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Abstract – The introduction of SDN in large-scale IP provider 
networks is still an open issue and different solutions have been 
suggested so far. In this paper we propose a hybrid approach 
that allows the coexistence of traditional IP routing with SDN 
based forwarding within the same provider domain. The solution 
is called OSHI – Open Source Hybrid IP/SDN networking as we 
have fully implemented it combining and extending Open Source 
software. We discuss the OSHI system architecture and the 
design and implementation of advanced services like Pseudo 
Wires and Virtual Switches. In addition, we describe a set of 
Open Source management tools for the emulation of the 
proposed solution using the Mininet emulator and in distributed 
physical testbeds. We refer to this suite of tools as Mantoo 
(Management tools). Mantoo includes an extensible web-based 
graphical topology designer, which provides different layered 
network “views” (e.g. from physical links to service relationships 
among nodes). The suite can validate an input topology, 
automatically deploy it over a Mininet emulator or a distributed 
SDN testbed and allows access to emulated nodes by opening 
consoles in the web GUI. Mantoo provides also tools to evaluate 
the performance of the deployed nodes. 

Keywords - Software Defined Networking, Open Source, 
Network management tools, Emulation. 

I. INTRODUCTION 

Software Defined Networking (SDN) [1] [2] is a new 
paradigm proposed in data networking that may drastically 
change the way IP networks run today. Significant use cases 
include Data Centers and corporate/campus scenarios. SDN 
applicability in wide area IP networks of large providers is 
being considered. At present, these networks are operated 
with a combination of IP and MPLS technologies. IP/MPLS 
control and forwarding planes are capable to operate on large-
scale networks with carrier-grade quality, while SDN 
technology has not reached the same maturity level. The 
advantage of introducing SDN technology in a carrier grade 
IP is not related to performance improvements for current 
services on IP/MPLS backbones. Data Plane forwarding 
performances, restoration times in case of failures, several 
Control Plane aspects (e.g. routing convergence time) have all 
been optimized for the IP/MPLS backbones by the major 
equipment vendors in the years. We rather believe that the 
openness of the SDN approach simplifies the need of complex 
distributed Control Plane architectures and avoids proprietary 
implementations and interoperability issues. The new 
approach will facilitate the development of new services and 
foster innovation. The importance of Open Source in SDN is 
highlighted in [3] and the rising interest on white box 
networking [4] confirms its relevance in current and near 
future networking arena. 

Taking the openness as the main driver for moving to 
SDN, the scientific and technological question “what is the 
best way to introduce SDN in large-scale IP Service Providers 

(ISP) networks?” is definitely still open and different 
solutions have been proposed. The OSHI (Open Source 
Hybrid IP/SDN) networking architecture, first introduced in 
[5], addresses the above question, providing an Open Source 
reference implementation complemented with a rich set of 
services and management tools.  

The introduction of SDN in wide area ISP networks 
implies finding solutions to critical requirements and issues, 
such as: i) how to provide the scalability and fault tolerance 
required in operators’ environments; ii) how to cope with the 
high latency in the control plane (due to the geographically 
distributed environment); iii) how to provide the connectivity 
in the Control Plane between SDN controllers and the 
switches in the WAN (i.e. in-band vs. out-of-band solution) 

In order to support both the development/testing aspects 
and the evaluation of different solutions it is fundamental to 
have a realistic emulator platform. The platform should allow 
scaling up to hundreds of nodes and links, to emulate a large 
scale IP carrier network. Performing experiments has to be 
affordable for research and academic teams, not only for 
corporate developers. Therefore, we advocate the need of an 
Open Source reference node implementation and of  Open 
Source emulation platforms. The management of these 
emulation platforms and the tools for setting up and 
controlling experiments are also non-trivial problems, which 
is why we propose an Open Source set of tools called Mantoo 
(Management tools). The Mininet emulator is widely used by 
the SDN community, but its fidelity cannot be taken for 
granted especially for large scale topologies. The emulation 
over distributed SDN testbeds is in general more scalable and 
can allow to gather more realistic details on specific 
performance aspects. Mantoo is able to support both cases 
with a unified design and modelling approach. 

The main contributions of this paper are:  
1. The design of a hybrid IP/SDN architecture called Open 

Source Hybrid IP/SDN (OSHI). 
2. The design and implementation of a hybrid IP/SDN node 

made of Open Source components. 
3. Mantoo, a set of management tools to deploy and test the 

OSHI framework and services on Mininet emulator and 
on distributed SDN testbeds 

4. Evaluation of some performance aspects of the OSHI 
prototype implementation over distributed SDN testbeds. 

On top of the proposed OSHI framework and Mantoo tools 
the researcher/developer is able to design and deploy new 
services and to experiment on SDN Control Plane solutions 
with a minimal effort. The paper is structured as follows: 
section II describes the scenarios related to the introduction of 
SDN in IP Service Providers networks; section III defines the 
main concepts of the proposed hybrid IP/SDN networking 
architecture; section IV provides a detailed description of the 



OSHI nodes implementation and of the services that such a 
solution can offer; section V identifies some limitations of 
current SDN ecosystem along with the needed extensions, it 
also reports how our framework is being used to experiment 
on new services; section VI describes the Mantoo suite, that 
allows to design, deploy and control experimental topologies 
in a local emulator (Mininet) or on distributed testbeds, 
supporting the collection of performance measurements; 
section VII provides an evaluation of some performance 
aspects; section VIII reports on related work and explains the 
main differences with respect to our previous work; in section 
IX we draw some conclusions and highlight how we are 
porting OSHI over white box switches, potentially stepping 
from experiments to production networks. 

The source code of all the components of the OSHI node 
prototypes and of the Mantoo suite is freely available at [6]. 
To facilitate the initial environment setup, the whole OSHI 
and Mantoo environments have been packaged in a ready-to-
go virtual machine, with pre-designed example topologies up 
to 60 nodes. To the best of our knowledge, there is no such 
hybrid IP/SDN node available as Open Source software, nor 
an emulation platform with a set of management tools as rich 
as the Mantoo suite.  

II. SDN APPLICABILITY IN IP PROVIDERS NETWORKS 

SDN is based on the separation of the network Control Plane 
from the Data Plane. An external SDN controller can 
(dynamically) inject rules in SDN capable nodes. According 
to these rules the SDN nodes perform packet inspection, 
manipulation and forwarding, operating on packet headers at 
different layers of the protocol stack. 

We focus on SDN applicability in IP Service Providers 
networks. Figure 1 shows a reference scenario, with a single 
IP provider interconnected with other providers using the 
BGP routing protocol. Within the provider network, an intra-
domain routing protocol like OSPF is used. The provider 
offers Internet access to its customers, as well as other 
transport services (e.g. layer 2 connectivity services or more 
in general VPNs - Virtual Private Networks). Using the 
terminology borrowed by IP/MPLS networks, the provider 
network includes a set of Core Routers (CR) and Provider 
Edge (PE) routers, interconnected either by point-to-point 
links (Packet Over Sonet, Gigabit Ethernet, 10GBE…) or by 
legacy switched LANs (and VLANs). The Customer Edge 
(CE) router is the node in the customer network connected to 
the provider network. Most often, an ISP integrates the IP and 
MPLS technologies in its backbone. MPLS creates tunnels 
(LSP – Label Switched Path) among routers. On one hand, 
this can be used to improve the forwarding of regular IP 
traffic providing: i) traffic engineering, ii) fault protection iii) 
no need to distribute the full BGP routing table to intra-
domain transit routers. On the other hand, MPLS tunnels are 
used to offer VPNs and layer 2 connectivity services to 
customers. In any case, the commercial MPLS 
implementations are based on traditional (vendor-locked) 
control plane architectures that do not leave space for 
introducing innovation in an open manner. As a matter of fact, 
in case of complex services involving the MPLS control 
plane, IP Service Providers rely on single-vendor solutions. 

The management of large-scale IP/MPLS network is typically 
based on proprietary (and expensive) management tools, 
which, again, constitute a barrier to the innovation. 

