OSHI - Open Source Hybrid IP/SDN networking and
Mantoo - Management tools for SDN experiments

Stefano Salsaff)) Pier Luigi Ventr&), Francesco Lombarfly Giuseppe Siracusaflo
Matteo Gerol€, Elio Salvadof?, Michele Santuaf, Mauro Campanelfg, Luca Pret®

(1) CNIT / Univ. of Rome Tor Vergata - (2) Consarti GARR - (3) CREATE-NET — (4) ON.Lab
Submitted paper under second round of revisionpteBeber 2015

Abstract — The introduction of SDN in large-scale P provider

networks is still an open issue and different soligns have been
suggested so far. In this paper we propose a hybridpproach
that allows the coexistence of traditional IP routng with SDN
based forwarding within the same provider domain. e solution
is called OSHI — Open Source Hybrid IP/SDN networkig as we
have fully implemented it combining and extending @en Source
software. We discuss the OSHI system architecturend the
design and implementation of advanced services lik€seudo
Wires and Virtual Switches. In addition, we descrile a set of
Open Source management tools for the emulation ofhe
proposed solution using the Mininet emulator and indistributed

physical testbeds. We refer to this suite of toolas Mantoo
(Management tools). Mantoo includes an extensible eb-based
graphical topology designer, which provides differet layered
network “views” (e.g. from physical links to servi@ relationships
among nodes). The suite can validate an input topmgy,
automatically deploy it over a Mininet emulator or a distributed

SDN testbed and allows access to emulated nodes dyyening
consoles in the web GUI. Mantoo provides also toots evaluate
the performance of the deployed nodes.

Keywords - Software Defined Networking, Open Source,
Network management tools, Emulation.

I. INTRODUCTION

Software Defined Networking (SDN) [1] [2] is a new
paradigm proposed in data networking that may bt
change the way IP networks run today. Significas# nases
include Data Centers and corporate/campus scensIokl
applicability in wide area IP networks of large ypid®ers is
being considered. At present, these networks aeratgd
with a combination of IP and MPLS technologies MPLS
control and forwarding planes are capable to opeyatlarge-
scale networks with carrier-grade quality, while NsD
technology has not reached the same maturity Ielieé
advantage of introducing SDN technology in a cargeade
IP is not related to performance improvements fomrent
services on IP/MPLS backbones. Data Plane forwgrdin
performances, restoration times in case of failussveral
Control Plane aspects (e.g. routing convergence)timve all
been optimized for the IP/MPLS backbones by theomaj
equipment vendors in the years. We rather beliat the
openness of the SDN approach simplifies the needmiplex
distributed Control Plane architectures and aveidgprietary
implementations and interoperability issues. Thew ne
approach will facilitate the development of nhewvesgs and
foster innovation. The importance of Open Sourc8DN is
highlighted in [3] and the rising interest on whit®x
networking [4] confirms its relevance in currentdanear
future networking arena.

Taking the openness as the main driver for movimg t
SDN, the scientific and technological question “wisthe
best way to introduce SDN in large-scale IP SerPica/iders

(ISP) networks?” is definitely still open and diféat
solutions have been proposed. The OSHI (Open Source
Hybrid IP/SDN) networking architecture, first inthaced in
[5], addresses the above question, providing amCimurce
reference implementation complemented with a rieh of
services and management tools.

The introduction of SDN in wide area ISP networks
implies finding solutions to critical requiremerdad issues,
such as: i) how to provide the scalability and faalerance
required in operators’ environments; ii) how to eopith the
high latency in the control plane (due to the gepgically
distributed environment); iii) how to provide thermectivity
in the Control Plane between SDN controllers and th
switches in the WAN (i.en-band vs. out-of-band solution)

In order to support both the development/testinoeeats
and the evaluation of different solutions it is damental to
have a realistic emulator platform. The platfornodd allow
scaling up to hundreds of nodes and links, to erawddarge
scale IP carrier network. Performing experiments tabe
affordable for research and academic teams, nog @
corporate developers. Therefore, we advocate tkd né an
Open Source reference node implementation and @enO
Source emulation platforms. The management of these
emulation platforms and the tools for setting upd an
controlling experiments are also non-trivial prabke which
is why we propose an Open Source set of toolsatdllentoo
(Management tools). The Mininet emulator is widesed by
the SDN community, but its fidelity cannot be takéor
granted especially for large scale topologies. &hwmilation
over distributed SDN testbeds is in general moetavte and
can allow to gather more realistic details on djeci
performance aspects. Mantoo is able to support batfes
with a unified design and modelling approach.

The main contributions of this paper are:

1. The design of a hybrid IP/SDN architecture callquk®
Source Hybrid IP/SDN (OSHI).
The design and implementation of a hybrid IP/SDNeno
made of Open Source components.
Mantoo, a set of management tools to deploy artdhes
OSHI framework and services on Mininet emulator and
on distributed SDN testbeds

4. Evaluation of some performance aspects of the OSHI

prototype implementation over distributed SDN testh

On top of the proposed OSHI framework and Mantamsto
the researcher/developer is able to design andogeptw
services and to experiment on SDN Control Planatieois
with a minimal effort. The paper is structured adofvs:
section |l describes the scenarios related torttreduction of
SDN in IP Service Providers networks; section Bfides the
main concepts of the proposed hybrid IP/SDN netwgrk
architecture; section IV provides a detailed dexdicmn of the

2.

w

OSHI nodes implementation and of the services sbah a
solution can offer; section V identifies some liatibns of
current SDN ecosystem along with the needed exiessit
also reports how our framework is being used toegrpent
on new services; section VI describes the Mantate sthat
allows to design, deploy and control experimendgbotogies
in a local emulator (Mininet) or on distributed tteexds,
supporting the collection of performance measurdsyen
section VII provides an evaluation of some perfaroe
aspects; section VIII reports on related work arplans the
main differences with respect to our previous wanmksection

The management of large-scale IP/MPLS networkpgcafly
based on proprietary (and expensive) managemers, too
which, again, constitute a barrier to the innovatio

Let us consider the migration of an IP/MPLS based
Service Provider network to SDN. CR and PE routensid
be replaced by SDN capable switches, on top of hvihe
provider can realize advanced and innovative sesvidhe
migration paths should foresee the coexistenc® @fnd SDN
based services, resembling the current coexistehtieé and
MPLS. We define atybrid IP/SDN a node that can operate
both at IP level by keeping a traditional distréxitrouting

IX we draw some conclusions and highlight how we ar intelligence and at SDN level, under the instrutdiof a SDN

porting OSHI over white box switches, potentialkgEping
from experiments to production networks.

