely available at [6].
To facilitate the initial environment setup, the whole OSHI
and Mantoo environments have been packaged in a ready-to-
go virtual machine, with pre-designed example topologies up
to 60 nodes. To the best of our knowledge, there is no such
hybrid IP/SDN node available as Open Source software, nor
an emulation platform with a set of management tools as rich
as the Mantoo suite.

II. SDN APPLICABILITY IN IP PROVIDERS NETWORKS

SDN is based on the separation of the network Control Plane
from the Data Plane. An external SDN controller can
(dynamically) inject rules in SDN capable nodes. According
to these rules the SDN nodes perform packet inspection,
manipulation and forwarding, operating on packet headers at
different layers of the protocol stack.

We focus on SDN applicability in IP Service Providers
networks. Figure 1 shows a reference scenario, with a single
IP provider interconnected with other providers using the
BGP routing protocol. Within the provider network, an intra-
domain routing protocol like OSPF is used. The provider
offers Internet access to its customers, as well as other
transport services (e.g. layer 2 connectivity services or more
in general VPNs - Virtual Private Networks). Using the
terminology borrowed by IP/MPLS networks, the provider
network includes a set of Core Routers (CR) and Provider
Edge (PE) routers, interconnected either by point-to-point
links (Packet Over Sonet, Gigabit Ethernet, 10GBE…) or by
legacy switched LANs (and VLANs). The Customer Edge
(CE) router is the node in the customer network connected to
the provider network. Most often, an ISP integrates the IP and
MPLS technologies in its backbone. MPLS creates tunnels
(LSP – Label Switched Path) among routers. On one hand,
this can be used to improve the forwarding of regular IP
traffic providing: i) traffic engineering, ii) fault protection iii)
no need to distribute the full BGP routing table to intra-
domain transit routers. On the other hand, MPLS tunnels are
used to offer VPNs and layer 2 connectivity services to
customers. In any case, the commercial MPLS
implementations are based on traditional (vendor-locked)
control plane architectures that do not leave space for
introducing innovation in an open manner. As a matter of fact,
in case of complex services involving the MPLS control
plane, IP Service Providers rely on single-vendor solutions.

The management of large-scale IP/MPLS network is typically
based on proprietary (and expensive) management tools,
which, again, constitute a barrier to the innovation.

Let us consider the migration of an IP/MPLS based
Service Provider network to SDN. CR and PE routers could
be replaced by SDN capable switches, on top of which the
provider can realize advanced and innovative services. The
migration paths should foresee the coexistence of IP and SDN
based services, resembling the current coexistence of IP and
MPLS. We define as hybrid IP/SDN a node that can operate
both at IP level by keeping a traditional distributed routing
intelligence and at SDN level, under the instructions of a SDN
controller. This is opposed to a pure SDN node in which all
routing logic is ran outside the node in the SDN controller. A
hybrid IP/SDN network is composed of hybrid IP/SDN nodes,
as well as by traditional IP routers and legacy layer 2
switches. According to the taxonomy defined in [7], this
approach can be classified as “Service-Based” or “Class-
Based” Hybrid SDN (depending on how the IP and SDN
based services are combined). In this scenario the hybrid
IP/SDN nodes are capable of acting as plain IP routers
(running the legacy IP routing protocols), as well as SDN
capable nodes, under the control of SDN controllers.

PE – Provider

Edge Router

CR - Core

Router
L2 – Layer 2

Switch

CR

CR
CR CR

CR

PE

PE

PE

PEs

Peering with

other providers

Peering

with other

providers

CE – Customer

Edge Router

PEs

PEs

L2

L2

CE

CE

CE

CEs

CEs CEs

CEs

CE

CE

Figure 1. Reference scenario: an IP provider network

III. PROPOSED HYBRID IP/SDN ARCHITECTURE

In the IP/MPLS architecture there is a clear notion of the
MPLS tunnels, called Label Switched Paths (LSPs). In a SDN
network several types of tunnels or, more generically, network
paths can be created, leveraging on the ability of SDN capable
nodes to classify traffic based on various fields such as MAC
or IP addresses, VLAN tags and MPLS labels. Since there is
no standard established terminology for such concept, we will
refer to these paths as SDN Based Paths (SBP). A SBP is a
virtual circuit which is setup using SDN technology to
forward a specific packet flow between two end-points across
a set of SDN capable nodes. The notion of packet flow is very
broad and it can range from a micro-flow i.e. a specific TCP
connection between two hosts, to a macro-flow e.g. all the
traffic directed towards a given IP subnet. As highlighted
before, a flow can be classified looking at the headers at
different protocol levels.

We address the definition of the hybrid IP/SDN network
by considering: i) mechanisms for the coexistence of regular
IP traffic and SBPs; ii) the set of services that can be offered
using the SBPs; iii) ingress traffic classification mechanisms.

Let us consider the coexistence of regular IP traffic and
SDN based paths on the links among hybrid IP/SDN nodes. A
SDN approach offers a great flexibility, enabling the
classification of the packets through a “cross-layer” approach,
by considering packet headers at different protocol levels
(MPLS, VLANs, Q-in-Q, Mac-in-Mac and so on). Therefore,
it is possible to specify a set of conditions to differentiate the
packets to be delivered to the IP forwarding engine from the
ones that belong to SBPs. In general, these conditions can
refer to different protocol headers and can be in the form of
whitelists or blacklists, changing dynamically, interface by
interface. This flexibility may turn into high complexity.
Therefore, the risk of misconfigurations and routing errors
should be properly taken into account (see [8]). Without
preventing the possibility to operate additional mechanisms
for the coexistence of IP and SDN services in a hybrid
IP/SDN network, we propose MPLS tagging as the preferred
choice that we have used in our prototype implementation. In
fact, using MPLS as forwarding plane technology is known to
be scalable up to carrier-grade WANs. We have also
considered simple VLAN tagging as a sub-optimal choice and
have used it in a simpler prototype (see [5][9]). Simple VLAN
tagging limits the number of SBPs on a link to 4096.
Moreover, if legacy VLAN services needs to be supported on
the links among the OSHI nodes, the VLAN label space needs
to be partitioned, reducing the maximum number of SBPs and
complicating the service management process.

A key advantage of the coexistence approach in OSHI is
the possibility to use traditional IP routing and forwarding for
the Control Plane connectivity between SDN controllers and
OF Capable switches. This approach avoids the needs of out-
of-band communication channels for the Control Plane.

Let us now consider the services and the features that can
be offered by a hybrid IP/SDN network. As primary
requirements we assume three main services/functionalities:
(i) virtual private networks (Layer 2 and Layer 3), (ii) traffic
engineering, (iii) fast restoration mechanisms. Moreover, the
architecture should facilitate the realization of new services
and the development of new forwarding paradigms (for
example Segment Routing [22]) without the need of
introducing complex and proprietary control planes.

As for the traffic classification, the ingress PEs need to
classify incoming packets and decide if they need to be
forwarded using regular IP routing or if they belong to the
SBPs. The egress edge router extracts the traffic from the
SBPs and forwards it to the appropriate destination. We
considered (and implemented in our platform) two approaches
for the ingress classification: i) classification based on
physical access ports; ii) classification based on VLAN tags.
Other traffic classifications, e.g. based on MAC or IP
source/destination addresses can be easily implemented
without changing the other components.

IV. DETAILED DESIGN OF THE HYBRID IP/SDN SOLUTION

In this section we present the detailed design and the
implementation of the proposed architecture. We describe the
Open Source tools that we have integrated and how their
practical limitations have been taken into account to deliver a
working prototype. We first introduce the high level

architecture of an OSHI node (IV.A) and the basic services
we provide (IP Virtual Leased Line and Pseudo-wires, IV.B).
Then we describe the use of MPLS labels to realize SDN
Based Paths (SBPs) and to support the coexistence between IP
based forwarding and SBP forwarding. We show the design
challenges of the MPLS based implementation, partly due to
the inherent limitations of the current OpenFlow standards,
partly to the shortcomings of the Open Source tools that we
have integrated.

 OSHI High Level Node Architecture A.

The proposed OSHI node combines an OpenFlow Capable
Switch (OFCS), an IP forwarding engine and an IP routing
daemon. The OFCS component is implemented using Open
vSwitch (OVS) [31], the IP forwarding engine is the Linux
kernel IP networking and Quagga [16] acts as the routing
daemon. The OpenFlow Capable Switch is connected to the
set of physical network interfaces belonging to the integrated
IP/SDN network, while the IP forwarding engine is connected
to a set of virtual ports of the OFCS, as shown in Figure 2.