Let us consider the migration of an IP/MPLS based 
Service Provider network to SDN. CR and PE routers could 
be replaced by SDN capable switches, on top of which the 
provider can realize advanced and innovative services. The 
migration paths should foresee the coexistence of IP and SDN 
based services, resembling the current coexistence of IP and 
MPLS. We define as hybrid IP/SDN a node that can operate 
both at IP level by keeping a traditional distributed routing 
intelligence and at SDN level, under the instructions of a SDN 
controller. This is opposed to a pure SDN node in which all 
routing logic is ran outside the node in the SDN controller. A 
hybrid IP/SDN network is composed of hybrid IP/SDN nodes, 
as well as by traditional IP routers and legacy layer 2 
switches. According to the taxonomy defined in [7], this 
approach can be classified as “Service-Based” or “Class-
Based” Hybrid SDN (depending on how the IP and SDN 
based services are combined). In this scenario the hybrid 
IP/SDN nodes are capable of acting as plain IP routers 
(running the legacy IP routing protocols), as well as SDN 
capable nodes, under the control of SDN controllers.  
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Figure 1. Reference scenario: an IP provider network 

III.  PROPOSED HYBRID IP/SDN ARCHITECTURE 

In the IP/MPLS architecture there is a clear notion of the 
MPLS tunnels, called Label Switched Paths (LSPs). In a SDN 
network several types of tunnels or, more generically, network 
paths can be created, leveraging on the ability of SDN capable 
nodes to classify traffic based on various fields such as MAC 
or IP addresses, VLAN tags and MPLS labels. Since there is 
no standard established terminology for such concept, we will 
refer to these paths as SDN Based Paths (SBP). A SBP is a 
virtual circuit which is setup using SDN technology to 
forward a specific packet flow between two end-points across 
a set of SDN capable nodes. The notion of packet flow is very 
broad and it can range from a micro-flow i.e. a specific TCP 
connection between two hosts, to a macro-flow e.g. all the 
traffic directed towards a given IP subnet. As highlighted 
before, a flow can be classified looking at the headers at 
different protocol levels. 

We address the definition of the hybrid IP/SDN network 
by considering: i) mechanisms for the coexistence of regular 
IP traffic and SBPs; ii) the set of services that can be offered 
using the SBPs; iii) ingress traffic classification mechanisms.  



Let us consider the coexistence of regular IP traffic and 
SDN based paths on the links among hybrid IP/SDN nodes. A 
SDN approach offers a great flexibility, enabling the 
classification of the packets through a “cross-layer” approach, 
by considering packet headers at different protocol levels 
(MPLS, VLANs, Q-in-Q, Mac-in-Mac and so on). Therefore, 
it is possible to specify a set of conditions to differentiate the 
packets to be delivered to the IP forwarding engine from the 
ones that belong to SBPs. In general, these conditions can 
refer to different protocol headers and can be in the form of 
whitelists or blacklists, changing dynamically, interface by 
interface. This flexibility may turn into high complexity. 
Therefore, the risk of misconfigurations and routing errors 
should be properly taken into account (see [8]). Without 
preventing the possibility to operate additional mechanisms 
for the coexistence of IP and SDN services in a hybrid 
IP/SDN network, we propose MPLS tagging as the preferred 
choice that we have used in our prototype implementation. In 
fact, using MPLS as forwarding plane technology is known to 
be scalable up to carrier-grade WANs. We have also 
considered simple VLAN tagging as a sub-optimal choice and 
have used it in a simpler prototype (see [5][9]). Simple VLAN 
tagging limits the number of SBPs on a link to 4096. 
Moreover, if legacy VLAN services needs to be supported on 
the links among the OSHI nodes, the VLAN label space needs 
to be partitioned, reducing the maximum number of SBPs and 
complicating the service management process. 

A key advantage of the coexistence approach in OSHI is 
the possibility to use traditional IP routing and forwarding for 
the Control Plane connectivity between SDN controllers and 
OF Capable switches. This approach avoids the needs of out-
of-band communication channels for the Control Plane. 

Let us now consider the services and the features that can 
be offered by a hybrid IP/SDN network. As primary 
requirements we assume three main services/functionalities: 
(i) virtual private networks (Layer 2 and Layer 3), (ii) traffic 
engineering, (iii) fast restoration mechanisms. Moreover, the 
architecture should facilitate the realization of new services 
and the development of new forwarding paradigms (for 
example Segment Routing [22]) without the need of 
introducing complex and proprietary control planes. 

As for the traffic classification, the ingress PEs need to 
classify incoming packets and decide if they need to be 
forwarded using regular IP routing or if they belong to the 
SBPs. The egress edge router extracts the traffic from the 
SBPs and forwards it to the appropriate destination. We 
considered (and implemented in our platform) two approaches 
for the ingress classification: i) classification based on 
physical access ports; ii) classification based on VLAN tags. 
Other traffic classifications, e.g. based on MAC or IP 
source/destination addresses can be easily implemented 
without changing the other components. 

IV.  DETAILED DESIGN OF THE HYBRID IP/SDN SOLUTION 

In this section we present the detailed design and the 
implementation of the proposed architecture. We describe the 
Open Source tools that we have integrated and how their 
practical limitations have been taken into account to deliver a 
working prototype. We first introduce the high level 

architecture of an OSHI node (IV.A) and the basic services 
we provide (IP Virtual Leased Line and Pseudo-wires, IV.B). 
Then we describe the use of MPLS labels to realize SDN 
Based Paths (SBPs) and to support the coexistence between IP 
based forwarding and SBP forwarding. We  show the design 
challenges of the MPLS based implementation, partly due to 
the inherent limitations of the current OpenFlow standards, 
partly to the shortcomings of the Open Source tools that we 
have integrated. 

 OSHI High Level Node Architecture A.

The proposed OSHI node combines an OpenFlow Capable 
Switch (OFCS), an IP forwarding engine and an IP routing 
daemon. The OFCS component is implemented using Open 
vSwitch (OVS) [31], the IP forwarding engine is the Linux 
kernel IP networking and Quagga [16] acts as the routing 
daemon. The OpenFlow Capable Switch is connected to the 
set of physical network interfaces belonging to the integrated 
IP/SDN network, while the IP forwarding engine is connected 
to a set of virtual ports of the OFCS, as shown in Figure 2.  
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Figure 2. OSHI Hybrid IP/SDN node architecture 

The virtual ports that interconnect the OFCS with the IP 
forwarding engine are realized using the Internal Port feature 
offered by Open vSwitch. Each internal port is connected to a 
physical port of the IP/SDN network, so that the IP routing 
engine can reason in term of the virtual ports, ignoring the 
physical ones. The OFCS differentiates among regular IP 
packets and packets belonging to SDN Based Paths. By 
default, it forwards the regular IP packets from the physical 
ports to the internal ports, so that they can be processed by the 
IP forwarding engine, controlled by the IP routing daemon. 
This approach avoids the need of translating the IP routing 
table into SDN rules to be pushed in the OFCS table, at the 
price of a small performance degradation for the packets that 
needs to be forwarded at IP level. In fact, these packets cross 
the OFCS switch twice. It is possible to extend our 
implementation to consider the mirroring of the IP routing 
table into the OFCS table. Mapping a static snapshot of the IP 
routing table into a set of SDN rules in the OFCS is relatively 
easy (the rewriting of source and destination MAC addresses 
needs to be included in the rules and the MAC addresses of 
the next hops needs to be discovered beforehand). The 
difficult challenge is to take into account the dynamic aspects, 
as the rules should be updated in a timely way following route 
additions, updates, deletions. Therefore in the OSHI prototype 
presented in this work this feature is left out for future work 
In [17] we described a prototype solution that mirrors the 
routes installed by OLSR in real time (for a specific set of IP 
destinations), mapping them in OpenFlow rules.  



An initial configuration of the OFCS tables is needed to 
connect the physical interfaces and the internal interfaces, in 
order to support the OFCS-to-SDN-controller communication 
and some specific SDN procedures (for example to perform 
layer 2 topology discovery in the SDN controller). A Local 
Management Entity (LME) in the OSHI node takes care of 
these tasks. In our setup, it is possible to use an “in-band” 
approach for the OFCS-to-SDN-controller communication, 
i.e. using the regular IP routing/forwarding and avoiding the 
need of a separate out-of-band network. Further details and 
the block diagram of the control plane architecture of OSHI 
nodes are reported in [9]. 

 OSHI basic services: IP VLL and L2 PW B.