The source code of all the components of the OSiden
prototypes and of the Mantoo suite is freely avddaat [6].
To facilitate the initial environment setup, the okd OSHI
and Mantoo environments have been packaged indy-tea
go virtual machine, with pre-designed example togis up
to 60 nodes. To the best of our knowledge, themoisuch
hybrid IP/SDN node available as Open Source soéwaor
an emulation platform with a set of managementst@al rich
as the Mantoo suite.

Il. SDNAPPLICABILITY IN IP PROVIDERSNETWORKS
SDN is based on the separation of the network @bRiiane

from the Data Plane. An external SDN controller can

(dynamically) inject rules in SDN capable nodescéding
to these rules the SDN nodes perform packet inspect
manipulation and forwarding, operating on packeidwess at
different layers of the protocol stack.

We focus on SDN applicability in IP Service Provile
networks. Figure 1 shows a reference scenario, avisingle
IP provider interconnected with other providersngsithe
BGP routing protocol. Within the provider netwodq intra-
domain routing protocol like OSPF is used. The mev
offers Internet access to its customers, as wellother
transport services (e.g. layer 2 connectivity ssrsior more
in general VPNs - Virtual Private Networks). Usirige
terminology borrowed by IP/MPLS networks, the po®ri
network includes a set of Core Routers (CR) andviBeo
Edge (PE) routers, interconnected either by paifeint
links (Packet Over Sonet, Gigabit Ethernet, 10GBEat. by

controller. This is opposed topure SDN node in which all
routing logic is ran outside the node in the SDMtoaller. A
hybrid IP/SDN network is composed of hybrid IP/SBbédes,
as well as by traditional IP routers and legacyetap
switches. According to the taxonomy defined in [#is
approach can be classified as “Service-Based” das®€
Based” Hybrid SDN (depending on how the IP and SDN
based services are combined). In this scenariohgteid
IP/SDN nodes are capable of acting as plain IP ersut
(running the legacy IP routing protocols), as wedl SDN
capable nodes, under the control of SDN contrallers

5 $. g

@CR
/u

Peering with
other providers

CR

uCR

Peenng
PEs with other
providers

CR - Core

Router
PE — Provider

vy
%
Edge Router
CE — Customer

CES/
Edge Router

Figure 1. Reference scenario: an IP provider né¢wor

Ill. PROPOSEDHYBRID IP/SDNARCHITECTURE

In the IP/MPLS architecture there is a clear notainthe
MPLS tunnels, called Label Switched Paths (LSAsa SDN
network several types of tunnels or, more gendyicaétwork
paths can be created, leveraging on the ability of SRNable
nodes to classify traffic based on various fieldstsas MAC

L2 - Layer 2
Switch

=74
@
PEs

CEs

legacy switched LANs (and VLANSs). The Customer Edgeor IP addresses, VLAN tags and MPLS labels. Siheeetis

(CE) router is the node in the customer networkneated to
the provider network. Most often, an ISP integrates|P and
MPLS technologies in its backbone. MPLS credtemels
(LSP — Label Switched Path) among routers. On crelh
this can be used to improve the forwarding of reguP
traffic providing: i) traffic engineering, ii) fatiprotection iii)
no need to distribute the full BGP routing table itdra-
domain transit routers. On the other hand, MPLS\¢lsare
used to offer VPNs and layer 2 connectivity serside
customers. In any case, the commercial
implementations are based on traditional (vendoked)
control plane architectures that do not leave spfue
introducing innovation in an open manner. As a eraif fact,
in case of complex services involving the MPLS coint
plane, IP Service Providers rely on single-vendautgons.

no standard established terminology for such caneep will
refer to these paths &N Based Paths (SBP). A SBP is a
virtual circuit which is setup using SDN technology to
forward a specifigacket flow between two end-points across
a set of SDN capable nodes. The notion of packet it very
broad and it can range fromnacro-flow i.e. a specific TCP
connection between two hosts, tomacro-flow e.g. all the
traffic directed towards a given IP subnet. As hdgitied
before, a flow can be classified looking at the deza at

MPLSifferent protocol levels.

We address the definition of the hybrid IP/SDN reatv
by considering: i) mechanisms for the coexistenfceegular
IP traffic and SBPs; ii) the set of services than de offered
using the SBPs; iii) ingress traffic classificatim@chanisms.

Let us consider the coexistence of regular IP iradhd
SDN based paths on the links among hybrid IP/SDéesoA
SDN approach offers a great flexibility, enablinget
classification of the packets through a “cross+tagpproach,
by considering packet headers at different protdeskls
(MPLS, VLANS, Q-in-Q, Mac-in-Mac and so on). Thered,
it is possible to specify a set of conditions tffedentiate the
packets to be delivered to the IP forwarding endioen the
ones that belong to SBPs. In general, these conditcan
refer to different protocol headers and can behan form of
whitelists or blacklists, changing dynamically, érface by
interface. This flexibility may turn into high conaxity.
Therefore, the risk of misconfigurations and rogtierrors
should be properly taken into account (see [8])thaft
preventing the possibility to operate additionalctrenisms
for the coexistence of IP and SDN services in aridyb
IP/SDN network, we propose MPLS tagging as theepretl
choice that we have used in our prototype impleatent. In
fact, using MPLS as forwarding plane technologkriewn to

architecture of an OSHI node (IV.A) and the bascviges
we provide (IP Virtual Leased Line and Pseudo-witgsB).

Then we describe the use of MPLS labels to rediDdN

Based Paths (SBPs) and to support the coexistetaeén 1P
based forwarding and SBP forwarding. We show thsigh
challenges of the MPLS based implementation, paitily to
the inherent limitations of the current OpenFlownstards,
partly to the shortcomings of the Open Source ttindd we
have integrated.

A. OSHI High Level Node Architecture

The proposed OSHI node combines an OpenFlow Capable
Switch (OFCS), an IP forwarding engine and an IBting
daemon. The OFCS component is implemented usingrOpe
vSwitch (OVS) [31], the IP forwarding engine is thaux
kernel IP networking and Quagga [16] acts as theimg
daemon. The OpenFlow Capable Switch is connectdtieto
set of physical network interfaces belonging toititegrated
IP/SDN network, while the IP forwarding engine anoected

be scalable up to carrier-grade WANs. We have alsé® @ set of virtual ports of the OFCS, as showhigure 2.