Internal ports

Physical

interfaces

IP Forwarding Engine – IP FE

(Linux networking)

IP Routing Daemon

(Quagga)

IP

SDN
OF Capable Switch - OFCS

(Open vSwitch)

Local

Management

Entity (LME)

Figure 2. OSHI Hybrid IP/SDN node architecture

The virtual ports that interconnect the OFCS with the IP
forwarding engine are realized using the Internal Port feature
offered by Open vSwitch. Each internal port is connected to a
physical port of the IP/SDN network, so that the IP routing
engine can reason in term of the virtual ports, ignoring the
physical ones. The OFCS differentiates among regular IP
packets and packets belonging to SDN Based Paths. By
default, it forwards the regular IP packets from the physical
ports to the internal ports, so that they can be processed by the
IP forwarding engine, controlled by the IP routing daemon.
This approach avoids the need of translating the IP routing
table into SDN rules to be pushed in the OFCS table, at the
price of a small performance degradation for the packets that
needs to be forwarded at IP level. In fact, these packets cross
the OFCS switch twice. It is possible to extend our
implementation to consider the mirroring of the IP routing
table into the OFCS table. Mapping a static snapshot of the IP
routing table into a set of SDN rules in the OFCS is relatively
easy (the rewriting of source and destination MAC addresses
needs to be included in the rules and the MAC addresses of
the next hops needs to be discovered beforehand). The
difficult challenge is to take into account the dynamic aspects,
as the rules should be updated in a timely way following route
additions, updates, deletions. Therefore in the OSHI prototype
presented in this work this feature is left out for future work
In [17] we described a prototype solution that mirrors the
routes installed by OLSR in real time (for a specific set of IP
destinations), mapping them in OpenFlow rules.

An initial configuration of the OFCS tables is needed to
connect the physical interfaces and the internal interfaces, in
order to support the OFCS-to-SDN-controller communication
and some specific SDN procedures (for example to perform
layer 2 topology discovery in the SDN controller). A Local
Management Entity (LME) in the OSHI node takes care of
these tasks. In our setup, it is possible to use an “in-band”
approach for the OFCS-to-SDN-controller communication,
i.e. using the regular IP routing/forwarding and avoiding the
need of a separate out-of-band network. Further details and
the block diagram of the control plane architecture of OSHI
nodes are reported in [9].

 OSHI basic services: IP VLL and L2 PW B.

We designed and implemented two basic services to be
offered by OSHI networks: the “IP Virtual Leased Line” (IP
VLL) and the Layer 2 “Pseudo-wire” (L2 PW or PW in short)
see Figure 3. They belong to the class of Virtual Leased Line
services [28], which are a fundamental part of the offering of
large-scale IP Service Providers. VLL services can be used to
carry bandwidth guaranteed applications (e.g. real time
communications) or to support VPN solution (e.g.
interconnect different sites of a company through the ISP
WAN). Both services are offered between end-points in
Provider Edge routers, the end-points can be a physical or
logical port (i.e. a VLAN on a physical port) of the PE router
connected to a Customer Edge (CE). The interconnection is
realized in the core hybrid IP/SDN network with an SBP
using MPLS labels.

Figure 3.IP VLL and L2 PW services

The proposed IP VLL service guarantees to the IP end-
points to be directly interconnected as if they were in the same
Ethernet LAN and sending each other IP and ARP packets. It
is not meant to allow the served SBP end-points to send
packets with arbitrary Ethertype (e.g. including VLAN
packets). The original source and destination MAC addresses,
shown as “C-ETH” (C stands for Customer) in the headers of
the packets in Figure 3, are preserved in the transit along the
network core. This may cause problems if legacy L2 switches

are used to interconnect OSHI nodes, therefore our
implementation of IP VLL service can only work if all edge
and core nodes are OSHI capable and are directly connected
to each other, without legacy intermediate switches in
between. As a solution to interwork with legacy switches, one
could implement MAC address rewriting replacing the
customer addresses with the addresses of the ingress and
egress PEs or on a hop-by-hop case. This is rather complex to
realize and to manage, because the egress node should restore
the original MAC addresses (using the tag as key). There is
the need to exchange and then maintain additional state
information per each SBP in the egress nodes, so we did not
implement this solution. In our prototype and experiments, if
legacy switches are present in the network, the L2 PW service
rather than the IP VLL service should be used.

The L2 PW service is also known as “Pseudowire
Emulation Edge to Edge” (PWE3), described in RFC 3985
[24]. It provides a fully transparent cable replacement service:
the endpoints can send packets with an arbitrary Ethertype
(e.g. including VLAN, Q-in-Q). As shown in Figure 3, the
customer Ethernet packet is tunneled into a new Ethernet
packet (whose header is indicated as P-ETH) and then a
MPLS header is added. This approach solves the interworking
issues with legacy L2 networks related to customer MAC
addresses exposure in the core.

 OSHI - MPLS based approach C.

In this subsection we illustrate the detailed aspects of the
proposed solution based on MPLS. The use of MPLS labels
enables the establishment of up to 220 (more than 106) SBPs
on each link, providing the required scalability. The MPLS
label space can be partitioned in order to have an ordered
coexistence with other MPLS based services in the provider
WAN. We describe the implementation of IP VLL and PW
services, in both cases the MPLS solution does not interfere
with VLANs that can potentially be used in the links between
OSHI nodes.

1) Coexistence mechanisms

The coexistence of regular IP service (best effort traffic) and
SDN services (using SDN Based Paths) is assured using the
Ethertype field of the L2 protocol. This corresponds to one of
the mechanisms that can be used in the IP/MPLS model:
regular IP traffic is carried with IP Ethertype (0x0800), while
SBPs are carried with MPLS Ethertypes (0x8847 and
0x8848). Using OpenFlow multi-table functionality, our
solution supports the coexistence of IP and MPLS traffic
types, as shown in Figure 4. Table 0 is used for regular IP,
ARP, LLDP, BLDP, etc., table 1 for the SBPs. In particular,
Table 0 contains: i) a rule that forwards the traffic with
Ethertype 0x8847 (MPLS) to Table 1; ii) only for IP VLL a
rule that forwards the traffic with Ethertype 0x8848
(Multicast MPLS) to Table 1; iii) the set of rules that “bridge”
the physical interfaces with the internal ports and vice versa;
iv) two rules that forward the LLDP and BLDP traffic to the
controller. Table 1 contains the set of rules that forward the
packets of the SBPs according to the associated IP VLL or
PW service. The coexistence in Table 0 is assured through
different levels of priority. The IP VLL service needs both the
rules associated to unicast and multicast MPLS Ethertype

(more details below), while the PW service only needs a rule
matching the unicast MPLS Ethertype.

We consider two MPLS based tunneling mechanisms:
plain IP over MPLS ([23], here referred to as IPoMPLS) and
Ethernet over MPLS (EoMPLS [24] [25]). The IPoMPLS
tunneling is used for the IP VLL service. The EoMPLS
tunneling can support the relaying of arbitrary layer 2 packets,
providing the L2 PW service [24].

Packet IN start at

table 0

Match in

table 0 ?

Send to controller

GOTO table 1

Execution action

set

Match in

table 1 ?

MATCH1, action1

MATCH2, action2

MATCH3, action3

MATCH4, action4

Execution

action set

....

MPLSM, goto:1

INPORT=1, output:2

INPORT=3, output:4

MPLS, goto:1

MPLSM, goto:1

INPORT=1, output:2

IP, ARP, ...

SBPs RyuLME

Figure 4. Packet processing in the OFCS flow tables

2) Ingress classification and encapsulation mechanisms

As for the ingress classification functionality in a PE router, it
can be either based on the physical input port or on the
incoming VLAN tag. We use the input port to classify
untagged traffic as regular IP traffic or as belonging to a SBP
end-point (of an IP VLL or PW). For the VLAN tagged traffic
entering in a physical port of a PE router, each VLAN tag can
be individually mapped to a SBP end point or assigned to
regular IP traffic. For the untagged traffic, the implementation
of the ingress classification is realized within the OFCS of the
OSHI Provider Edge nodes. In fact, by configuring rules in
the OFCS, it is possible to map the untagged traffic on an
ingress physical port to an internal port (for regular IP) or to a
SBP. For the tagged traffic, the incoming classification relies
on the VLAN handling of the Linux networking: each VLAN
tag x can be mapped to a virtual interface eth0.x that will
simply appear as an additional physical port of the OFCS.