We designed and implemented two basic services to be 
offered by OSHI networks: the “IP Virtual Leased Line” (IP 
VLL) and the Layer 2 “Pseudo-wire” (L2 PW or PW in short) 
see Figure 3. They belong to the class of Virtual Leased Line 
services [28], which are a fundamental part of the offering of 
large-scale IP Service Providers. VLL services can be used to 
carry bandwidth guaranteed applications (e.g. real time 
communications) or to support VPN solution (e.g. 
interconnect different sites of a company through the ISP 
WAN). Both services are offered between end-points in 
Provider Edge routers, the end-points can be a physical or 
logical port (i.e. a VLAN on a physical port) of the PE router 
connected to a Customer Edge (CE). The interconnection is 
realized in the core hybrid IP/SDN network with an SBP 
using MPLS labels. 

 
Figure 3.IP VLL and L2 PW services  

The proposed IP VLL service guarantees to the IP end-
points to be directly interconnected as if they were in the same 
Ethernet LAN and sending each other IP and ARP packets. It 
is not meant to allow the served SBP end-points to send 
packets with arbitrary Ethertype (e.g. including VLAN 
packets). The original source and destination MAC addresses, 
shown as “C-ETH” (C stands for Customer) in the headers of 
the packets in Figure 3, are preserved in the transit along the 
network core. This may cause problems if legacy L2 switches 

are used to interconnect OSHI nodes, therefore our 
implementation of IP VLL service can only work if all edge 
and core nodes are OSHI capable and are directly connected 
to each other, without legacy intermediate switches in 
between. As a solution to interwork with legacy switches, one 
could implement MAC address rewriting replacing the 
customer addresses with the addresses of the ingress and 
egress PEs or on a hop-by-hop case. This is rather complex to 
realize and to manage, because the egress node should restore 
the original MAC addresses (using the tag as key). There is 
the need to exchange and then maintain additional state 
information per each SBP in the egress nodes, so we did not 
implement this solution. In our prototype and experiments, if 
legacy switches are present in the network, the L2 PW service 
rather than the IP VLL service should be used. 

The L2 PW service is also known as “Pseudowire 
Emulation Edge to Edge” (PWE3), described in RFC 3985 
[24]. It provides a fully transparent cable replacement service: 
the endpoints can send packets with an arbitrary Ethertype 
(e.g. including VLAN, Q-in-Q). As shown in Figure 3, the 
customer Ethernet packet is tunneled into a new Ethernet 
packet (whose header is indicated as P-ETH) and then a 
MPLS header is added. This approach solves the interworking 
issues with legacy L2 networks related to customer MAC 
addresses exposure in the core. 

 OSHI - MPLS based approach C.

In this subsection we illustrate the detailed aspects of the 
proposed solution based on MPLS. The use of MPLS labels 
enables the establishment of up to 220 (more than 106) SBPs 
on each link, providing the required scalability. The MPLS 
label space can be partitioned in order to have an ordered 
coexistence with other MPLS based services in the provider 
WAN. We describe the implementation of IP VLL and PW 
services, in both cases the MPLS solution does not interfere 
with VLANs that can potentially be used in the links between 
OSHI nodes. 

1) Coexistence mechanisms 

The coexistence of regular IP service (best effort traffic) and 
SDN services (using SDN Based Paths) is assured using the 
Ethertype field of the L2 protocol. This corresponds to one of 
the mechanisms that can be used in the IP/MPLS model: 
regular IP traffic is carried with IP Ethertype (0x0800), while 
SBPs are carried with MPLS Ethertypes (0x8847 and 
0x8848). Using OpenFlow multi-table functionality, our 
solution supports the coexistence of IP and MPLS traffic 
types, as shown in Figure 4. Table 0 is used for regular IP, 
ARP, LLDP, BLDP, etc., table 1 for the SBPs. In particular, 
Table 0 contains: i) a rule that forwards the traffic with 
Ethertype 0x8847 (MPLS) to Table 1; ii) only for IP VLL a 
rule that forwards the traffic with Ethertype 0x8848 
(Multicast MPLS) to Table 1; iii) the set of rules that “bridge” 
the physical interfaces with the internal ports and vice versa; 
iv) two rules that forward the LLDP and BLDP traffic to the 
controller. Table 1 contains the set of rules that forward the 
packets of the SBPs according to the associated IP VLL or 
PW service. The coexistence in Table 0 is assured through 
different levels of priority. The IP VLL service needs both the 
rules associated to unicast and multicast MPLS Ethertype 



(more details below), while the PW service only needs a rule 
matching the unicast MPLS Ethertype. 

We consider two MPLS based tunneling mechanisms: 
plain IP over MPLS ([23], here referred to as IPoMPLS) and 
Ethernet over MPLS (EoMPLS [24] [25]). The IPoMPLS 
tunneling is used for the IP VLL service. The EoMPLS 
tunneling can support the relaying of arbitrary layer 2 packets, 
providing the L2 PW service [24]. 

Packet IN start at 

table 0

Match in 

table 0 ?

Send to controller

GOTO table 1

Execution action 

set

Match in 

table 1 ?

MATCH1, action1

MATCH2, action2

MATCH3, action3

MATCH4, action4

Execution 

action set

....

MPLSM, goto:1

INPORT=1, output:2

INPORT=3, output:4

MPLS, goto:1

MPLSM, goto:1

INPORT=1, output:2

IP, ARP, ...

SBPs RyuLME

 
Figure 4. Packet processing in the OFCS flow tables 

2) Ingress classification and encapsulation mechanisms 

As for the ingress classification functionality in a PE router, it 
can be either based on the physical input port or on the 
incoming VLAN tag. We use the input port to classify 
untagged traffic as regular IP traffic or as belonging to a SBP 
end-point (of an IP VLL or PW). For the VLAN tagged traffic 
entering in a physical port of a PE router, each VLAN tag can 
be individually mapped to a SBP end point or assigned to 
regular IP traffic. For the untagged traffic, the implementation 
of the ingress classification is realized within the OFCS of the 
OSHI Provider Edge nodes. In fact, by configuring rules in 
the OFCS, it is possible to map the untagged traffic on an 
ingress physical port to an internal port (for regular IP) or to a 
SBP. For the tagged traffic, the incoming classification relies 
on the VLAN handling of the Linux networking: each VLAN 
tag x can be mapped to a virtual interface eth0.x that will 
simply appear as an additional physical port of the OFCS. 

Let us analyze the encapsulation mechanisms. The left 
half of Figure 5 shows the encapsulation realized by the 
OSHI-PE node for the IP VLL service. C stands for 
Customer, the ingress direction is from customer to core, 
egress refers to the opposite direction. This solution follows 
the IPoMPLS approach, in which a MPLS label is pushed 
within an existing frame. In this case an input Ethernet frame 
carrying either an IP or an ARP packet, keeps its original 
Ethernet header, shown as C-ETH in Figure 5. As we have 
already discussed, this solution has the problem of exposing 
the customer source and destination MAC addresses in the 
core. Moreover, note that the MPLS Ethertype (0x8847) 
overwrites the existing Ethertype of the customer packets. 
This does not allow the distinction between IP and ARP 
packets at the egress node. A solution would be to setup two 
different bidirectional SBPs: one for the IP and one for the 
ARP packets. In order to save label space and simplify the 
operation we preferred to carry IP packets with the MPLS 
Ethertype and to (ab)use multicast MPLS Ethertype (0x8848) 
to carry the ARP packets. With this approach, the same MPLS 
label can be reused for the two SBPs transporting IP and ARP 
packets between the same end-points. 

The “Ethernet over MPLS” (EoMPLS) encapsulation [25] 
represents the most efficient approach to implement the PW 
service. As shown in the right side of Figure 5, EoMPLS 
encapsulates the customer packet including its original 
Ethernet header in an MPLS packet to be carried in a newly 
generated Ethernet header. Unfortunately, we require a 
solution that can be implemented using an Open Source 
switch and we would like to have a solution that can be fully 
controlled by OpenFlow. The OpenFlow protocol and most 
OpenFlow capable switches (including Open vSwitch that we 
are using for our prototype) do not natively support EoMPLS 
encapsulation and de-capsulation. A similar issue has been 
identified in [36], in which the authors propose to push an 
Ethernet header using a so called “input Packet Processing” 
(iPProc) function before handing the packet to a logical 
OpenFlow capable switch that - in turn - will push the MPLS 
label. Obviously this requires a switch with an “input Packet 
Processing” function capable of pushing an Ethernet header 
into an existing Ethernet packet. Note that this process is not 
fully controlled with the OpenFlow protocol, as OpenFlow 
does not support the pushing of an Ethernet header. We 
cannot directly follow this approach, as Open vSwitch is not 
capable of pushing Ethernet headers. The right half of Figure 
5 shows the approach that we have followed, relying on GRE 
encapsulation. P stands for Provider and it indicates the 
headers added/removed by the PE. A packet in the PE is 
processed in four steps (shown as i1 to i4 in the ingress 
direction from the CE towards the core and as e1 to e4 in the 
egress direction from the core toward a customer. The GRE 
encapsulation introduces an additional overhead (20 bytes for 
P-IP and 4 bytes for GRE headers) to the standard EoMPLS, 
but it allowed us to rely on Open Source off-the-shelf 
components. 
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Figure 5. IP VLL and L2 PW tunneling operations at the Provider Edges. The 
EoMPLS encapsulation format is shown as a reference.  