IP Routing Daemon
(Quagga)

considered simple VLAN tagging as a sub-optimalichand
have used it in a simpler prototype (see [5][9]n@e VLAN

tagging limits the number of SBPs on a link to 4096

Moreover, if legacy VLAN services needs to be sufggbon
the links among the OSHI nodes, the VLAN label spaeeds
to be partitioned, reducing the maximum numberBPS and
complicating the service management process.

A key advantage of the coexistence approach in GSHI

the possibility to use traditional IP routing amaviarding for
the Control Plane connectivity between SDN congrslland
OF Capable switches. This approach avoids the nefedst-
of-band communication channels for the Control Blan

Let us now consider the services and the featimagscan

Local
Management
Entity (LME)

IP Forwarding Engine — IP FE
(Linux networking)

OF Capable Switch - OFCS
(Open vSwitch)

le — —

interfaces
Figure 2. OSHI Hybrid IP/SDN node architecture

The virtual ports that interconnect the OFCS wib tP
forwarding engine are realized using tingernal Port feature

be offered by a hybrid IP/SDN network. As primary offered by Open vSwitch. Each internal port is aeetad to a

requirements we assume three main services/furaitiies:
(i) virtual private networks (Layer 2 and Layer 8)) traffic
engineering, (iii) fast restoration mechanisms. étwer, the
architecture should facilitate the realization @wnservices

physical port of the IP/SDN network, so that thertting
engine can reason in term of the virtual portsoigrg the
physical ones. The OFCS differentiates among regiia
packets and packets belonging to SDN Based Patias. B

and the development of new forwarding paradigmg (fodefault, it forwards the regular IP packets frore fhysical
example Segment Routing [22]) without the need ofports to the internal ports, so that they can loegssed by the

introducing complex and proprietary control planes.

As for the traffic classification, the ingress Pised to
classify incoming packets and decide if they needbé
forwarded using regular IP routing or if they bejoto the
SBPs. The egress edge router extracts the traffim fthe
SBPs and forwards it to the appropriate destinatidfe
considered (and implemented in our platform) twprapches
for the ingress classification: i) classificatiorased on
physical access ports; ii) classification basedvbAN tags.
Other traffic classifications, e.g. based on MAC &

IP forwarding engine, controlled by the IP routidgemon.
This approach avoids the need of translating theolRing
table into SDN rules to be pushed in the OFCS tadtiehe
price of a small performance degradation for thekpts that
needs to be forwarded at IP level. In fact, thesmekets cross
the OFCS switch twice. It is possible to extend our
implementation to consider the mirroring of the rButing
table into the OFCS table. Mapping a static snapshthe IP
routing table into a set of SDN rules in the OF€ $<llatively
easy (the rewriting of source and destination MAldrasses

source/destination addresses can be easily impteshen needs to be included in the rules and the MAC axbare of

without changing the other components.

IV. DETAILED DESIGN OF THEHYBRID IP/SDNSOLUTION

In this section we present the detailed design #mel
implementation of the proposed architecture. Weeriles the
Open Source tools that we have integrated and Hmiv t
practical limitations have been taken into accdondeliver a
working prototype. We first introduce the high

the next hops needs to be discovered beforehanidg. T
difficult challenge is to take into account the dgmic aspects,
as the rules should be updated in a timely wayp¥alg route
additions, updates, deletions. Therefore in the O86totype
presented in this work this feature is left out figture work
In [17] we described a prototype solution that orsrthe
routes installed by OLSR in real time (for a specsiet of IP

leve destinations), mapping them in OpenFlow rules.

An initial configuration of the OFCS tables is neddo
connect the physical interfaces and the internalrfiaces, in
order to support the OFCS-to-SDN-controller commation
and some specific SDN procedures (for example tfope
layer 2 topology discovery in the SDN controllef).Local
Management Entity (LME) in the OSHI node takes cafre
these tasks. In our setup, it is possible to uséiraband”
approach for the OFCS-to-SDN-controller communarati
i.e. using the regular IP routing/forwarding andaiding the
need of a separate out-of-band network. Furtheasildeand
the block diagram of the control plane architectafédSHI
nodes are reported in [9].

B. OSHI basic services: IP VLL and L2 PW

We designed and implemented two basic services eto
offered by OSHI networks: the “IP Virtual Leasechél? (IP
VLL) and the Layer 2 “Pseudo-wire” (L2 PW or PWshort)
see Figure 3. They belong to the class of Virtusdded Line
services [28], which are a fundamental part ofdffering of
large-scale IP Service Providers. VLL services lbaused to
carry bandwidth guaranteed applications (e.g. riele
communications) or to support VPN solution (e.g
interconnect different sites of a company throupgk tSP
WAN). Both services are offered between end-poiints
Provider Edge routers, the end-points can be aiqdlysr
logical port (i.e. a VLAN on a physical port) ofetfPE router
connected to a Customer Edge (CE). The intercorumed
realized in the core hybrid IP/SDN network with &BP
using MPLS labels.

IP Virtual Leased Line

10.0.0.0/24
only IP & ARP

10.0.0.0/24

[Jws[cen]

<
PRI

w W w

>
PE Core MPLS label switching E

10.0.0.2/24
CE

10.0.0.1/24
CE

L2 Pseudo Wire
arbitrary layer 2 packets

[cemH [mpLs| PeTH |
PRLUES
'

~
~

-
-
-
- '

- ~~
| -y . G
L

~
~

w w N
E PE
Core MPLS label switching 10.0.0.2/24
CE

Figure 3.IP VLL and L2 PW services

The proposed IP VLL service guarantees to the I& en
points to be directly interconnected as if theyenverthe same
Ethernet LAN and sending each other IP and ARP gtackt
is not meant to allow the served SBP end-pointsdnd
packets with arbitrary Ethertype (e.g. including AN
packets). The original source and destination MAlGrasses,
shown as “C-ETH” (C stands for Customer) in thedees of
the packets in Figure 3, are preserved in the itrafeng the
network core. This may cause problems if legacywiches

«
—

10.0.0.1/24
CE

are used to interconnect OSHI nodes, therefore our
implementation of IP VLL service can only work il adge
and core nodes are OSHI capable and are directijemted

to each other, without legacy intermediate switchies
between. As a solution to interwork with legacytsWes, one
could implement MAC address rewriting replacing the
customer addresses with the addresses of the sgned
egress PEs or on a hop-by-hop case. This is ratmplex to
realize and to manage, because the egress nodle sestore
the original MAC addresses (using the tag as KEliere is
the need to exchange and then maintain additiotete s
information per each SBP in the egress nodes, sdidvaot
implement this solution. In our prototype and expents, if
legacy switches are present in the network, th@W2service
trather than the IP VLL service should be used.