Let us analyze the encapsulation mechanisms. The left
half of Figure 5 shows the encapsulation realized by the
OSHI-PE node for the IP VLL service. C stands for
Customer, the ingress direction is from customer to core,
egress refers to the opposite direction. This solution follows
the IPoMPLS approach, in which a MPLS label is pushed
within an existing frame. In this case an input Ethernet frame
carrying either an IP or an ARP packet, keeps its original
Ethernet header, shown as C-ETH in Figure 5. As we have
already discussed, this solution has the problem of exposing
the customer source and destination MAC addresses in the
core. Moreover, note that the MPLS Ethertype (0x8847)
overwrites the existing Ethertype of the customer packets.
This does not allow the distinction between IP and ARP
packets at the egress node. A solution would be to setup two
different bidirectional SBPs: one for the IP and one for the
ARP packets. In order to save label space and simplify the
operation we preferred to carry IP packets with the MPLS
Ethertype and to (ab)use multicast MPLS Ethertype (0x8848)
to carry the ARP packets. With this approach, the same MPLS
label can be reused for the two SBPs transporting IP and ARP
packets between the same end-points.

The “Ethernet over MPLS” (EoMPLS) encapsulation [25]
represents the most efficient approach to implement the PW
service. As shown in the right side of Figure 5, EoMPLS
encapsulates the customer packet including its original
Ethernet header in an MPLS packet to be carried in a newly
generated Ethernet header. Unfortunately, we require a
solution that can be implemented using an Open Source
switch and we would like to have a solution that can be fully
controlled by OpenFlow. The OpenFlow protocol and most
OpenFlow capable switches (including Open vSwitch that we
are using for our prototype) do not natively support EoMPLS
encapsulation and de-capsulation. A similar issue has been
identified in [36], in which the authors propose to push an
Ethernet header using a so called “input Packet Processing”
(iPProc) function before handing the packet to a logical
OpenFlow capable switch that - in turn - will push the MPLS
label. Obviously this requires a switch with an “input Packet
Processing” function capable of pushing an Ethernet header
into an existing Ethernet packet. Note that this process is not
fully controlled with the OpenFlow protocol, as OpenFlow
does not support the pushing of an Ethernet header. We
cannot directly follow this approach, as Open vSwitch is not
capable of pushing Ethernet headers. The right half of Figure
5 shows the approach that we have followed, relying on GRE
encapsulation. P stands for Provider and it indicates the
headers added/removed by the PE. A packet in the PE is
processed in four steps (shown as i1 to i4 in the ingress
direction from the CE towards the core and as e1 to e4 in the
egress direction from the core toward a customer. The GRE
encapsulation introduces an additional overhead (20 bytes for
P-IP and 4 bytes for GRE headers) to the standard EoMPLS,
but it allowed us to rely on Open Source off-the-shelf
components.

C-ETH

C-ETHGREP-IP

C-ETHMPLS P-IP

GREP-ETH

GRE

P-IP C-ETH

P-ETH

C-ETH

MPLSC-ETH

IP VLL encapsulation PW encapsulation

Ingress Egress
EgressIngress

i4

i1

i3

e1

e2

e3

e4

i2

EoMPLS encapsulation

C-ETHMPLSP-ETH

Figure 5. IP VLL and L2 PW tunneling operations at the Provider Edges. The
EoMPLS encapsulation format is shown as a reference.

The implementation of the proposed approach required a
careful design, whose result is shown in Figure 6. A new
entity called ACcess Encapsulator (ACE) is introduced in
order to deal with the GRE tunnel at the edges of the pseudo
wire tunnel. The detailed design is further analyzed in
subsection IV.D.

With this approach it is possible to rewrite the outer source
and destination MAC addresses in the core OSHI network, so
that they can match the actual addresses of the source and

destination interfaces on the OSHI IP/SDN routers. This
allows the support of legacy Ethernet switched networks
among the OSHI IP/SDN routers, which can be an important
requirement for a smooth migration from existing networks.

Both the IP VLL and PW services are realized with SBPs
that switch MPLS labels between two end-points (in both
directions). We used the Ryu [38] controller, the SBPs are
setup using a python script called VLLPusher. The script uses
the Ryu Topology REST API of to retrieve the shortest path
that interconnects the SBP end-points. It allocates the MPLS
labels and then uses the Ofctl REST API to setup the rules for
packet forwarding and MPLS label switching. In the setup of
a PW service the MAC rewriting actions are added, using the
addresses of the OSHI nodes as the outer MAC addresses.

OSHI

ETHERNET

MPLS pseudo wire

Transparent GRE tunnel

Customer Edge Router ETHERNET

ACE

Provider edge OSHI Provider edge OSHI

Virtual Router

OF Virtual Switch

ACEVirtual RouterVirtual Router

OF Virtual Switch

CE
Virtual Router

Label swapping and Mac RW

CORE OSHI

network

OSHI

ETHERNET

Core OSHI

Figure 6. PW implementation in the OSHI node prototype

3) Requirements on protocol and tools versions

The MPLS solution needs at least OpenFlow v1.1, which
makes possible to handle MPLS. Both the SDN controller and
the SDN Capable Switch need to support at least OF v1.1
(most controller and switches jumped from OF v1.0 to v1.3).
Considering our tools, an Open vSwitch version compliant
with OF v1.3 has been released in summer 2014, making it
possible to start the implementation of the MPLS based
approach.

4) The Virtual Switch Service (VSS)

The PW service can be used as a building block for creating
more complex services, like for example the Virtual Switch
Service (VSS). While a PW service instance bridges two layer
2 end-points, the VSS service bridges a set of end-points into
a virtual layer2 switch. The ports of a VSS instance
correspond to an arbitrary set of ports of the Provider Edge
nodes. This service is called Virtual Private LAN Service
(VPLS) in RFC 4761 [37]. A VSS provides the same VPLS
service described in the RFC but its implementation is based
on SDN and does not exploit other control plane
functionalities, therefore we renamed it.

The VSS is based on the L2 PW service, because the IP
VLL service does not provide a transparent forwarding of
layer 2 packets. To implement the VSS service, a set of PWs
connect the end-points to branching points in the OSHI
network. A virtual layer 2 switch instance, called Virtual
Bridging Point (VBP), is allocated in the branching points to
bridge the packets coming from the PWs.

A VSS instance is deployed in three steps: i) branching
point selection; ii) VBP deployment; iii) VBP
interconnection. In the first step, a python script called
VSSelector retrieves the topology from the controller and then
chooses the branching points, i.e. the OSHI nodes that will

host the VBPs. In the second step according to the output of
VSSelector the VBP are deployed as additional instances of
Open vSwitch in the selected OSHI nodes (see subsection
IV.D for implementation details). The final step is the
deployment of the PWs that will interconnect the CEs to the
VBPs and the VBPs among each other. We provide two
versions of the branching point selection (first step above): i)
un-optimized; ii) optimized. In the un-optimized version a
single node is randomly selected in the topology and used to
deploy the virtual bridge. For the optimized version, finding
the optimal topology to implement a VSS corresponds to the
minimal Steiner tree problem [39]. We implement the
heuristic defined in [40] to find an approximate solution.
Then, using the tree topology obtained from the heuristic, a
VBP is deployed in each branching point of the tree. In both
the un-optimized and optimized version, the VBPs are
connected each other and with end-points with direct Pseudo
Wires. In this way the packets enters the VBPs only in the
branching points.

 OSHI detailed node architecture D.

In order to support the PW and VSS services, the architecture
of an OSHI node needs to be more complex with respect to
the high level architecture shown in Figure 2. Figure 7
provides a representation of the proposed solution for the PE
nodes. As discussed above, the difficult part is the support of
encapsulation and de-capsulation in the OSHI PE nodes, for
which we resorted to use GRE tunnels (see the right side of
Figure 5). The different encapsulation steps in the ingress (i1-
i4) and egress direction (e1-e4) are represented using the same
numbering of Figure 5. The OF Capable Switch only handles
the push/pop of MPLS labels, while the ACE handles the
GRE encapsulation. The ACE is implemented with a separate
instance of Open vSwitch, in particular we have an ACE
instance running in a separate Linux network namespace [34]
for each customer. For each PW, the ACE has two ports: a
“local” port facing toward the CE locally connected to the PE
node and a “remote” one facing towards the remote side of the
PW. The remote port is a GRE port provided by OVS,
therefore the ACE receives the customer layer 2 packets on
the local ports and sends GRE tunneled packets on the remote
port (and vice-versa). The interconnection of OFCS ports and
ACE ports (the endpoints of the yellow pipes in Figure 7) are
realized using the concept of Virtual Ethernet Pair [34]
offered by the Linux Kernel.