The implementation of the proposed approach required a 
careful design, whose result is shown in Figure 6. A new 
entity called ACcess Encapsulator (ACE) is introduced in 
order to deal with the GRE tunnel at the edges of the pseudo 
wire tunnel. The detailed design is further analyzed in 
subsection IV.D. 

With this approach it is possible to rewrite the outer source 
and destination MAC addresses in the core OSHI network, so 
that they can match the actual addresses of the source and 



destination interfaces on the OSHI IP/SDN routers. This 
allows the support of legacy Ethernet switched networks 
among the OSHI IP/SDN routers, which can be an important 
requirement for a smooth migration from existing networks. 

Both the IP VLL and PW services are realized with SBPs 
that switch MPLS labels between two end-points (in both 
directions). We used the Ryu [38] controller, the SBPs are 
setup using a python script called VLLPusher. The script uses 
the Ryu Topology REST API of  to retrieve the shortest path 
that interconnects the SBP end-points. It allocates the MPLS 
labels and then uses the Ofctl REST API to setup the rules for 
packet forwarding and MPLS label switching. In the setup of 
a PW service the MAC rewriting actions are added, using the 
addresses of the OSHI nodes as the outer MAC addresses. 
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Figure 6. PW implementation in the OSHI node prototype 

3) Requirements on protocol and tools versions 

The MPLS solution needs at least OpenFlow v1.1, which 
makes possible to handle MPLS. Both the SDN controller and 
the SDN Capable Switch need to support at least OF v1.1 
(most controller and switches jumped from OF v1.0 to v1.3). 
Considering our tools, an Open vSwitch version compliant 
with OF v1.3 has been released in summer 2014, making it 
possible to start the implementation of the MPLS based 
approach. 

4) The Virtual Switch Service (VSS) 

The PW service can be used as a building block for creating 
more complex services, like for example the Virtual Switch 
Service (VSS). While a PW service instance bridges two layer 
2 end-points, the VSS service bridges a set of end-points into 
a virtual layer2 switch. The ports of a VSS instance 
correspond to an arbitrary set of ports of the Provider Edge 
nodes. This service is called Virtual Private LAN Service 
(VPLS) in RFC 4761 [37]. A VSS provides the same VPLS 
service described in the RFC but its implementation is based 
on SDN and does not exploit other control plane 
functionalities, therefore we renamed it. 

The VSS is based on the L2 PW service, because the IP 
VLL service does not provide a transparent forwarding of 
layer 2 packets. To implement the VSS service, a set of PWs 
connect the end-points to branching points in the OSHI 
network. A virtual layer 2 switch instance, called Virtual 
Bridging Point (VBP), is allocated in the branching points to 
bridge the packets coming from the PWs. 

A VSS instance is deployed in three steps: i) branching 
point selection; ii) VBP deployment; iii) VBP 
interconnection. In the first step, a python script called 
VSSelector retrieves the topology from the controller and then 
chooses the branching points, i.e. the OSHI nodes that will 

host the VBPs. In the second step according to the output of 
VSSelector the VBP are deployed as additional instances of 
Open vSwitch in the selected OSHI nodes (see subsection 
IV.D for implementation details). The final step is the 
deployment of the PWs that will interconnect the CEs to the 
VBPs and the VBPs among each other. We provide two 
versions of the branching point selection (first step above): i) 
un-optimized; ii) optimized. In the un-optimized version a 
single node is randomly selected in the topology and used to 
deploy the virtual bridge. For the optimized version, finding 
the optimal topology to implement a VSS corresponds to the 
minimal Steiner tree problem [39]. We implement the 
heuristic defined in [40] to find an approximate solution. 
Then, using the tree topology obtained from the heuristic, a 
VBP is deployed in each branching point of the tree. In both 
the un-optimized and optimized version, the VBPs are 
connected each other and with end-points with direct Pseudo 
Wires. In this way the packets enters the VBPs only in the 
branching points. 

 OSHI detailed node architecture D.

In order to support the PW and VSS services, the architecture 
of an OSHI node needs to be more complex with respect to 
the high level architecture shown in Figure 2. Figure 7 
provides a representation of the proposed solution for the PE 
nodes. As discussed above, the difficult part is the support of 
encapsulation and de-capsulation in the OSHI PE nodes, for 
which we resorted to use GRE tunnels (see the right side of 
Figure 5). The different encapsulation steps in the ingress (i1-
i4) and egress direction (e1-e4) are represented using the same 
numbering of Figure 5. The OF Capable Switch only handles 
the push/pop of MPLS labels, while the ACE handles the 
GRE encapsulation. The ACE is implemented with a separate 
instance of Open vSwitch, in particular we have an ACE 
instance running in a separate Linux network namespace [34] 
for each customer. For each PW, the ACE has two ports: a 
“local” port facing toward the CE locally connected to the PE 
node and a “remote” one facing towards the remote side of the 
PW. The remote port is a GRE port provided by OVS, 
therefore the ACE receives the customer layer 2 packets on 
the local ports and sends GRE tunneled packets on the remote 
port (and vice-versa). The interconnection of OFCS ports and 
ACE ports (the endpoints of the yellow pipes in Figure 7) are 
realized using the concept of Virtual Ethernet Pair [34] 
offered by the Linux Kernel. 
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Figure 7. OSHI-PE architectural details 



Differently from the internal ports (shown on the right side 
of Figure 7), the Virtual Ethernets are always associated in 
pairs. In our case, for each PW two Virtual Ethernet pairs are 
needed, one pair is used to connect the CE port of OFCS with 
the local port of ACE, another pair to connect the remote port 
of the ACE with the physical ports towards the remote side of 
the PW. Three virtual Ethernet endpoints are used as plain 
switch ports (two belong to the OFCS, one to the ACE), the 
last one, on the ACE, is configured with an IP address and it 
is used as the endpoint of the GRE tunnel (Virtual Tunnel 
Endpoint, i.e. VTEP). These IP addresses are not globally 
visible, but they have a local scope within the network 
namespaces associated to the customer within all the OSHI 
nodes. This approach greatly simplifies the management of 
the services, as the same addresses for the GRE VTEP can be 
reused for different customers. As a further simplification, 
static ARP entries are added on the Virtual Ethernet for each 
remote tunnel end (remote VTEP). For each customer, a 
simple centralized database of IP and MAC addresses (used 
for GRE tunnels) is needed. 

Proper OpenFlow rules needs to be setup in the OF 
Capable Switch to ensure the transit of packets. On the access 
port (i1) these rules are provided by the LME at the time of 
the ACE creation, while in the i4 and e2 cases they are pushed 
by the OpenFlow Controller during the PW establishment. 

As discussed above, an instance of ACE in the PE node is 
used to handle all the PWs of a single customer and runs in a 
private network namespace. In addition we had to configure a 
private folders tree for each ACE instance, as it is needed to 
guarantee proper interworking of difference instances of OVS 
in the same PE node.  