The L2 PW service is also known as “Pseudowire
Emulation Edge to Edge” (PWES3), described in RF@539
[24]. It provides a fully transparent cable replaeat service:
the endpoints can send packets with an arbitraherBtpe
(e.g. including VLAN, Q-in-Q). As shown in Figure &he
customer Ethernet packet is tunneled into a newertt
‘packet (whose header is indicated as P-ETH) and the
MPLS header is added. This approach solves theniatking
issues with legacy L2 networks related to customdéyC
addresses exposure in the core.

C. OSHI - MPLS based approach

In this subsection we illustrate the detailed atped the

proposed solution based on MPLS. The use of MPb8I4a
enables the establishment of up 8 @nore than 1%) SBPs
on each link, providing the required scalabilitheTMPLS

label space can be partitioned in order to haveoralered
coexistence with other MPLS based services in tiowiger

WAN. We describe the implementation of IP VLL an&/P
services, in both cases the MPLS solution doesntetfere

with VLANSs that can potentially be used in the knlzgetween
OSHI nodes.

1) Coexistence mechanisms

The coexistence of regular IP service (best effaffic) and
SDN services (using SDN Based Paths) is assured) tise
Ethertype field of the L2 protocol. This correspsid one of
the mechanisms that can be used in the IP/MPLS imode
regular IP traffic is carried with IP Ethertype (B00), while
SBPs are carried with MPLS Ethertypes (0x8847 and
0x8848). Using OpenFlow multi-table functionalityur
solution supports the coexistence of IP and MPLafitr
types, as shown in Figure 4. Table 0 is used fquleg IP,
ARP, LLDP, BLDP, etc., table 1 for the SBPs. Intjzardar,
Table O contains: i) a rule that forwards the tcafivith
Ethertype 0x8847 (MPLS) to Table 1; ii) only for \AL a
rule that forwards the traffic with Ethertype 0x&34
(Multicast MPLS) to Table 1; iii) the set of ruldsat “bridge”
the physical interfaces with the internal ports ammb versa;
iv) two rules that forward the LLDP and BLDP traffio the
controller. Table 1 contains the set of rules floatvard the
packets of the SBPs according to the associatedLIP or
PW service. The coexistence in Table 0 is assuneaugh
different levels of priority. The IP VLL service eds both the
rules associated to unicast and multicast MPLS rBtpe

(more details below), while the PW service onlydeea rule
matching the unicast MPLS Ethertype.

The “Ethernet over MPLS” (EOMPLS) encapsulation][25
represents the most efficient approach to implenteatPW

We consider two MPLS based tunneling mechanismsservice. As shown in the right side of Figure 5MELS

plain IP over MPLS ([23], here referred to as IPdMP and

encapsulates the customer packet including its inaig

Ethernet over MPLS (EoMPLS [24] [25]). The IPoMPLS Ethernet header in an MPLS packet to be carriea mewly

tunneling is used for the IP VLL service. The EoMPL
tunneling can support the relaying of arbitraryelag packets,
providing the L2 PW service [24].

Packet IN start at
table 0

ME
Match in
table 0?

Send to controller

MATCH1, actionl
MATCH2, action2
MATCH3, action3
MATCH4, action4

Match in
table 1?

Execution
action set

GOTO table 1

MPLS, goto:1
MPLSM, goto:1
INPORT=1, output:2
INPORT=3, output:4

Ryu

Execution action
set

Figure 4. Packet processing in the OFCS flow tables

2) Ingress classification and encapsul ation mechanisms

As for the ingress classification functionalityarPE router, it
can be either based on the physical input port rorthe
incoming VLAN tag. We use the input port to clagsif
untagged traffic asegular IP traffic or as belonging to a SBP
end-point (of an IP VLL or PW). For the VLAN taggadffic
entering in a physical port of a PE router, eaclAMLtag can
be individually mapped to a SBP end point or assigio
regular IP traffic. For the untagged traffic, tihgplementation
of the ingress classification is realized withie tBFCS of the
OSHI Provider Edge nodes. In fact, by configurindes in
the OFCS, it is possible to map the untagged traffi an
ingress physical port to an internal port (for feguP) or to a
SBP. For the tagged traffic, the incoming clasatiian relies
on the VLAN handling of the Linux networking: ea®h AN
tag x can be mapped to a virtual interface ethBat will
simply appear as an additional physical port of@ICS.

Let us analyze the encapsulation mechanisms. The le

half of Figure 5 shows the encapsulation realizedthe
OSHI-PE node for the
Customer, the ingress direction is from customercdoe,
egress refers to the opposite direction. This smiutollows
the IPOMPLS approach, in which a MPLS label is mash
within an existing frame. In this case an inputegtiet frame
carrying either an IP or an ARP packet, keeps iigiral
Ethernet header, shown as C-ETH in Figure 5. Ashase
already discussed, this solution has the probleraxpbsing
the customer source and destination MAC addressdhei
core. Moreover, note that the MPLS Ethertype (0x984
overwrites the existing Ethertype of the customackets.
This does not allow the distinction between IP akidP
packets at the egress node. A solution would teetop two
different bidirectional SBPs: one for the IP andedor the
ARP packets. In order to save label space and gimple
operation we preferred to carry IP packets with KMhHeLS
Ethertype and to (ab)use multicast MPLS Ethertyp&848)
to carry the ARP packets. With this approach, trees MPLS
label can be reused for the two SBPs transporingnid ARP
packets between the same end-points.