Physical ports

IP Forwarding Engine – IP FE
(Linux networking)

IP Routing Daemon
(Quagga)

OF Capable Switch - OFCS
(Open vSwitch)

ACcess Encapsulator –ACE
(Open vSwitch)

Pseudo Wire

GRE port

Virtual Ethernet
with IP address

Virtual
Ethernet

ACE namespace Root Name Space

i2

i3

i4

e2

i1 e1

Internal PortsVirtual
Ethernet

Virtual
Ethernet e3

“Local” “Remote”
e4

Figure 7. OSHI-PE architectural details

Differently from the internal ports (shown on the right side
of Figure 7), the Virtual Ethernets are always associated in
pairs. In our case, for each PW two Virtual Ethernet pairs are
needed, one pair is used to connect the CE port of OFCS with
the local port of ACE, another pair to connect the remote port
of the ACE with the physical ports towards the remote side of
the PW. Three virtual Ethernet endpoints are used as plain
switch ports (two belong to the OFCS, one to the ACE), the
last one, on the ACE, is configured with an IP address and it
is used as the endpoint of the GRE tunnel (Virtual Tunnel
Endpoint, i.e. VTEP). These IP addresses are not globally
visible, but they have a local scope within the network
namespaces associated to the customer within all the OSHI
nodes. This approach greatly simplifies the management of
the services, as the same addresses for the GRE VTEP can be
reused for different customers. As a further simplification,
static ARP entries are added on the Virtual Ethernet for each
remote tunnel end (remote VTEP). For each customer, a
simple centralized database of IP and MAC addresses (used
for GRE tunnels) is needed.

Proper OpenFlow rules needs to be setup in the OF
Capable Switch to ensure the transit of packets. On the access
port (i1) these rules are provided by the LME at the time of
the ACE creation, while in the i4 and e2 cases they are pushed
by the OpenFlow Controller during the PW establishment.

As discussed above, an instance of ACE in the PE node is
used to handle all the PWs of a single customer and runs in a
private network namespace. In addition we had to configure a
private folders tree for each ACE instance, as it is needed to
guarantee proper interworking of difference instances of OVS
in the same PE node.

Coming to the implementation of the VSS, the internal
design of an OSHI node that hosts a VSS Bridging Point
(VBP) is shown in Figure 8. The design is quite similar to the
one analyzed before for the PW encapsulation. A VBP is
implemented with an OVS instance that does not have local
ports, but only remote ones. A VPB instance represents a
bridging point for a single VSS instance and it cannot be
shared among VSS instances.

Physical ports

IP Forwarding Engine – IP FE
(Linux networking)

IP Routing Daemon
(Quagga)

OF Capable Switch - OFCS
(Open vSwitch)

VSS Bridging Point – VBP
(Open vSwitch)

Pseudo Wire

VBP Name Space Root Name Space

Figure 8. An OSHI node that hosts a bridging point for a VSS

1) Considerations on alternative design choices

Considering that a single instance of Open vSwitch can
support several independent switches, a simpler design would
consists in implementing the ACEs shown in Figure 7 as
separate switches within the same Open vSwitch instance that
runs the OFCS. For N customers, this solution would use one
OVS instance instead of N and only the root network

namespace instead of N additional namespaces, reducing the
memory requirements versus the number of customers. The
drawback of this solution is that handling the GRE tunnels of
all customers in the same network namespace requires the
management of disjoint IP numbering spaces for the tunnel
endpoints of different customers. In addition, the separate
namespaces allow to turn the ACE in a “Virtual Router” by
including an instance of a routing daemon (Quagga) in its
network namespace. Such a virtual router is the basic
component of Layer 3 VPN services that could complement
the Layer 2 PW and VSS services realized so far. With the
choice of the more complex design we tradeoff scalability
with simplification of the service management and easier
development of new services.

“Remote”

Physical ports

IP Forwarding Engine – IP FE
(Linux networking)

IP Routing Daemon
(Quagga)

OF Capable Switch - OFCS
(Open vSwitch)

Separate customer switch
within Open vSwitch

Pseudo Wire

GRE port

Root Name Space

i2

i3

i4

e2

i1

e1

Internal Ports

e3

“Local”
e4

Figure 9. PW implementation design without ACE

A second consideration is that the handling of GRE
tunneling has been recently introduced in Linux kernels. This
can lead to a simpler design for tunneling that does not require
the ACE nor the use of the GRE module provided by Open
vSwitch, as shown in Figure 9. Anyway, this solution has the
same drawbacks discussed above in terms of management of
IP addresses for the tunnel endpoints, because there are not
separate network namespaces for the customers, and cannot
be easily extended to support Layer 3 services.

V. OSHI: GAP ANALYSIS, ONGOING AND FUTURE WORK

The solution for PW encapsulation described in section IV.D
is based on GRE tunneling performed by the ACE. It has been
designed as a replacement of the more efficient Ethernet over
MPLS (EoMPLS) encapsulation specified in [24], which
cannot be realized by the current version of Open vSwitch.
The GRE tunneling introduces a transport and a processing
overhead. The former is 20 (IP header) + 16 (GRE header)
bytes for each packet, while the latter depends on the
implementation architecture. Our solution (shown in Figure 7)
is not meant to be highly efficient but only to demonstrate the
feasibility of the approach with a working component. We do
not plan to improve the efficiency of the solution, rather we
believe that native Ethernet over MPLS (EoMPLS)
encapsulation should be provided by open source switches
and we are considering to extend the Open vSwitch to support
EoMPLS.

Assuming that a switch supports EoMPLS, a second
important gap to be filled is the lack of support for such
tunneling operations in the OpenFlow protocol. Note that the
lack of encapsulation support in OpenFlow does not only
concern EoMPLS, but also other tunneling solutions like
GRE, VXLAN. The only tunneling solution currently

supported by OpenFlow is the PBB (Provider Backbone
Bridges, also known as “mac-in-mac”), but this solution is not
supported by Open vSwitch. For GRE and VXLAN, using
OpenFlow it is possible to control packets already tunneled
(and specific matches have been introduced in OF 1.4 for
VXLAN), but it is not possible to control the encapsulation
(i.e. pushing the GRE, VXLAN headers) and de-capsulation
(i.e. popping the header) operations. Currently, external tools
are needed to manage the GRE or VXLAN tunnel end-points
(e.g. using the switch CLIs - Command Line Interfaces or
switch specific protocols, like ovsdb-conf for Open vSwitch),
with added complexity in the development, debug and
operations. Extending OpenFlow protocol with the capability
to configure the tunneling end-points would be a great
simplification in the management of SDN based services.

The OSHI solution is an open starting point to design and
implement additional “core” functionality and user oriented
services. As for the core functionality we are considering
traffic engineering mechanisms and implemented a flow
assignment heuristic for optimal mapping of PWs with
required capacity on the core OSHI links. As for additional
services, we are considering Layer 3 VPNs based on the PW
service. Following the same approach used for the VSS
service, the idea is to deploy virtual router instances within
the OSHI nodes that can exchange routing information with
routers in the CE nodes. Finally, we are working on an Open
Source implementation of Segment Routing [22] on top of
OSHI [26]. This last scenario is a good example of how the
proposed framework facilitates the implementation of new
services and forwarding paradigms. All these ongoing efforts
are reported on the OSHI web page [6], with links to
documentation and source code.

VI. MANTOO: MANAGEMENT TOOLS FOR SDN/NFV

EXPERIMENTS ON M ININET AND DISTRIBUTED SDN TESTBEDS

Mantoo is a set of Open Source tools meant to support SDN
experiments both over Mininet and over distributed testbeds.
Mantoo is able to drive and help the experimenters in the
different phases that compose an experiment: design,
deployment, control and measurement, as described in the
next subsections. Mantoo includes: a web based GUI called
Topology3D (Topology and Services Design, Deploy and
Direct, Figure 10), a set of scripts to configure and control
emulators or distributed testbeds; a set of scripts for
performance measurements. The overall Mantoo workflow is
represented in Figure 11. Using the Topology3D, the user can
design its experiment in terms of physical topology and
services, start the deployment of the topology and run the
experiments exploiting the provided measurement tools. The
design of Mantoo and of its components is modular and it can
be easily extended to support scenarios that go beyond the use
cases of our interest.

 Design Phase A.