Coming to the implementation of the VSS, the internal 
design of an OSHI node that hosts a VSS Bridging Point 
(VBP) is shown in Figure 8. The design is quite similar to the 
one analyzed before for the PW encapsulation. A VBP is 
implemented with an OVS instance that does not have local 
ports, but only remote ones. A VPB instance represents a 
bridging point for a single VSS instance and it cannot be 
shared among VSS instances. 
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Figure 8. An OSHI node that hosts a bridging point for a VSS 

1) Considerations on alternative design choices 

Considering that a single instance of Open vSwitch can 
support several independent switches, a simpler design would 
consists in implementing the ACEs shown in Figure 7 as 
separate switches within the same Open vSwitch instance that 
runs the OFCS. For N customers, this solution would use one 
OVS instance instead of N and only the root network 

namespace instead of N additional namespaces, reducing the 
memory requirements versus the number of customers. The 
drawback of this solution is that handling the GRE tunnels of 
all customers in the same network namespace requires the 
management of disjoint IP numbering spaces for the tunnel 
endpoints of different customers. In addition, the separate 
namespaces allow to turn the ACE in a “Virtual Router” by 
including an instance of a routing daemon (Quagga) in its 
network namespace. Such a virtual router is the basic 
component of Layer 3 VPN services that could complement 
the Layer 2 PW and VSS services realized so far. With the 
choice of the more complex design we tradeoff scalability 
with simplification of the service management and easier 
development of new services.  
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Figure 9. PW implementation design without ACE 

A second consideration is that the handling of GRE 
tunneling has been recently introduced in Linux kernels. This 
can lead to a simpler design for tunneling that does not require 
the ACE nor the use of the GRE module provided by Open 
vSwitch, as shown in Figure 9. Anyway, this solution has the 
same drawbacks discussed above in terms of management of 
IP addresses for the tunnel endpoints, because there are not 
separate network namespaces for the customers, and cannot 
be easily extended to support Layer 3 services.  

V. OSHI: GAP ANALYSIS, ONGOING AND FUTURE WORK 

The solution for PW encapsulation described in section IV.D 
is based on GRE tunneling performed by the ACE. It has been 
designed as a replacement of the more efficient Ethernet over 
MPLS (EoMPLS) encapsulation specified in [24], which 
cannot be realized by the current version of Open vSwitch. 
The GRE tunneling introduces a transport and a processing 
overhead. The former is 20 (IP header) + 16 (GRE header) 
bytes for each packet, while the latter depends on the 
implementation architecture. Our solution (shown in Figure 7) 
is not meant to be highly efficient but only to demonstrate the 
feasibility of the approach with a working component. We do 
not plan to improve the efficiency of the solution, rather we 
believe that native Ethernet over MPLS (EoMPLS) 
encapsulation should be provided by open source switches 
and we are considering to extend the Open vSwitch to support 
EoMPLS. 

Assuming that a switch supports EoMPLS, a second 
important gap to be filled is the lack of support for such 
tunneling operations in the OpenFlow protocol. Note that the 
lack of encapsulation support in OpenFlow does not only 
concern EoMPLS, but also other tunneling solutions like 
GRE, VXLAN. The only tunneling solution currently 



supported by OpenFlow is the PBB (Provider Backbone 
Bridges, also known as “mac-in-mac”), but this solution is not 
supported by Open vSwitch. For GRE and VXLAN, using 
OpenFlow it is possible to control packets already tunneled 
(and specific matches have been introduced in OF 1.4 for 
VXLAN), but it is not possible to control the encapsulation 
(i.e. pushing the GRE, VXLAN headers) and de-capsulation 
(i.e. popping the header) operations. Currently, external tools 
are needed to manage the GRE or VXLAN tunnel end-points 
(e.g. using the switch CLIs - Command Line Interfaces or 
switch specific protocols, like ovsdb-conf for Open vSwitch), 
with added complexity in the development, debug and 
operations. Extending OpenFlow protocol with the capability 
to configure the tunneling end-points would be a great 
simplification in the management of SDN based services.  

The OSHI solution is an open starting point to design and 
implement additional “core” functionality and user oriented 
services. As for the core functionality we are considering 
traffic engineering mechanisms and implemented a flow 
assignment heuristic for optimal mapping of PWs with 
required capacity on the core OSHI links. As for additional 
services, we are considering Layer 3 VPNs based on the PW 
service. Following the same approach used for the VSS 
service, the idea is to deploy virtual router instances within 
the OSHI nodes that can exchange routing information with 
routers in the CE nodes. Finally, we are working on an Open 
Source implementation of Segment Routing [22] on top of 
OSHI [26]. This last scenario is a good example of how the 
proposed framework facilitates the implementation of new 
services and forwarding paradigms. All these ongoing efforts 
are reported on the OSHI web page [6], with links to 
documentation and source code. 

VI. MANTOO: MANAGEMENT TOOLS FOR SDN/NFV 

EXPERIMENTS ON M ININET AND DISTRIBUTED SDN TESTBEDS 

Mantoo is a set of Open Source tools meant to support SDN 
experiments both over Mininet and over distributed testbeds. 
Mantoo is able to drive and help the experimenters in the 
different phases that compose an experiment: design, 
deployment, control and measurement, as described in the 
next subsections. Mantoo includes: a web based GUI called 
Topology3D (Topology and Services Design, Deploy and 
Direct, Figure 10), a set of scripts to configure and control 
emulators or distributed testbeds; a set of scripts for 
performance measurements. The overall Mantoo workflow is 
represented in Figure 11. Using the Topology3D, the user can 
design its experiment in terms of physical topology and 
services, start the deployment of the topology and run the 
experiments exploiting the provided measurement tools. The 
design of Mantoo and of its components is modular and it can 
be easily extended to support scenarios that go beyond the use 
cases of our interest. 

 Design Phase  A.

The Topology3D offers a web GUI to design a network 
topology and to configure the services for an experiment (see 
Figure 10). It consists of a JavaScript client and a Python 
back-end. A link to a public instance of the Topology 3D can 
be accessed from [6]. The Topology3D is meant to be an 
extensible framework that can support different models of 

topology and services. A model corresponds to a 
technological domain to be emulated and is characterized by 
the set of allowed node types (e.g. routers, switches, end-
hosts), link types, service relationships and related constraints. 

 
Figure 10. The Topology3D (Topology and Services Design, Deploy & 
Direct) web Graphical User Interface 

As shown in Figure 11 the input to Topology3D is a 
textual description of the model. The model description is 
used to configure the topology designer page, to enforce the 
constraints when the user is building the topology and/or 
during the validation of the topology. So far, we have 
provided two models: 1) the OSHI topology domain, 
including OSHI CR and PE, , Customer Edge routers which 
are also used as traffic source/sinks and SDN controllers; 2) a 
generic layer 2 network with OpenFlow capable switches, 
end-nodes and SDN controllers. Each model is decomposed in 
a set of views. A view is a perspective of a model, which 
focuses on some aspects hiding unnecessary details. For 
example, the OSHI model is decomposed in 5 views: data 
plane, control plane and 3 views for the 3 services (IP VLLs, 
Pseudo Wires and Virtual Switches). In the data plane view, 
the user designs the physical topology in terms of nodes 
(OSHI CR and PE, Controllers, and CEs) and links; in the 
control plane view the user associates OSHI nodes with 
controllers; in the service views the user selects the end points 
of the services.  
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Figure 11. Mantoo enabled emulation workflow 

The Topology3D exports the representation of the views 
(topology and services) in a JSON format, which becomes the 



input for the deployment phase. Networkx [27] (a pre-existing 
Python package for the creation/manipulation of complex 
networks) allows generating random data plane topologies 
with given characteristics. 

 Deployment phase B.

The deployment phase translates the designed topology into 
the set of commands that instantiate and configure the nodes 
and the services for a given experiment. This phase can target 
different execution environments for the experiments, by 
means of a specific “Deployer”. So far, we targeted one 
emulator (Mininet) and four distributed SDN testbeds (the 
OFELIA testbed [10], the GÉANT OpenFlow Facility – 
GOFF [41], the GÉANT Testbeds Service – GTS [42] and a 
private testbed called Netgroup SDN Testbed – NeST [9]). 

Technically, the deployment phase is performed by a set 
of python scripts (Topology Deployer) that parse the JSON 
file with the representation of the views and produce further 
scripts (mostly shell scripts). The proper execution of these 
scripts deploys the experiment either over Mininet or over a 
distributed SDN testbed. The Testbed Deployer and the 
Mininet Extensions are Python libraries that are used by the 
actual Deployers. The Mininet Extensions library is tailored 
for the Mininet emulator, while the Testbed Deployer 
currently supports the four above mentioned testbeds and it 
can be easily extended to support additional ones. 