IP VLL service. C stands for

generated Ethernet header. Unfortunately, we requair
solution that can be implemented using an Open cg8our
switch and we would like to have a solution that ba fully
controlled by OpenFlow. The OpenFlow protocol andsm
OpenFlow capable switches (including Open vSwitddt tve
are using for our prototype) do not natively supfEoMPLS
encapsulation and de-capsulation. A similar issas been
identified in [36], in which the authors propose gash an
Ethernet header using a so called “input Packetd3sing”
(iPProc) function before handing the packet to giclal
OpenFlow capable switch that - in turn - will pusle MPLS
label. Obviously this requires a switch with anpit Packet
Processing” function capable of pushing an Ethehsstder
into an existing Ethernet packet. Note that thiscpss is not
fully controlled with the OpenFlow protocol, as @péow
does not support the pushing of an Ethernet headfer.
cannot directly follow this approach, as Open v8liis not
capable of pushing Ethernet headers. The rightdfdfigure
5 shows the approach that we have followed, relgingsRE
encapsulation. P stands for Provider and it indkathe
headers added/removed by the PE. A packet in thésPE
processed in four steps (shown as il to i4 in tigreiss
direction from the CE towards the core and as ed4tin the
egress direction from the core toward a custombe GRE
encapsulation introduces an additional overhead{#6s for
P-IP and 4 bytes for GRE headers) to the standaMPES,
but it allowed us to rely on Open Source off-thelsh

components.
IP VLL encapsulation PW encapsulation

Ingress
Egress

+

GRE || C-ETH @

Egress
Ingress A

C-ETH

i4 T — :
v v P-ETH | MPLS: P-IP | GRE |I C-ETH @

EoMPLS encapsulation

‘ P-ETH |MPLS| C-ETH ‘

Figure 5. IP VLL and L2 PW tunneling operationsheg Provider Edges. The
EoMPLS encapsulation format is shown as a reference

The implementation of the proposed approach reduare
careful design, whose result is shown in FigureA6new
entity called ACcess Encapsulator (ACE) is introstlidn
order to deal with the GRE tunnel at the edgesefpgseudo
wire tunnel. The detailed design is further anallyze
subsection IV.D.

With this approach it is possible to rewrite théssisource
and destination MAC addresses in the core OSHI ordétvso
that they can match the actual addresses of thecesand

destination interfaces on the OSHI IP/SDN routerhis
allows the support of legacy Ethernet switched oet®
among the OSHI IP/SDN routers, which can be an mapo
requirement for a smooth migration from existingwaks.
Both the IP VLL and PW services are realized wiBPS
that switch MPLS labels between two end-points l{oth
directions). We used the Ryu [38] controller, thBPS are
setup using a python script called VLLPusher. Ttrgps uses
the Ryu Topology REST API of to retrieve the shsttpath
that interconnects the SBP end-points. It allocttesMPLS
labels and then uses the Ofctl REST API to setepules for
packet forwarding and MPLS label switching. In getup of
a PW service the MAC rewriting actions are addeihgithe
addresses of the OSHI nodes as the outer MAC asielres

Customer Edge Router ETHERNET

Transparent GRE tunnel
MPLS pseudo wire

Label swapping and Mac RW
OSHI OSHI

'ETHERNE [ETHERNET |

Provider edge OSHI C

re|O$HI Pro
CE ACE Ro "
o CORE OSHI
] — 0 network

ider edge OSHI

I 1
Figure 6. PW implementation in the OSHI node prgiet

3) Requirements on protocol and tools versions

The MPLS solution needs at least OpenFlow v1.1,clvhi
makes possible to handle MPLS. Both the SDN cdetraind
the SDN Capable Switch need to support at leastvQE
(most controller and switches jumped from OF vb.¥1.3).
Considering our tools, an Open vSwitch version d@np
with OF v1.3 has been released in summer 2014, ngaki
possible to start the implementation of the MPLSedoha
approach.

4) The Virtual Switch Service (VSS

The PW service can be used as a building blockcifeating
more complex services, like for example the VirtGavitch
Service (VSS). While a PW service instance bridgaslayer

2 end-points, the VSS service bridges a set ofpaninits into

a virtual layer2 switch. The ports of a VSS instanc
correspond to an arbitrary set of ports of the RievEdge
nodes. This service is called Virtual Private LANr3ce
(VPLS) in RFC 4761 [37]. A VSS provides the samelL8P
service described in the RFC but its implementatiohased

on _SDN_ _and does not exploit _ other control plane 'ACE namespace Root Name Space
functionalities, therefore we renamed it. o e A el

The VSS is based on the L2 PW service, becauséPthe (Open vSwitch) o Routing Daemon
VLL service does not provide a transparent forwagdof “Local” 2 (Remote’ (nggga)
layer 2 packets. To implement the VSS service tatcPWs Virtual 2 | GRE port

connect the end-points tbranching points in the OSHI
network. A virtual layer 2 switch instance, call&firtual
Bridging Point (VBP), is allocated in the branchipgints to
bridge the packets coming from the PWs.

A VSS instance is deployed in three steps: i) dhamg
point selection; ii) VBP deployment; i) VBP
interconnection. In the first step, a python scraalled
VSSelector retrieves the topology from the conéréind then
chooses the branching points, i.e. the OSHI nobas will

host the VBPs. In the second step according tathput of
VSSelector the VBP are deployed as additional nt&sa of
Open vSwitch in the selected OSHI nodes (see stibsec
IV.D for implementation details). The final step tbe
deployment of the PWs that will interconnect thesG& the
VBPs and the VBPs among each other. We provide two
versions of the branching point selection (firgpsabove): i)
un-optimized; ii) optimized. In the un-optimizedrs®n a
single node is randomly selected in the topology ased to
deploy the virtual bridge. For the optimized vensifinding
the optimal topology to implement a VSS correspoiodthe
minimal Steiner tree problem [39]. We implement the
heuristic defined in [40] to find an approximatelusion.
Then, using the tree topology obtained from theriséa, a
VBP is deployed in each branching point of the.tleeboth
the un-optimized and optimized version, the VBPg ar
connected each other and with end-points with dirseudo
Wires. In this way the packets enters the VBPs damlyhe
branching points.

D. OSHI detail ed node architecture

In order to support the PW and VSS services, thkitacture
of an OSHI node needs to be more complex with &sioe
the high level architecture shown in Figure 2. Fegw
provides a representation of the proposed soldftiothe PE
nodes. As discussed above, the difficult part é&sghpport of
encapsulation and de-capsulation in the OSHI PEsofbr
which we resorted to use GRE tunnels (see the sigle of
Figure 5). The different encapsulation steps initigeess (il-
i4) and egress direction (el-e4) are represented tise same
numbering of Figure 5. The OF Capable Switch orgdies
the push/pop of MPLS labels, while the ACE handies
GRE encapsulation. The ACE is implemented with @asse
instance of Open vSwitch, in particular we have ADE
instance running in a separate Linux network namesp34]
for each customer. For each PW, the ACE has twtspar
“local” port facing toward the CE locally connectedthe PE
node and a “remote” one facing towards the remidie &f the
PW. The remote port is a GRE port provided by OVS,
therefore the ACE receives the customer layer Xqtacon
the local ports and sends GRE tunneled packeteeremote
port (and vice-versa). The interconnection of OF©8s and
ACE ports (the endpoints of the yellow pipes inUf&y7) are
realized using the concept of Virtual Ethernet Pi@id]
offered by the Linux Kernel.