The Topology3D offers a web GUI to design a network
topology and to configure the services for an experiment (see
Figure 10). It consists of a JavaScript client and a Python
back-end. A link to a public instance of the Topology 3D can
be accessed from [6]. The Topology3D is meant to be an
extensible framework that can support different models of

topology and services. A model corresponds to a
technological domain to be emulated and is characterized by
the set of allowed node types (e.g. routers, switches, end-
hosts), link types, service relationships and related constraints.

Figure 10. The Topology3D (Topology and Services Design, Deploy &
Direct) web Graphical User Interface

As shown in Figure 11 the input to Topology3D is a
textual description of the model. The model description is
used to configure the topology designer page, to enforce the
constraints when the user is building the topology and/or
during the validation of the topology. So far, we have
provided two models: 1) the OSHI topology domain,
including OSHI CR and PE, , Customer Edge routers which
are also used as traffic source/sinks and SDN controllers; 2) a
generic layer 2 network with OpenFlow capable switches,
end-nodes and SDN controllers. Each model is decomposed in
a set of views. A view is a perspective of a model, which
focuses on some aspects hiding unnecessary details. For
example, the OSHI model is decomposed in 5 views: data
plane, control plane and 3 views for the 3 services (IP VLLs,
Pseudo Wires and Virtual Switches). In the data plane view,
the user designs the physical topology in terms of nodes
(OSHI CR and PE, Controllers, and CEs) and links; in the
control plane view the user associates OSHI nodes with
controllers; in the service views the user selects the end points
of the services.

Setup scripts

Config scripts

Remote

Control

Scripts

Topology

representation

file (JSON)

Deployer Scripts

Topology

Parser

networkx

(automatic

topology generator)

Topology

to testbed

mapping

GOFF - OSHI

DeployerOFELIA - OSHI

Deployer

OSHI

Deployer

Distributed testbeds
Mininet emulation

Models
Models

Models of

technology

domains

VM servers

Topology 3D GUI
Topology and Services

Design, Deploy and Direct

Mininet

Extension

library

Testbed

Deployer

library

Topology

to testbed

mapping

Measurement

tools

Management

Scripts

Figure 11. Mantoo enabled emulation workflow

The Topology3D exports the representation of the views
(topology and services) in a JSON format, which becomes the

input for the deployment phase. Networkx [27] (a pre-existing
Python package for the creation/manipulation of complex
networks) allows generating random data plane topologies
with given characteristics.

 Deployment phase B.

The deployment phase translates the designed topology into
the set of commands that instantiate and configure the nodes
and the services for a given experiment. This phase can target
different execution environments for the experiments, by
means of a specific “Deployer”. So far, we targeted one
emulator (Mininet) and four distributed SDN testbeds (the
OFELIA testbed [10], the GÉANT OpenFlow Facility –
GOFF [41], the GÉANT Testbeds Service – GTS [42] and a
private testbed called Netgroup SDN Testbed – NeST [9]).

Technically, the deployment phase is performed by a set
of python scripts (Topology Deployer) that parse the JSON
file with the representation of the views and produce further
scripts (mostly shell scripts). The proper execution of these
scripts deploys the experiment either over Mininet or over a
distributed SDN testbed. The Testbed Deployer and the
Mininet Extensions are Python libraries that are used by the
actual Deployers. The Mininet Extensions library is tailored
for the Mininet emulator, while the Testbed Deployer
currently supports the four above mentioned testbeds and it
can be easily extended to support additional ones.

1) Mininet Extensions

By default, Mininet only provides the emulation of hosts and
switches. We enriched Mininet introducing an extended host,
capable of running as a router and managed to run the Quagga
and OSPFD daemons on it. The extended host includes Open
vSwitch, as needed to realize the OSHI node. Another
enhancement to the default Mininet setup depends on our
requirement to reach the emulated nodes via SSH from an
external, “non-emulated” process. For this purpose, we
introduce a fictitious node in the root namespace of the
hosting machine that is connected to the emulated network
and works as relay between the emulated world of Mininet
and the “real” world of the hosting machine. The details on
the specific Mininet deployment architecture can be found in
[9]. The Mininet Extensions library is able to automate all the
aspects of an experiment. This includes the automatic
configuration of IP addresses and of dynamic routing (OSPF
daemons) in all nodes, therefore relieving the experimenter
from a significant configuration effort. As for the software
design, the library extends Mininet providing new objects and
API that seamlessly integrate with existing Mininet objects.

2) Deployment over distributed SDN testbeds

We implemented and tested a Deployer for each of the four
distributed SDN testbeds listed above. The OFELIA and
GOFF testbeds share a similar architecture as they are based
on the OCF (OFELIA Control Framework) [10]. These two
testbeds manage differently the out-of-band connectivity.
Specifically, in the OFELIA testbed there is a management
network with private IP addresses, while in the GOFF testbed
all the virtual machines use a public IP address. The OFELIA
testbed slice we used is hosted in the CREATE-NET island,
composed by 8 OpenFlow capable switches and 3 Xen [44]

Virtualization Servers for the experimental Virtual Machines
(VMs). The GOFF testbed offers five sites, each one hosting
two servers, which respectively run the OF equipment (based
on OVS) and Xen, for hosting the VMs. The GOFF testbed
supports all the OSHI services (IP VLLs, PW and VSS). In
the OFELIA testbed the PW and VSS services cannot be
deployed due to old Linux kernels which do not support
network namespaces. The GTS testbed is distributed on a
number of locations interconnected by the GÉANT core
network [43]. It is managed by OpenStack, each site includes
a KVM Virtualization Server and a physical OpenFlow
capable switch. Finally, NeST is a small private testbed
located at University of Rome Tor Vergata, composed by
three servers, each one running both a KVM Virtualization
Server and a switch based on OVS.

The Management Scripts automate and facilitate the setup,
configuration and the deployment of an experiment. They
relieve the experimenter from tedious and error prone
activities. As shown in Figure 11, the Testbeds Deployer
Scripts automatically produce the configuration files that are
given in input to the Management Scripts for emulating a
given topology, composed of access and core OSHI nodes
(OSHI-PE and OSHI-CR) and end points (CEs and SDN
controllers). This includes the automatic configuration of IP
addresses and of dynamic routing daemons (OSPF) on all
nodes, saving a significant time for the node configuration.
Each node (CR, PE or CE) is mapped into a different VM
running in a Virtualization Server of a given testbed. Two
mechanisms can be used to map an emulated node on a VM:
1) a resource file (called “topology-to-testbed”) with a list of
IP addresses of available VMs can be given to the Deployer,
which automatically choses the VMs for the emulated nodes;
2) it is possible to manually assign the target VM (identified
by its IP address) for an emulated node, either editing a
mapping file or graphically using the Topology3D GUI.

A management host coordinates the overall process,
usually also executing the Deployer scripts. The management
host and the VMs communicate over a management network.
The configuration files generated by the Deployers scripts are
uploaded on a repository reachable by the VMs (e.g. a
webserver running on the management host). During the
deployment process these files are downloaded by each VM
belonging to the experiment.

The Management Scripts are logically decomposed in
Remote Control Scripts, Setup Scripts and Config Scripts:
• The Remote Control Scripts, based on Distributed SHell

(DSH), are used by the management host for distributing
and executing remote scripts and commands. They enable
root login without password, avoid initial ssh paring and
configure the DSH in the management VM. Once DSH
has been properly configured with the IP of the VMs
belonging to the experiment, it can run commands on a
single machine, on a subset, or on all the deployed VMs. It
is also possible to execute parallel commands speeding up
the deployment.

• The Setup Scripts turn a generic VM provided by the
testbed into an emulated node (CR, PE, CE or controller),
installing and configuring the needed software modules.

• The Config Scripts configure a specific experiment and its
topology, setting up the link (tunnels) among the VMs.

Testbed

level

Overlay

topology

(example)

Testbed

level

Overlay

level

Virtualization Server 1 Virtualization Server 2

Virtualization Server 1 Virtualization Server 2

Testbed

SDN

Controller

Testbed

SDN

Controller

Overlay SDN Controll.