1) Mininet Extensions 

By default, Mininet only provides the emulation of hosts and 
switches. We enriched Mininet introducing an extended host, 
capable of running as a router and managed to run the Quagga 
and OSPFD daemons on it. The extended host includes Open 
vSwitch, as needed to realize the OSHI node. Another 
enhancement to the default Mininet setup depends on our 
requirement to reach the emulated nodes via SSH from an 
external, “non-emulated” process. For this purpose, we 
introduce a fictitious node in the root namespace of the 
hosting machine that is connected to the emulated network 
and works as relay between the emulated world of Mininet 
and the “real” world of the hosting machine. The details on 
the specific Mininet deployment architecture can be found in 
[9]. The Mininet Extensions library is able to automate all the 
aspects of an experiment. This includes the automatic 
configuration of IP addresses and of dynamic routing (OSPF 
daemons) in all nodes, therefore relieving the experimenter 
from a significant configuration effort. As for the software 
design, the library extends Mininet providing new objects and 
API that seamlessly integrate with existing Mininet objects.  

2) Deployment over distributed SDN testbeds 

We implemented and tested a Deployer for each of the four 
distributed SDN testbeds listed above. The OFELIA and 
GOFF testbeds share a similar architecture as they are based 
on the OCF (OFELIA Control Framework) [10]. These two 
testbeds manage differently the out-of-band connectivity. 
Specifically, in the OFELIA testbed there is a management 
network with private IP addresses, while in the GOFF testbed 
all the virtual machines use a public IP address. The OFELIA 
testbed slice we used is hosted in the CREATE-NET island, 
composed by 8 OpenFlow capable switches and 3 Xen [44] 

Virtualization Servers for the experimental Virtual Machines 
(VMs). The GOFF testbed offers five sites, each one hosting 
two servers, which respectively run the OF equipment (based 
on OVS) and Xen, for hosting the VMs. The GOFF testbed 
supports all the OSHI services (IP VLLs, PW and VSS). In 
the OFELIA testbed the PW and VSS services cannot be 
deployed due to old Linux kernels which do not support 
network namespaces. The GTS testbed is distributed on a 
number of locations interconnected by the GÉANT core 
network [43]. It is managed by OpenStack, each site includes 
a KVM Virtualization Server and a physical OpenFlow 
capable switch. Finally, NeST is a small private testbed 
located at University of Rome Tor Vergata, composed by 
three servers, each one running both a KVM Virtualization 
Server and a switch based on OVS. 

The Management Scripts automate and facilitate the setup, 
configuration and the deployment of an experiment. They 
relieve the experimenter from tedious and error prone 
activities. As shown in Figure 11, the Testbeds Deployer 
Scripts automatically produce the configuration files that are 
given in input to the Management Scripts for emulating a 
given topology, composed of access and core OSHI nodes 
(OSHI-PE and OSHI-CR) and end points (CEs and SDN 
controllers). This includes the automatic configuration of IP 
addresses and of dynamic routing daemons (OSPF) on all 
nodes, saving a significant time for the node configuration. 
Each node (CR, PE or CE) is mapped into a different VM 
running in a Virtualization Server of a given testbed. Two 
mechanisms can be used to map an emulated node on a VM: 
1) a resource file (called “topology-to-testbed”) with a list of 
IP addresses of available VMs can be given to the Deployer, 
which automatically choses the VMs for the emulated nodes; 
2) it is possible to manually assign the target VM (identified 
by its IP address) for an emulated node, either editing a 
mapping file or graphically using the Topology3D GUI. 

A management host coordinates the overall process, 
usually also executing the Deployer scripts. The management 
host and the VMs communicate over a management network. 
The configuration files generated by the Deployers scripts are 
uploaded on a repository reachable by the VMs (e.g. a 
webserver running on the management host). During the 
deployment process these files are downloaded by each VM 
belonging to the experiment.  

The Management Scripts are logically decomposed in 
Remote Control Scripts, Setup Scripts and Config Scripts: 
• The Remote Control Scripts, based on Distributed SHell 

(DSH), are used by the management host for distributing 
and executing remote scripts and commands. They enable 
root login without password, avoid initial ssh paring and 
configure the DSH in the management VM. Once DSH 
has been properly configured with the IP of the VMs 
belonging to the experiment, it can run commands on a 
single machine, on a subset, or on all the deployed VMs. It 
is also possible to execute parallel commands speeding up 
the deployment. 

• The Setup Scripts turn a generic VM provided by the 
testbed into an emulated node (CR, PE, CE or controller), 
installing and configuring the needed software modules. 



• The Config Scripts configure a specific experiment and its 
topology, setting up the link (tunnels) among the VMs. 
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Figure 12. Deploying an overlay topology over the OFELIA/GOFF testbeds 

In order to replicate an experimental topology emulating 
the network links among CRs, PEs and CEs an overlay of 
Ethernet over UDP tunnels is created among the VMs, as 
shown in Figure 12 for the OFELIA and GOFF testbeds. A 
target overlay topology is shown in the higher part of the 
figure, while the physical testbed is shown in the bottom part, 
in this example it is constituted by two Virtualization Servers 
connected by a set of OpenFlow switches. Each element of 
the overlay topology (node, host or SDN controller) is 
mapped on a different VM that can be run in one of the 
Virtualization Servers, as shown in the middle part of the 
figure. The red thick lines represent the UDP tunnels among 
the VMs that are setup in order to map the links of the overlay 
topology. The underlying connectivity among the VMs has to 
be managed by the Testbed SDN Controller. In case of GTS 
and NeST the deployment is simplified because the 
underlying connectivity among the VMs is automatically 
provided by the testbed management infrastructure.  
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Figure 13. Implementing VXLAN tunnels using Open vSwitch (OVS) 

A first option to build the tunnels is to use the user space 
OpenVPN tool (with no encryption). The performance is 
poor, as performing encapsulation in user space is very CPU 
intensive. A possible approach to enhance performance is to 
rely on specific hardware and/or on software modules on 
optimized I/O library like Intel DPDK [30]. We prefer a 
solution that is applicable on generic Linux devices, so we 
consider an approach based on the VXLAN tunnels [33] 
provided by Open vSwitch. OVS implements VXLAN 
tunnels in kernel space [32], dramatically improving 
performance with respect to OpenVPN. The design of the 
VXLAN tunneling solution for OSHI over a distributed 

testbed is reported in Figure 13. We only use VXLAN as a 
point-to-point tunneling mechanism (the VXLAN VNI 
identifies a single link between two nodes) and we do not 
need underlying IP multicast support, as in the full VXLAN 
model. The OF Capable OVS is also used to perform 
encapsulation and de-capsulation of VXLAN tunnels. Each 
tunnel corresponds to a port in the switch 

 Control phase (running the experiments) C.

In the Mininet based experiments it is possible to open 
consoles on the emulated nodes using the web GUI of the 
Topology3D. The consoles show the output generated by the 
ssh processes connected to the nodes (deployed in the Mininet 
emulator). The generated output is conveyed to the terminal 
shell running in the experimenter browser, leveraging the 
WebSocket API, where each terminal has a separate 
WebSocket channel. The same functionality for the 
experiments over the distributed testbeds is currently under 
development. 

 Measurement Phase D.

In order to automate as much as possible the process of 
running the experiments and collecting the performance data 
over distributed testbeds we have developed an object 
oriented multithreaded Python library called Measurement 
Tools. The library offers an intuitive API that allows the 
experimenter to “program” his/her tests. Using the library we 
can remotely (through SSH) run the traffic generators (iperf) 
and gather load information (CPU utilization) on all nodes 
(VMs). As for the load monitoring, taking CPU measurements 
from within the VMs (e.g. using the top tool) does not provide 
reliable measurements. The correct information about the 
resource usage of each single VM can be gathered from the 
virtualization environment, for example on Xen based 
systems we relied on the xentop tool, which must be run as 
root in the Xen based Virtualization Server. Therefore, for the 
OFELIA environment we have developed a python module 
that collects CPU load information for each VM of our 
interest in the Xen server using xentop and it formats it in a 
JSON text file. The Measurement Tools retrieve the JSON file 
from the python module with a simple message exchange on a 
TCP socket. In the GOFF environment the measurement data 
are provided through a Zabbix interface [46]. A python 
module gathers the data from the Zabbix API. In the KVM 
based NeST testbed, we relied on the virt-top tool.  