Ethernet e3

P Forwarding

Virtual Ethernet
i3 with IP address

Virtual Internal Ports

Ethernet

Virtual

Ethernef .
OF Capable Switch - OFCS

(Open vSwitch)
ia
i1 Pseudo Wis

Figure 7. OSHI-PE architectural details

Physical ports el

Differently from the internal ports (shown on thght side
of Figure 7), the Virtual Ethernets are always aiged in
pairs. In our case, for each PW two Virtual Ethénpers are
needed, one pair is used to connect the CE pd@FaS with
the local port of ACE, another pair to connect thimote port
of the ACE with the physical ports towards the réaside of
the PW. Three virtual Ethernet endpoints are useglain
switch ports (two belong to the OFCS, one to theE;AGhe
last one, on the ACE, is configured with an IP addrand it
is used as the endpoint of the GRE tunnel (Virftiahnel
Endpoint, i.e. VTEP). These IP addresses are raatjly
visible, but they have a local scope within thewuek
namespaces associated to the customer within allO8HI
nodes. This approach greatly simplifies the mananof
the services, as the same addresses for the GRIP \¢&i be
reused for different customers. As a further sifigation,
static ARP entries are added on the Virtual Etheforeeach

remote tunnel end (remote VTEP). For each custoraer,

simple centralized database of IP and MAC addre@ss=d
for GRE tunnels) is needed.

Proper OpenFlow rules needs to be setup in the OF

Capable Switch to ensure the transit of packetsth@raccess
port (i1) these rules are provided by the LME & time of
the ACE creation, while in the i4 and e2 cases #reypushed
by the OpenFlow Controller during the PW establishtn

As discussed above, an instance of ACE in the RIe i®
used to handle all the PWs of a single customerransl in a
private network namespace. In addition we had tdigore a
private folders tree for each ACE instance, as ihéeded to
guarantee proper interworking of difference inseanof OVS
in the same PE node.

Coming to the implementation of the VSS, the indrn
design of an OSHI node that hosts a VSS BridgingtPo
(VBP) is shown in Figure 8. The design is quiteikimo the
one analyzed before for the PW encapsulation. A \iBP
implemented with an OVS instance that does not hewal
ports, but only remote ones. A VPB instance repissa
bridging point for a single VSS instance and it ra@nbe
shared among VSS instances.

VBP Name Space

VSS Bridging Point — VBP
(Open vSwitch)

u Pseudo Wis

Figure 8. An OSHI node that hosts a bridging pfona VSS

Root Name Space

IP Routing Daemon
(Quagga)

IP Forwarding Engine — IP FE
(Linux networking)

OF Capable Switch - OFCS
(Open vSwitch)

Physical ports

1) Considerations on alternative design choices

Considering that a single instance of Open vSwitem
support several independent switches, a simplégualegould
consists in implementing the ACEs shown in Figuresr/
separate switches within the same Open vSwitclarest that
runs the OFCS. For N customers, this solution wasiel one

namespace instead of N additional namespaces, ingdtie
memory requirements versus the number of custoniérs.
drawback of this solution is that handling the GieEnels of
all customers in the same network namespace reqtle
management of disjoint IP numbering spaces forttimael
endpoints of different customers. In addition, theparate
namespaces allow to turn the ACE in a “Virtual Routy
including an instance of a routing daemon (Quaggaits
network namespace. Such a virtual router is theicbas
component of Layer 3 VPN services that could comgiet
the Layer 2 PW and VSS services realized so fath \tfie
choice of the more complex design we tradeoff ilitha
with simplification of the service management arasier

development of new services.
IP Routing Daemon
(Quagga)

IP Forwarding Engine — IP FE
(Linux networking)

Root Name Space

Separate customer switch
within Open vSwitch

GRE port

OF Capable Switch - OFCS

(Open vSwitch)

@ I Pseudo Wire:

Figure 9. PW implementation design without ACE

A second consideration is that the handling of GRE
tunneling has been recently introduced in Linuxnkds. This
can lead to a simpler design for tunneling thatsdwoat require
the ACE nor the use of the GRE module provided Ipgi©
vSwitch, as shown in Figure 9. Anyway, this solntlwas the
same drawbacks discussed above in terms of managerie
IP addresses for the tunnel endpoints, because Hrer not
separate network namespaces for the customersgaambt
be easily extended to support Layer 3 services.

V. OSHI: GAP ANALYSIS, ONGOING AND FUTURE WORK

The solution for PW encapsulation described inisedV.D

is based on GRE tunneling performed by the ACEaft been
designed as a replacement of the more efficienératt over
MPLS (EoMPLS) encapsulation specified in [24], whic
cannot be realized by the current version of Op8wiich.
The GRE tunneling introduces a transport and agssing
overhead. The former is 20 (IP header) + 16 (GRad&e
bytes for each packet, while the latter depends thom
implementation architecture. Our solution (showifrigure 7)
is not meant to be highly efficient but only to dmmstrate the
feasibility of the approach with a working componéive do
not plan to improve the efficiency of the solutioather we
believe that native Ethernet over MPLS (EOMPLS)
encapsulation should be provided by open sourcéclses
and we are considering to extend the Open vSwitcupport
EoOMPLS.