Overlay

SDN

Controller

Figure 12. Deploying an overlay topology over the OFELIA/GOFF testbeds

In order to replicate an experimental topology emulating
the network links among CRs, PEs and CEs an overlay of
Ethernet over UDP tunnels is created among the VMs, as
shown in Figure 12 for the OFELIA and GOFF testbeds. A
target overlay topology is shown in the higher part of the
figure, while the physical testbed is shown in the bottom part,
in this example it is constituted by two Virtualization Servers
connected by a set of OpenFlow switches. Each element of
the overlay topology (node, host or SDN controller) is
mapped on a different VM that can be run in one of the
Virtualization Servers, as shown in the middle part of the
figure. The red thick lines represent the UDP tunnels among
the VMs that are setup in order to map the links of the overlay
topology. The underlying connectivity among the VMs has to
be managed by the Testbed SDN Controller. In case of GTS
and NeST the deployment is simplified because the
underlying connectivity among the VMs is automatically
provided by the testbed management infrastructure.

Virtual ports

VXLAN tunnel “ports”

IP

SDN
OF Capable Switch - OFCS

(Open vSwitch)

Physical interface with “testbed”

IP address (e.g. 192.168.1.x)

IP forwarding & routing component

eth1.199 port

Ethernet

over UDP

Figure 13. Implementing VXLAN tunnels using Open vSwitch (OVS)

A first option to build the tunnels is to use the user space
OpenVPN tool (with no encryption). The performance is
poor, as performing encapsulation in user space is very CPU
intensive. A possible approach to enhance performance is to
rely on specific hardware and/or on software modules on
optimized I/O library like Intel DPDK [30]. We prefer a
solution that is applicable on generic Linux devices, so we
consider an approach based on the VXLAN tunnels [33]
provided by Open vSwitch. OVS implements VXLAN
tunnels in kernel space [32], dramatically improving
performance with respect to OpenVPN. The design of the
VXLAN tunneling solution for OSHI over a distributed

testbed is reported in Figure 13. We only use VXLAN as a
point-to-point tunneling mechanism (the VXLAN VNI
identifies a single link between two nodes) and we do not
need underlying IP multicast support, as in the full VXLAN
model. The OF Capable OVS is also used to perform
encapsulation and de-capsulation of VXLAN tunnels. Each
tunnel corresponds to a port in the switch

 Control phase (running the experiments) C.

In the Mininet based experiments it is possible to open
consoles on the emulated nodes using the web GUI of the
Topology3D. The consoles show the output generated by the
ssh processes connected to the nodes (deployed in the Mininet
emulator). The generated output is conveyed to the terminal
shell running in the experimenter browser, leveraging the
WebSocket API, where each terminal has a separate
WebSocket channel. The same functionality for the
experiments over the distributed testbeds is currently under
development.

 Measurement Phase D.

In order to automate as much as possible the process of
running the experiments and collecting the performance data
over distributed testbeds we have developed an object
oriented multithreaded Python library called Measurement
Tools. The library offers an intuitive API that allows the
experimenter to “program” his/her tests. Using the library we
can remotely (through SSH) run the traffic generators (iperf)
and gather load information (CPU utilization) on all nodes
(VMs). As for the load monitoring, taking CPU measurements
from within the VMs (e.g. using the top tool) does not provide
reliable measurements. The correct information about the
resource usage of each single VM can be gathered from the
virtualization environment, for example on Xen based
systems we relied on the xentop tool, which must be run as
root in the Xen based Virtualization Server. Therefore, for the
OFELIA environment we have developed a python module
that collects CPU load information for each VM of our
interest in the Xen server using xentop and it formats it in a
JSON text file. The Measurement Tools retrieve the JSON file
from the python module with a simple message exchange on a
TCP socket. In the GOFF environment the measurement data
are provided through a Zabbix interface [46]. A python
module gathers the data from the Zabbix API. In the KVM
based NeST testbed, we relied on the virt-top tool.

The Measurement Tools provide a general framework that
can be easily adapted to different needs. Currently we have
developed tools able to generate UDP traffic and to gather
CPU load information from the virtualization environment.
An experimenter can easily extend this framework to run
his/her tests and collect the measures of interest.

VII. PERFORMANCE EVALUATION ASPECTS

In this section we analyze some performance aspects of the
OSHI prototype implementation over distributed SDN
testbeds. The openness of the OSHI solution makes it possible
to design and implement new services based on the SDN
paradigm and run experiments to validate them and/or to
compare different implementation options. Thanks to the
Mantoo suite, an experimenter can deploy a large scale

network over a distributed testbed. In our view the added
value provided by OSHI/Mantoo will be the opportunity to
get feedback on Control Plane design issue from the
implementation and the experiments.

On the other hand in this section we focus on some Data
Plane aspects of our prototype implementation. The rationale
for this evaluation is to provide an indication on the
scalability of the emulation approach in distributed testbeds
made up of Linux Virtual Machines running on typical
Virtualization Servers. It is not our purpose to assess Data
Plane forwarding performance for a production ready solution
working at line speed in the core of ISPs’ WANs. This type of
evaluation will be needed if OSHI will be ported over the so
called white box switches, high performance forwarding
equipment with an open Operating System that can be
customized by third-party developers, but this is for future
work.

The first two experiments (sections VII.A, VII.B) have
been performed over an OFELIA testbed. We used the iperf
tool as traffic source/sink in the CE routers and generate UDP
packet flows from 500 to 2500 packet/s. In these experiments
the UDP packet size was 1000 bytes (using UDP packets
ranging from 100 bytes to 1400 bytes, the performance has
been only influenced by the packet rate). We evaluated the
CPU load in the PE routers with our xentop based
Measurement Tools. We executed periodic polling and
gathered the CPU load of the monitored VMs. In each run we
collected 20 CPU load samples with polling interval in the
order of two seconds: the first 10 samples are discarded and
the last 10 are averaged to get a single CPU load value. Then
we evaluated the mean and the 95% confidence intervals
(reported in the figures) over 20 such runs. The experiment in
section VII.C has been executed on the NeST testbed. The
above described methodology has been used, but the
generated packet rate ranged from 12.5 kp/s to 62.5 kp/s, with
UDP packet size of 100 bytes, we evaluated CPU load both in
PE and CR OSHI nodes, using the virt-top tool. Finally, the
experiments in sections VII.D and VII.E have been performed
on the GOFF testbed.

 Best Effort IP performance in OSHI A.

With reference to the architecture in Figure 2, we compared
the forwarding performance of IP Best Effort packets in OSHI
(where each packet crosses the Open vSwitch two times,
marked as “OSHI IP” in Figure 14) with plain IP forwarding
(the Open vSwitch is removed and the OSHI node interfaces
are directly connected to IP forwarding engine, marked as
“ROUTER IP”). In the next section, we refer to the OSHI-IP
case as “No-Tunnel”, as no tunneling mechanism is used. This
experiment is not automatically deployed using the
Topology3D and Deployer, and we setup a limited topology
with two CE nodes and two OSHI nodes. In the experiment
results (see [9] for details) we can appreciate a CPU load
penalty for OSHI IP forwarding with respect to ROUTER IP
forwarding ranging from 11% to 19% at different rates. The
theoretical CPU saturation rate for plain ROUTER IP
forwarding is in the order of 14000 p/s. OSHI IP forwarding
reduces the theoretical CPU saturation rate to something in
the order of 12500 p/s (corresponding to 11% performance
penalty).

 Performance comparison of tunneling mechanisms B.

In this experiment we evaluated the processing overhead
introduced by the tunneling mechanisms (OpenVPN and
VXLAN) used to deploy the overlay experimental topologies
over distributed SDN testbeds. We considered the same
topology of the previous subsection.

Figure 14. Best Effort IP forwarding performance.

Figure 15 compares the CPU load for OSHI IP forwarding in
the OpenVPN, VXLAN and no tunneling scenarios. It can be
appreciated that VXLAN tunneling adds a reasonably low
processing overhead, while OpenVPN tunneling would
dramatically reduce the forwarding capability of an OSHI
node in the testbeds. The theoretical CPU saturation rate for
OpenVPN tunneling is in the order of 3500 p/s, which is 4
times lower than in the no tunneling case. The theoretical
CPU saturation rate for VXLAN tunneling is only ∼8% lower
than the no tunneling case, showing that VXLAN is an
efficient mechanism to deploy overlay topologies.

Figure 15. CPU Load for different tunneling mechanisms.

 Performance comparison of different forwarding C.
approaches over the distributed SDN testbed

In this experiment we evaluated the processing load of
different forwarding approaches over the distributed SDN
testbeds considering the topology shown in Figure 17. For the
OSHI solution, we considered IP forwarding (OSHI IP) and
SBP forwarding (OSHI VLL). Then we assumed plain IP
forwarding as a reference (ROUTER IP).