The Measurement Tools provide a general framework that 
can be easily adapted to different needs. Currently we have 
developed tools able to generate UDP traffic and to gather 
CPU load information from the virtualization environment. 
An experimenter can easily extend this framework to run 
his/her tests and collect the measures of interest. 

VII.  PERFORMANCE EVALUATION ASPECTS  

In this section we analyze some performance aspects of the 
OSHI prototype implementation over distributed SDN 
testbeds. The openness of the OSHI solution makes it possible 
to design and implement new services based on the SDN 
paradigm and run experiments to validate them and/or to 
compare different implementation options. Thanks to the 
Mantoo suite, an experimenter can deploy a large scale 



network over a distributed testbed. In our view the added 
value provided by OSHI/Mantoo will be the opportunity to 
get feedback on Control Plane design issue from the 
implementation and the experiments. 

On the other hand in this section we focus on some Data 
Plane aspects of our prototype implementation. The rationale 
for this evaluation is to provide an indication on the 
scalability of the emulation approach in distributed testbeds 
made up of Linux Virtual Machines running on typical 
Virtualization Servers. It is not our purpose to assess Data 
Plane forwarding performance for a production ready solution 
working at line speed in the core of ISPs’ WANs. This type of 
evaluation will be needed if OSHI will be ported over the so 
called white box switches, high performance forwarding 
equipment with an open Operating System that can be 
customized by third-party developers, but this is for future 
work. 

The first two experiments (sections VII.A, VII.B) have 
been performed over an OFELIA testbed. We used the iperf 
tool as traffic source/sink in the CE routers and generate UDP 
packet flows from 500 to 2500 packet/s. In these experiments 
the UDP packet size was 1000 bytes (using UDP packets 
ranging from 100 bytes to 1400 bytes, the performance has 
been only influenced by the packet rate). We evaluated the 
CPU load in the PE routers with our xentop based 
Measurement Tools. We executed periodic polling and 
gathered the CPU load of the monitored VMs. In each run we 
collected 20 CPU load samples with polling interval in the 
order of two seconds: the first 10 samples are discarded and 
the last 10 are averaged to get a single CPU load value. Then 
we evaluated the mean and the 95% confidence intervals 
(reported in the figures) over 20 such runs. The experiment in 
section VII.C has been executed on the NeST testbed. The 
above described methodology has been used, but the 
generated packet rate ranged from 12.5 kp/s to 62.5 kp/s, with 
UDP packet size of 100 bytes, we evaluated CPU load both in 
PE and CR OSHI nodes, using the virt-top tool. Finally, the 
experiments in sections VII.D and VII.E have been performed 
on the GOFF testbed.  

 Best Effort IP performance in OSHI A.

With reference to the architecture in Figure 2, we compared 
the forwarding performance of IP Best Effort packets in OSHI 
(where each packet crosses the Open vSwitch two times, 
marked as “OSHI IP” in Figure 14) with plain IP forwarding 
(the Open vSwitch is removed and the OSHI node interfaces 
are directly connected to IP forwarding engine, marked as 
“ROUTER IP”). In the next section, we refer to the OSHI-IP 
case as “No-Tunnel”, as no tunneling mechanism is used. This 
experiment is not automatically deployed using the 
Topology3D and Deployer, and we setup a limited topology 
with two CE nodes and two OSHI nodes. In the experiment 
results (see [9] for details) we can appreciate a CPU load 
penalty for OSHI IP forwarding with respect to ROUTER IP 
forwarding ranging from 11% to 19% at different rates. The 
theoretical CPU saturation rate for plain ROUTER IP 
forwarding is in the order of 14000 p/s. OSHI IP forwarding 
reduces the theoretical CPU saturation rate to something in 
the order of 12500 p/s (corresponding to 11% performance 
penalty). 

 Performance comparison of tunneling mechanisms B.

In this experiment we evaluated the processing overhead 
introduced by the tunneling mechanisms (OpenVPN and 
VXLAN) used to deploy the overlay experimental topologies 
over distributed SDN testbeds. We considered the same 
topology of the previous subsection.  

 
Figure 14. Best Effort IP forwarding performance. 

Figure 15 compares the CPU load for OSHI IP forwarding in 
the OpenVPN, VXLAN and no tunneling scenarios. It can be 
appreciated that VXLAN tunneling adds a reasonably low 
processing overhead, while OpenVPN tunneling would 
dramatically reduce the forwarding capability of an OSHI 
node in the testbeds. The theoretical CPU saturation rate for 
OpenVPN tunneling is in the order of 3500 p/s, which is 4 
times lower than in the no tunneling case. The theoretical 
CPU saturation rate for VXLAN tunneling is only ∼8% lower 
than the no tunneling case, showing that VXLAN is an 
efficient mechanism to deploy overlay topologies. 

 
Figure 15. CPU Load for different tunneling mechanisms. 

 Performance comparison of different forwarding C.
approaches over the distributed SDN testbed 

In this experiment we evaluated the processing load of 
different forwarding approaches over the distributed SDN 
testbeds considering the topology shown in Figure 17. For the 
OSHI solution, we considered IP forwarding (OSHI IP) and 
SBP forwarding (OSHI VLL). Then we assumed plain IP 
forwarding as a reference (ROUTER IP).  

  
Figure 16. Physical network 

in the NeST testbed 
Figure 17. Overlay network for the 

experiment on NeST 



 

We executed the performance tests of OSHI IP, OSHI VLL 
and ROUTER IP using the VXLAN tunneling solution and 
collected the CPU load both for the access PE node and the 
first CR node (see results in Figure 18). In case of plain IP 
forwarding (ROUTER IP) the packets have to cross the Open 
vSwitch which handles the VXLAN tunneling (see Figure 
13), therefore as expected there is no advantage with respect 
to OSHI IP. The OSHI VLL solution is the least CPU 
intensive as it exploits MPLS label switching in the Open 
vSwitch. The CPU performance penalty of OSHI IP 
forwarding w.r.t. OSHI VLL is less than 10%. The CPU loads 
for PE and CR are different in absolute values because the 
respective VMs are mapped in two different Virtualization 
Servers with different processors. In the experiment, a 
physical core of the Virtualization Servers was exclusively 
allocated to each VM. For the PE node the theoretical CPU 
saturation rate is in the order of 320 kp/s for OSHI VLL, 
while for the CR node hosted on the more performant server 
the theoretical CPU saturation rate is in the order of 1 Mp/s. 

 
Figure 18. CPU load with VXLAN tunneling. 

 Performance evaluation of encapsulation for PW service D.

In this experiment we evaluated the performance penalty 
introduced by the encapsulation mechanism implemented for 
the PW service (section IV.D). We have performed this 
experiment over the GOFF testbed (physical topology is 
represented in Figure 19) using the overlay topology shown in 
Figure 20. As usual, the iperf tool has been used as traffic 
source/ sink in the CE routers and generates UDP packet 
flows. We evaluated the CPU load in the OSHI-PE5, with a 
periodic polling approach. A sample is provided by Zabbix 
every minute, representing the average calculated in this 
period with 1-second-interval samples. For each load level 
(packet rate) we executed a single run of 7 minutes and 
collected 7 CPU load values, the first 2 are discarded and the 
last 5 are averaged to get a single CPU mean load value. Then 
we evaluated the relative standard deviation (RSD) to 
ascertain the reliability of the results. The RSD is always 
smaller that 5% in all runs. 

In the PE nodes, the implementation of the IP VLL service 
is based on the design shown in Figure 2, while the PW 
service considers the architecture described in Figure 7. We 
wanted to estimate the overhead introduced by the ACE and 
by the operations of the GRE tunnel. We generated UDP 
packet flows with a rate ranging from 2000 to 18000 packet/s 
(datagram size is 1000 byte as usual). The core topology is 

represented in Figure 20. In the experiment, 3 CEs, acting as 
traffic sources/sinks, were connected to each PE. This was 
needed because the generation rate of a single CE in this 
specific testbed setup was at most 6000 packet/s, to keep the 
CPU load of the CE VMs under a safety threshold. 

  
Figure 19. GOFF Physical 

network 
Figure 20. Overlay network for the 

experiment on GOFF 

In the experiment results (see Figure 21) we can 
appreciate a CPU load penalty for OSHI PW forwarding with 
respect to OSHI VLL forwarding in the order of 15%-21%. 
Apparently, the CPU load penalty is decreasing in relative 
terms at higher CPU load. These results shows the potential 
improvements that could be achieved by natively supporting 
EoMPLS tunneling in the switches instead of using the 
developed ACE and the GRE encapsulation. 