Assuming that a switch supports EoOMPLS, a second
important gap to be filled is the lack of suppaot fsuch
tunneling operations in the OpenFlow protocol. Nibigt the
lack of encapsulation support in OpenFlow does oy
concern EoMPLS, but also other tunneling solutidie

OVS instance instead of N and only the root networkGRE, VXLAN. The only tunneling solution currently

supported by OpenFlow is the PBB (Provider Backbondopology and services. A model corresponds to a
Bridges, also known as “mac-in-mac”), but this soluis not technological domain to be emulated and is charaet by
supported by Open vSwitch. For GRE and VXLAN, usingthe set of allowed node types (e.g. routers, swgclend-
OpenFlow it is possible to control packets alreadgiyneled hosts), link types, service relationships and eelatonstraints.
(and specific matches have been introduced in @Ffdr. — N

VXLAN), but it is not possible to control the encapation
(i.e. pushing the GRE, VXLAN headers) and de-cegifut
(i.e. popping the header) operations. Currentlyermmal tools
are needed to manage the GRE or VXLAN tunnel endtpo (
(e.g. using the switch CLIs - Command Line Integfaor \ “'“

switch specific protocols, like ovsdb-conf for OpeBwitch), /\\ /

Editor Settings »

with added complexity in the development, debug anc
operations. Extending OpenFlow protocol with theatality
to configure the tunneling end-points would be aagr
simplification in the management of SDN based sewi

The OSHI solution is an open starting point to gesand
implement additional “core” functionality and useriented
services. As for the core functionality we are d¢desng
traffic engineering mechanisms and implemented av fl |72 o
ass'g”me”t hgurlstlc for optimal mgpplng of PWS hwit Figure 10. The Topology3D (Topology and Servicesig®, Deploy &
required capacity on the core OSHI links. As foditidnal Direct) web Graphical User Interface
services, we are considering Layer 3 VPNs basetheW As shown in Figure 11 the input to Topology3D is a

service. Following the same approach used for U85V (oy1,a1 description of the model. The model desiaip is
service, the idea is to deploy virtual router inses W|f[_h|n used to configure the topology designer page, foree the
the OSHI nodes that can exchange routing informatith .,nsiraints when the user is building the topol@gd/or
routers in the CE nodes. Finally, we are workingaonOpen during the validation of the topology. So far, wavé
Source implementation of Segment Routing [22] op &b provided two models: 1) the OSHI topology domain,
OSHI [26]. This last scenario is a good exampldoiv the including OSHI CR and PE, , Customer Edge routemichy
proposed framework facilitates the implementatidnnew 5.6 aiso used as traffic source/sinks and SDN albers: 2) a
services and forwarding paradigms. All these orgceiﬁprts generic layer 2 network with OpenFlow capable sét;
are reported on the OSHI web page [6], with links t gng-nodes and SDN controllers. Each model is deosathin
documentation and source code. a set of views. A view is a perspective of a moaeijch
VI. MANTOO: MANAGEMENT TOOLS FORSDN/NFV focuses on some aspects hiding unnecessary defals.
EXPERIMENTS ONMININET AND DISTRIBUTEDSDN TESTBEDS ~ ©X@mPple, the OSHI model is decomposed in 5 vievesa d
plane, control plane and 3 views for the 3 servitesvLLs,

Mantoo is a set of Open Source tools meant to SUFON pseydo Wires and Virtual Switches). In the dataglaiew,
experiments both over Mininet and over distributestbeds. the yser designs the physical topology in termsnades
Mantoo is able to drive and help the experimentershe (osH| CR and PE, Controllers, and CEs) and linksthe
different phases that compose an experiment: desigiontrol plane view the user associates OSHI nodits w
deployment, control and measurement, as describettid controllers; in the service views the user seltwsend points
next subsections. Mantoo includes: a web based @lBd f ine services.
Topology3D (Topology and Services Design, Deploy an

Direct, Figure 10), a set of scripts to configured aontrol I o
emulators or distributed testbeds; a set of scrififs (7w TS
performance measurements. The overall Mantoo Wskfs ttopolosy geperaton/
represented in Figure 11. Using the Topology3D,uber can .

design its experiment in terms of physical topologryd Topology 3D GUI e

Topology T Topology
representation | totestbed |
file JSON) 1 mappi ng_','

v

| Manag-ement

Scripts

Config scripts

Remote
Control
Scripts

A
Testbed
Deployer
library

OFELIA - OSHI A
Deployer

Deployer Scripts \

Topology and Services

Mininet
services, start the deployment of the topology am the i R lbrary /

experiments exploiting the provided measuremenistothe - —
design of Mantoo and of its components is modutaliacan g \\\\\\§

! totestbed |

be easily extended to support scenarios that gorftkthe use | mapm |
cases of our interest.

=

N
=
M serv§ Measurement
T tools
4

A. Design Phase T
The Topology3D offers a web GUI to design a network Jilﬂ = £
topology and to configure the services for an expent (see Mininet emulation Doty tectbods

Figure 10). It consists of a JavaScript client @dPython rig,re 11. Mantoo enabled emulation workflow
back-end. A link to a public instance of the Toggl@D can
be accessed from [6]. The Topology3D is meant toabe
extensible framework that can support different eledof

The Topology3D exports the representation of thevsi
(topology and services) in a JSON format, whichobees the

input for the deployment phase. Networkx [27] (e-pkisting
Python package for the creation/manipulation of plem
networks) allows generating random data plane tapes
with given characteristics.
B. Deployment phase
The deployment phase translates the designed @patdo
the set of commands that instantiate and configheenodes
and the services for a given experiment. This plcasetarget
different execution environments for the experirsenby
means of a specific “Deployer”. So far, we targetatk
emulator (Mininet) and four distributed SDN testbefthe
OFELIA testbed [10], the GEANT OpenFlow Facility —
GOFF [41], the GEANT Testbeds Service — GTS [43] an
private testbed called Netgroup SDN Testbed — NOPT
Technically, the deployment phase is performed lseta
of python scripts (Topology Deployer) that parse tSON
file with the representation of the views and proaldurther
scripts (mostly shell scripts). The proper executad these
scripts deploys the experiment either over Minioebver a
distributed SDN testbed. The Testbed Deployer amel t
Mininet Extensions are Python libraries that areduby the
actual Deployers. The Mininet Extensions librarytadored
for the Mininet emulator, while the Testbed Deploye
currently supports the four above mentioned testhaat it
can be easily extended to support additional ones.

1) Mininet Extensions

By default, Mininet only provides the emulation tadsts and
switches. We enriched Mininet introducing an exeshtiost,
capable of running as a router and managed tchei@tiagga
and OSPFD daemons on it. The extended host inclOges

enhancement to the default Mininet setup depend®won
requirement to reach the emulated nodes via SShkh fro
external, “non-emulated” process. For this purpose
introduce a fictitious node in the root namespadethe
hosting machine that is connected to the emulattdiork
and works as relay between the emulated world aofiét
and the “real” world of the hosting machine. Theadle on
the specific Mininet deployment architecture canfduend in
[9]. The Mininet Extensions library is able to autate all the

aspects of an experiment. This includes the aufomat

configuration of IP addresses and of dynamic raqu{@SPF
daemons) in all nodes, therefore relieving the erpenter
from a significant configuration effort. As for treoftware
design, the library extends Mininet providing nebjexts and
API that seamlessly integrate with existing Mininbfects.