Figure 16. Physical network

in the NeST testbed
Figure 17. Overlay network for the

experiment on NeST

We executed the performance tests of OSHI IP, OSHI VLL
and ROUTER IP using the VXLAN tunneling solution and
collected the CPU load both for the access PE node and the
first CR node (see results in Figure 18). In case of plain IP
forwarding (ROUTER IP) the packets have to cross the Open
vSwitch which handles the VXLAN tunneling (see Figure
13), therefore as expected there is no advantage with respect
to OSHI IP. The OSHI VLL solution is the least CPU
intensive as it exploits MPLS label switching in the Open
vSwitch. The CPU performance penalty of OSHI IP
forwarding w.r.t. OSHI VLL is less than 10%. The CPU loads
for PE and CR are different in absolute values because the
respective VMs are mapped in two different Virtualization
Servers with different processors. In the experiment, a
physical core of the Virtualization Servers was exclusively
allocated to each VM. For the PE node the theoretical CPU
saturation rate is in the order of 320 kp/s for OSHI VLL,
while for the CR node hosted on the more performant server
the theoretical CPU saturation rate is in the order of 1 Mp/s.

Figure 18. CPU load with VXLAN tunneling.

 Performance evaluation of encapsulation for PW service D.

In this experiment we evaluated the performance penalty
introduced by the encapsulation mechanism implemented for
the PW service (section IV.D). We have performed this
experiment over the GOFF testbed (physical topology is
represented in Figure 19) using the overlay topology shown in
Figure 20. As usual, the iperf tool has been used as traffic
source/ sink in the CE routers and generates UDP packet
flows. We evaluated the CPU load in the OSHI-PE5, with a
periodic polling approach. A sample is provided by Zabbix
every minute, representing the average calculated in this
period with 1-second-interval samples. For each load level
(packet rate) we executed a single run of 7 minutes and
collected 7 CPU load values, the first 2 are discarded and the
last 5 are averaged to get a single CPU mean load value. Then
we evaluated the relative standard deviation (RSD) to
ascertain the reliability of the results. The RSD is always
smaller that 5% in all runs.

In the PE nodes, the implementation of the IP VLL service
is based on the design shown in Figure 2, while the PW
service considers the architecture described in Figure 7. We
wanted to estimate the overhead introduced by the ACE and
by the operations of the GRE tunnel. We generated UDP
packet flows with a rate ranging from 2000 to 18000 packet/s
(datagram size is 1000 byte as usual). The core topology is

represented in Figure 20. In the experiment, 3 CEs, acting as
traffic sources/sinks, were connected to each PE. This was
needed because the generation rate of a single CE in this
specific testbed setup was at most 6000 packet/s, to keep the
CPU load of the CE VMs under a safety threshold.

Figure 19. GOFF Physical

network
Figure 20. Overlay network for the

experiment on GOFF

In the experiment results (see Figure 21) we can
appreciate a CPU load penalty for OSHI PW forwarding with
respect to OSHI VLL forwarding in the order of 15%-21%.
Apparently, the CPU load penalty is decreasing in relative
terms at higher CPU load. These results shows the potential
improvements that could be achieved by natively supporting
EoMPLS tunneling in the switches instead of using the
developed ACE and the GRE encapsulation.

Figure 21. CPU load for different OSHI services.

 Performance analysis of OVS internal mechanisms. E.

In this section, we shortly report about two experiments that
concern the evaluation of OVS internal mechanisms. These
experiments do not directly concern OSHI, but they support
the choice of OVS as the software based OpenFlow capable
switch integrated in OSHI node and show the effectiveness of
the proposed Mantoo platform for the setup, deployment and
control of the experiments and the collection of performance
results. For space reasons, the detailed results have not been
included and can be found in [47].

The first experiment investigates the impact of the kernel
flow cache implemented in OVS. In the OVS architecture, the
first packet of a flow arriving at a node is forwarded to a
Linux user space process, while the following packets are
using a flow cache in the kernel. OVS performance is optimal
as long as the packets are forwarded using the kernel flow
cache. For the same traffic pattern we measured 40% CPU
utilization for kernel cache processing and 94% utilization for
user space processing. For the OSHI solution, we gathered the
design insight that the number of active SBPs should remain
within the limit of the kernel flow table. We evaluated (details
in [47]) how many flow table entries are needed for an IP

VLL or L2 PW service, so that we relate the dimension of the
flow table with the maximum number of service instances.

The second experiment evaluated how the number of
active flows in the flow tables influences the forwarding
performance of OVS. The comforting result is that increasing
the number of active flows in the tables does not influence the
forwarding performance. This is obviously valid as long as
the active flows are less than the size of the tables. The results
is a prove of the efficient implementation of flow lookup
mechanisms, at least for the traffic patterns that we have used
in our experiments.

VIII. RELATED WORK

Pure SDN solutions based on SDN capable switches inter-
connected with a centralized controller have been
demonstrated both in data-centers and in geographically
distributed research networks, such as OFELIA [10] in EU,
GENI [11] and Internet2 [12][13] in US. To the best of our
knowledge, these solutions do not integrate L3 routing within
the SDN capable L2 switches. We argue that an ISP network
requires a more sophisticated approach that can natively
interwork with legacy IP routers and IP routing protocols. As
stated in [7], a hybrid SDN model that combines SDN and
traditional architectures may “sum their benefits while
mitigating their respective challenges”. Some recent works
address the hybrid IP/SDN networking from different
perspectives.

In [14] the authors presented an Open Source Label
Switching Router that generates OSPF and LDP packets using
Quagga. The node computes the MPLS labels that are then
installed in the switches using the OpenFlow (OF) protocol.
This architecture does not exploit a logically centralized
controller. Instead, it considers a traditional distributed control
plane, while it uses OF only locally in a node to synchronize
the FIBs and to program the data plane.

RouteFlow [15] creates a simulated network made of
virtual routers at the top of a SDN controller. The simulated
network is a copy of the physical one. The controller uses the
BGP protocol to interact with routers of neighbor domains
and it simulates intra domain protocols (OSPF, IS-IS)
between the virtual routers. A traditional IP routing engine
(Quagga [16]) computes the routing tables that are eventually
installed into the physical nodes via the OF protocol. The
Cardigan project [18] is based on a fork of RouteFlow.
Cardigan realized a distributed router based on RouteFlow
concepts and deployed it in a public Internet exchange,
showing the applicability of SDN/OpenFlow in a production
context. The “SDN-IP” solution proposed in [19] follows
similar principles. It is based on the ONOS SDN controller
[20] and it also interacts with external domains using BGP.
Differently from RouteFlow, the controller does not
instantiate virtual routers to simulate the exchange of intra
domain routing protocols, but it centralizes the routing logic
for better efficiency.

Compared with these works, our solution assumes that the
physical nodes still deal with basic IP routing, thus achieving
resilience for basic IP connectivity based on standard IP
routing and easier interoperability with non-OF devices in the
core network. On top of the basic routing, the SDN/OpenFlow

controller can instruct the hybrid IP/SDN nodes to perform
SDN based forwarding for specific traffic flows. This idea of
supporting such hybrid nodes is already included in the
OpenFlow specifications since the first version of the
protocol. Two types of devices are considered: OF-only and
OF-hybrid which can support both OF processing and
standard L2/L3 functionalities. Currently, only proprietary
hardware switches implement the hybrid approach offering
also L3 standard routing capabilities. OSHI represents a fully
Open Source OF-hybrid solution designed to be flexible and
scalable, so as to facilitate experimentation on hybrid IP/SDN
networks at large scale.

The Google B4 WAN [21] is an integrated hybrid IP SDN
solution, and it has likely been the first application of the
SDN approach to a large-scale WAN scenario. In the B4
solution the traditional distributed routing protocols coexist
with a SDN/OpenFlow approach. In particular, the B4 WAN
sites are interconnected with traditional routing and the SDN-
based centralized Traffic Engineering solution is deployed as
an overlay on top of basic routing. Differently from the OSHI
solution, the routing protocols are processed by servers
external to the switches. Google B4 solution is proprietary
and it is highly tailored to the needs of their specific scenario,
composed of few large sites that needs to be interconnected.
As such, it does not represent a typical ISP WAN network,
made up by a large number of geographically distributed
nodes. On the other hand, OSHI is designed as a generic and
open solution for hybrid IP/SDN networks.