 
Figure 21. CPU load for different OSHI services. 

 Performance analysis of OVS internal mechanisms. E.

In this section, we shortly report about two experiments that 
concern the evaluation of OVS internal mechanisms. These 
experiments do not directly concern OSHI, but they support 
the choice of OVS as the software based OpenFlow capable 
switch integrated in OSHI node and show the effectiveness of 
the proposed Mantoo platform for the setup, deployment and 
control of the experiments and the collection of performance 
results. For space reasons, the detailed results have not been 
included and can be found in [47]. 

The first experiment investigates the impact of the kernel 
flow cache implemented in OVS. In the OVS architecture, the 
first packet of a flow arriving at a node is forwarded to a 
Linux user space process, while the following packets are 
using a flow cache in the kernel. OVS performance is optimal 
as long as the packets are forwarded using the kernel flow 
cache. For the same traffic pattern we measured 40% CPU 
utilization for kernel cache processing and 94% utilization for 
user space processing. For the OSHI solution, we gathered the 
design insight that the number of active SBPs should remain 
within the limit of the kernel flow table. We evaluated (details 
in [47]) how many flow table entries are needed for an IP 



VLL or L2 PW service, so that we relate the dimension of the 
flow table with the maximum number of service instances. 

The second experiment evaluated how the number of 
active flows in the flow tables influences the forwarding 
performance of OVS. The comforting result is that increasing 
the number of active flows in the tables does not influence the 
forwarding performance. This is obviously valid as long as 
the active flows are less than the size of the tables. The results 
is a prove of the efficient implementation of flow lookup 
mechanisms, at least for the traffic patterns that we have used 
in our experiments. 

VIII.  RELATED WORK 

Pure SDN solutions based on SDN capable switches inter-
connected with a centralized controller have been 
demonstrated both in data-centers and in geographically 
distributed research networks, such as OFELIA [10] in EU, 
GENI [11] and Internet2 [12][13] in US. To the best of our 
knowledge, these solutions do not integrate L3 routing within 
the SDN capable L2 switches. We argue that an ISP network 
requires a more sophisticated approach that can natively 
interwork with legacy IP routers and IP routing protocols. As 
stated in [7], a hybrid SDN model that combines SDN and 
traditional architectures may “sum their benefits while 
mitigating their respective challenges”. Some recent works 
address the hybrid IP/SDN networking from different 
perspectives. 

In [14] the authors presented an Open Source Label 
Switching Router that generates OSPF and LDP packets using 
Quagga. The node computes the MPLS labels that are then 
installed in the switches using the OpenFlow (OF) protocol. 
This architecture does not exploit a logically centralized 
controller. Instead, it considers a traditional distributed control 
plane, while it uses OF only locally in a node to synchronize 
the FIBs and to program the data plane.  

RouteFlow [15] creates a simulated network made of 
virtual routers at the top of a SDN controller. The simulated 
network is a copy of the physical one. The controller uses the 
BGP protocol to interact with routers of neighbor domains 
and it simulates intra domain protocols (OSPF, IS-IS) 
between the virtual routers. A traditional IP routing engine 
(Quagga [16]) computes the routing tables that are eventually 
installed into the physical nodes via the OF protocol. The 
Cardigan project [18] is based on a fork of RouteFlow. 
Cardigan realized a distributed router based on RouteFlow 
concepts and deployed it in a public Internet exchange, 
showing the applicability of SDN/OpenFlow in a production 
context. The “SDN-IP” solution proposed in [19] follows 
similar principles. It is based on the ONOS SDN controller 
[20] and it also interacts with external domains using BGP. 
Differently from RouteFlow, the controller does not 
instantiate virtual routers to simulate the exchange of intra 
domain routing protocols, but it centralizes the routing logic 
for better efficiency. 

Compared with these works, our solution assumes that the 
physical nodes still deal with basic IP routing, thus achieving 
resilience for basic IP connectivity based on standard IP 
routing and easier interoperability with non-OF devices in the 
core network. On top of the basic routing, the SDN/OpenFlow 

controller can instruct the hybrid IP/SDN nodes to perform 
SDN based forwarding for specific traffic flows. This idea of 
supporting such hybrid nodes is already included in the 
OpenFlow specifications since the first version of the 
protocol. Two types of devices are considered: OF-only and 
OF-hybrid which can support both OF processing and 
standard L2/L3 functionalities. Currently, only proprietary 
hardware switches implement the hybrid approach offering 
also L3 standard routing capabilities. OSHI represents a fully 
Open Source OF-hybrid solution designed to be flexible and 
scalable, so as to facilitate experimentation on hybrid IP/SDN 
networks at large scale. 

The Google B4 WAN [21] is an integrated hybrid IP SDN 
solution, and it has likely been the first application of the 
SDN approach to a large-scale WAN scenario. In the B4 
solution the traditional distributed routing protocols coexist 
with a SDN/OpenFlow approach. In particular, the B4 WAN 
sites are interconnected with traditional routing and the SDN- 
based centralized Traffic Engineering solution is deployed as 
an overlay on top of basic routing. Differently from the OSHI 
solution, the routing protocols are processed by servers 
external to the switches. Google B4 solution is proprietary 
and it is highly tailored to the needs of their specific scenario, 
composed of few large sites that needs to be interconnected. 
As such, it does not represent a typical ISP WAN network, 
made up by a large number of geographically distributed 
nodes. On the other hand, OSHI is designed as a generic and 
open solution for hybrid IP/SDN networks. 

This work significantly extends the preliminary results 
described in [5]: 1) the implementation of SDN based paths is 
based on MPLS labels rather than VLAN tags, solving the 
scalability issues; 2) in addition to the IP VLL service the 
proposed solution offers the L2 PW service and the Virtual 
Switch Service on top of it; 3) the detailed design and 
implementation aspects of an OSHI node are described; 4) the 
Mantoo platform has been extended, for example it now 
supports remote consoles on the emulated Mininet nodes 
using the web GUI; 5) the experiments have been validated 
again with the new MPLS based implementation. A demo of 
the Mantoo platform has been presented in [48]. 

IX.  CONCLUSIONS 

In this paper we have presented a novel architecture and 
implementation of a hybrid IP/SDN (OSHI) node. The OSHI 
data plane supports the coexistence of best effort IP 
forwarding and SDN based forwarding using MPLS labels. 
The traditional distributed MPLS control plane is not needed 
anymore, as all MPLS circuits (Label Switched Paths, now 
termed SDN Based Paths) are established by means of the 
SDN controller. We have shown the implementation of IP 
VLL and Layer 2 Pseudo Wire (PW) services. On top of the 
L2 PW service we also have built a layer 2 Virtual Switch 
Service (VSS), closely resembling the layer 2 VPLS solution 
over MPLS. Using the SDN approach, all complex control 
plane functions that take decisions (e.g. optimal tree 
evaluation) and enforce that decisions (e.g. creation of PWs) 
are executed outside the OSHI network nodes. Results of 
performance tests executed both in single-host emulators 



(Mininet) and in distributed SDN testbeds have shown that 
OSHI is suitable for large-scale experimentation settings. 

We have described Mantoo, a suite of supporting tools for 
experiments with OSHI based services. It includes an 
extensible web GUI framework for designing and validating a 
topology, called Topology3D. The topology is automatically 
deployed either on Mininet or on distributed testbeds. 
Execution and Measurement tools simplify running the 
experiments and collecting performance measurements. 

Developed according to an Open Source model, the OSHI 
prototype and the Mantoo suite are valuable tools that enable 
further research and experimentation on novel services and 
architecture in the emerging hybrid IP/SDN networks. 

So far, we presented the OSHI architecture mostly as an 
experimenter tool: it easily configures VMs as hybrid IP/SDN 
nodes and performs experiments at relatively large scales 
using Mininet emulator or resources over distributed testbeds. 
On the other hand, we recently started working on an 
implementation of the OSHI architecture on white box 
switches [4], in particular using the P-3922 10Gbe switch 
from Pica8. This work goes into the direction of 
implementing OSHI in devices that can perform switching 
and routing at line speed over production networks, closing 
the gap between SDN research and real world networks. 
Details on these white box switches experiment scenarios and 
results are available at [6]. 
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