This work significantly extends the preliminary results
described in [5]: 1) the implementation of SDN based paths is
based on MPLS labels rather than VLAN tags, solving the
scalability issues; 2) in addition to the IP VLL service the
proposed solution offers the L2 PW service and the Virtual
Switch Service on top of it; 3) the detailed design and
implementation aspects of an OSHI node are described; 4) the
Mantoo platform has been extended, for example it now
supports remote consoles on the emulated Mininet nodes
using the web GUI; 5) the experiments have been validated
again with the new MPLS based implementation. A demo of
the Mantoo platform has been presented in [48].

IX. CONCLUSIONS

In this paper we have presented a novel architecture and
implementation of a hybrid IP/SDN (OSHI) node. The OSHI
data plane supports the coexistence of best effort IP
forwarding and SDN based forwarding using MPLS labels.
The traditional distributed MPLS control plane is not needed
anymore, as all MPLS circuits (Label Switched Paths, now
termed SDN Based Paths) are established by means of the
SDN controller. We have shown the implementation of IP
VLL and Layer 2 Pseudo Wire (PW) services. On top of the
L2 PW service we also have built a layer 2 Virtual Switch
Service (VSS), closely resembling the layer 2 VPLS solution
over MPLS. Using the SDN approach, all complex control
plane functions that take decisions (e.g. optimal tree
evaluation) and enforce that decisions (e.g. creation of PWs)
are executed outside the OSHI network nodes. Results of
performance tests executed both in single-host emulators

(Mininet) and in distributed SDN testbeds have shown that
OSHI is suitable for large-scale experimentation settings.

We have described Mantoo, a suite of supporting tools for
experiments with OSHI based services. It includes an
extensible web GUI framework for designing and validating a
topology, called Topology3D. The topology is automatically
deployed either on Mininet or on distributed testbeds.
Execution and Measurement tools simplify running the
experiments and collecting performance measurements.

Developed according to an Open Source model, the OSHI
prototype and the Mantoo suite are valuable tools that enable
further research and experimentation on novel services and
architecture in the emerging hybrid IP/SDN networks.

So far, we presented the OSHI architecture mostly as an
experimenter tool: it easily configures VMs as hybrid IP/SDN
nodes and performs experiments at relatively large scales
using Mininet emulator or resources over distributed testbeds.
On the other hand, we recently started working on an
implementation of the OSHI architecture on white box
switches [4], in particular using the P-3922 10Gbe switch
from Pica8. This work goes into the direction of
implementing OSHI in devices that can perform switching
and routing at line speed over production networks, closing
the gap between SDN research and real world networks.
Details on these white box switches experiment scenarios and
results are available at [6].

X. ACKNOWLEDGMENTS

This work was partly funded by the EU in the context of the
DREAMER project [35], a beneficiary project of the GÉANT
Open Call research initiative in the GN3plus project.

XI. REFERENCES
[1] “Software-Defined Networking: The New Norm for Networks”, ONF

White Paper, April 13, 2012
[2] D. Kreutz, et al., “Software-defined networking: A comprehensive

survey”, Proceedings of the IEEE, 103(1), 2015
[3] C. E. Rothenberg et al, “When Open Source Meets Network Control

Planes”, IEEE Computer, vol.47, no.11, Nov. 2014
[4] R. Sherwood “Tutorial: White Box/Bare Metal Switches”, Open

Networking User Group meeting, New York, May 2014
http://www.bigswitch.com/sites/default/files/presentations/onug-
baremetal-2014-final.pdf

[5] S. Salsano, et al. “Open Source Hybrid IP/SDN networking (and its
emulation on Mininet and on distributed SDN testbeds)”, EWSDN
2014, 1-3 September 2014, Budapest, Hungary

[6] OSHI home page http://netgroup.uniroma2.it/OSHI
[7] S. Vissicchio et al., “Opportunities and Research Challenges of Hybrid

Software Defined Networks”, ACM SIGCOMM Computer
Communications Review, Editorial Zone (April 2014).

[8] S. Vissicchio, et al, “Safe Update of Hybrid SDN Networks”, Technical
report, http://hdl.handle.net/2078.1/134360

[9] P. L. Ventre et al. “OSHI technical report” available at [6]
[10] Marc Suñé et al., “Design and implementation of the OFELIA FP7

facility: The European OpenFlow testbed”, Computer Networks, 2014
[11] Mark Berman et al., “GENI: A federated testbed for innovative

network experiments”, Computer Networks, Vol. 61, March 2014
[12] Internet2 home page - http://www.internet2.edu/

[13] Internet2 Software Defined Networking Group home page
http://www.internet2.edu/communities-groups/advanced-networking-
groups/software-defined-networking-group/

[14] J. Kempf, et al “OpenFlow MPLS and the open source label switched
router”. In proc. of the 23rd ITC, 2011

[15] C. Rothenberg et al. “Revisiting routing control platforms with the eyes
and muscles of software-defined networking”, HotSDN'12, 2012

[16] Quagga home page - http://www.nongnu.org/quagga/
[17] A. Detti, et al. “Wireless Mesh Software Defined Networks (wmSDN)”,

CNBuB 2013 workshop, October 2013, Lyon, France
[18] J. Stringer et al., “Cardigan: SDN distributed routing fabric going live at

an Internet exchange”, IEEE Symposium on Computers and
Communication (ISCC), 23-26 June 2014

[19] P. Lin et al., “Seamless Interworking of SDN and IP” ACM SIGCOMM
Computer Communication Review, 2013

[20] ONOS – Open Network Operating System home page,
http://onosproject.org/

[21] S. Jain, et al, “B4: Experience with a Globally-Deployed Software
Defined WAN” in SIGCOMM, 2013

[22] C. Filsfils, S. Previdi, (Eds.) et al. “Segment Routing Architecture”,
draft-ietf-spring-segment-routing-01, Feb 2015

[23] E. Rosen et al., “MPLS Label Stack Encoding”, IETF RFC 3032
[24] S. Bryant, P. Pate, “Pseudo Wire Emulation Edge-to-Edge (PWE3)

Architecture”, IETF RFC 3985, March 2005
[25] L. Martini, et al. “Encapsulation Methods for Transport of Ethernet over

MPLS Networks”, IETF RFC 4448, April 2006
[26] L. Davoli, et al., “Traffic Engineering with Segment Routing: SDN-

based Architectural Design and Open Source Implementation”, poster
paper at EWSDN 2015, Bilbao, Spain.

[27] Networkx home page - http://networkx.github.io/
[28] CISCO Technology white paper “Service Definitions: Virtual Leased

Lines”
[29] Floodlight’s home page - http://www.projectfloodlight.org
[30] DPDK: Data Plane Development Kit home page - http://dpdk.org/
[31] Open vSwitch home page - http://openvswitch.org/
[32] J Pettit, E. Lopez, “OpenStack: OVS Deep Dive”, Nov 13 2013,

http://openvswitch.org/slides/OpenStack-131107.pdf
[33] M. Mahalingam et al. “VXLAN: A Framework for Overlaying

Virtualized Layer 2 Networks over Layer 3 Networks”, draft-
mahalingam-dutt-dcops-vxlan-09.txt, April 10, 2014

[34] S. Lowe blog post “Introducing Linux Network Namespaces”
http://blog.scottlowe.org/2013/09/04/introducing-linux-network-
namespaces/

[35] DREAMER home page - http://netgroup.uniroma2.it/DREAMER/
[36] J. Medved, A. McLachlan, D. Meyer, “MPLS-TP Pseudowire

Configuration using OpenFlow 1.3” draft-medved-pwe3-of-config-01
[37] VPLS, RFC 4761 – https://tools.ietf.org/html/rfc4761
[38] RYU home page – http://osrg.github.io/ryu/
[39] Steiner tree – http://mathworld.wolfram.com/SteinerTree.html
[40] L. Kou, G. Markowsky, L. Berman, “A Fast Algorithm for Steiner

Trees”, Acta Informatica, 1981, Volume 15, Issue 2, pp 141-145

[41] GOFF home page – https://openflow.geant.net/#
[42] GTS home page - http://gts.geant.net/

[43] “Architecture Description: GÉANT Testbeds Service, Version 2”,
Deliverable D6.2 of GN3plus project

[44] The Xen Project home page http://www.xenproject.org/
[45] The KVM Project home page http://www.linux-kvm.org/

[46] Zabbix home page - http://www.zabbix.com/
[47] S. Salsano (ed.) et al. “DREAMER final report”, Open Call Deliverable

OCG-DS1.1 of GÉANT project, March 2015.
[48] S. Salsano, et al. “Mantoo - a set of management tools for controlling

SDN experiments”, demo paper at EWSDN 2015, Bilbao, Spain