2) Deployment over distributed SDN testbeds

We implemented and tested a Deployer for each efftlr
distributed SDN testbeds listed above. The OFELIAd a
GOFF testbeds share a similar architecture asaheyased
on the OCF (OFELIA Control Framework) [10]. Theset
testbeds manage differently the out-of-band corvigcet
Specifically, in the OFELIA testbed there is a ngeraent
network with private IP addresses, while in the GQé&stbed
all the virtual machines use a public IP addres® OFELIA
testbed slice we used is hosted in the CREATE-N&and,
composed by 8 OpenFlow capable switches and 3 %Aéh [

Virtualization Servers for the experimental Virtudhchines
(VMs). The GOFF testbed offers five sites, each bosting
two servers, which respectively run the OF equipnfleased
on OVS) and Xen, for hosting the VMs. The GOFF ltedt
supports all the OSHI services (IP VLLs, PW and Y398
the OFELIA testbed the PW and VSS services caneot b
deployed due to old Linux kernels which do not sarpp
network namespaces. The GTS testbed is distribatec
number of locations interconnected by the GEANT ecor
network [43]. It is managed by OpenStack, eachisitides

a KVM Virtualization Server and a physical OpenFlow
capable switch. Finally, NeST is a small privatetied
located at University of Rome Tor Vergata, compossd
three servers, each one running both a KVM Virzsion
Server and a switch based on OVS.

The Management Scripts automate and facilitateséep,
configuration and the deployment of an experimédriey
relieve the experimenter from tedious and errornpro
activities. As shown in Figure 11, the Testbeds |Dwgr
Scripts automatically produce the configuratioedilthat are
given in input to the Management Scripts for eninotata
given topology, composed of access and core OSldeso
(OSHI-PE and OSHI-CR) and end points (CEs and SDN
controllers). This includes the automatic configiara of IP
addresses and of dynamic routing daemons (OSPRllon
nodes, saving a significant time for the node apnfation.
Each node (CR, PE or CE) is mapped into a diffekavit
running in a Virtualization Server of a given te=ib Two
mechanisms can be used to map an emulated nodé/bh a
1) a resource file (called “topology-to-testbedyhwa list of
IP addresses of available VMs can be given to tapl@er,
which automatically choses the VMs for the emulatedes;
e2) it is possible to manually assign the target {it¥entified
by its IP address) for an emulated node, eithetingdia
mapping file or graphically using the Topology3D GU

A management host coordinates the overall process,
usually also executing the Deployer scripts. Theagament
host and the VMs communicate over a managementonietw
The configuration files generated by the Deploysmspts are
uploaded on a repository reachable by the VMs (a.g.
webserver running on the management host). Durheg t
deployment process these files are downloaded bly ¥
belonging to the experiment.

The Management Scripts are logically decomposed in
Remote Control Scripts, Setup Scripts and Configp&c
« The Remote Control Scripts, based on Distributea!SH
(DSH), are used by the management host for digingu
and executing remote scripts and commands. Thayena
root login without password, avoid initial ssh payiand
configure the DSH in the management VM. Once DSH
has been properly configured with the IP of the VMs
belonging to the experiment, it can run commandsaon
single machine, on a subset, or on all the depldid. It
is also possible to execute parallel commands $pgegh
the deployment.

The Setup Scripts turn a generic VM provided by the
testbed into an emulated node (CR, PE, CE or cleryo
installing and configuring the needed software nteslu

« The Config Scripts configure a specific experimamd its
topology, setting up the link (tunnels) among tHds/

- Overlay
Overlay

6& = SDN
¥ __ Controller topology

_ I -
T % o @ (example)
E\> = 4 oy a7 L,L
Virtualization Server 1 Virtualization Server 2
Overlay SDN Controll. overl
. Y . —= verlay
\!; “@ 777777 D ; "je Eg level

N

. | 7' . Testbed iy

2 e g son 2
@j&lntruller

Lk

Testbed
level

Virtualization Server 2

lesee

& & &0 &

Testbed
level

Figure 12. Deploying an overlay topology over tHeEDIA/GOFF testbeds

In order to replicate an experimental topology eating
the network links among CRs, PEs and CEs an ovestay
Ethernet over UDP tunnels is created among the Vaés,
shown in Figure 12 for the OFELIA and GOFF testbeils
target overlay topology is shown in the higher pafrtthe
figure, while the physical testbed is shown in bla¢tom part,
in this example it is constituted by two Virtualiwen Servers
connected by a set of OpenFlow switches. Each elewfe
the overlay topology (node, host or SDN controllés)
mapped on a different VM that can be run in onethaf
Virtualization Servers, as shown in the middle pafitthe
figure. The red thick lines represent the UDP tisaenong
the VMs that are setup in order to map the linkthefoverlay
topology. The underlying connectivity among the VN&s to
be managed by the Testbed SDN Controller. In cd<eT&

testbed is reported in Figure 13. We only use VXLASI a
point-to-point tunneling mechanism (the VXLAN VNI
identifies a single link between two nodes) and dwee not
need underlying IP multicast support, as in thé W{LAN
model. The OF Capable OVS is also used to perform
encapsulation and de-capsulation of VXLAN tunndisch
tunnel corresponds to a port in the switch

C. Control phase (running the experiments)

In the Mininet based experiments it is possible ojmen
consoles on the emulated nodes using the web GUheof
Topology3D. The consoles show the output generayethe

ssh processes connected to the nodes (deploykd Mihinet
emulator). The generated output is conveyed totehminal
shell running in the experimenter browser, levarggthe
WebSocket API, where each terminal has a separate
WebSocket channel. The same functionality for the
experiments over the distributed testbeds is ctiramder
development.

D. Measurement Phase

In order to automate as much as possible the pgooés
running the experiments and collecting the perforceadata
over distributed testbeds we have developed ancbbje
oriented multithreaded Python library called Measugnt
Tools. The library offers an intuitive API that @Ns the
experimenter to “program” his/her tests. Using ltheary we
can remotely (through SSH) run the traffic genesa(@perf)
and gather load information (CPU utilization) ot abdes
(VMs). As for the load monitoring, taking CPU messuents
from within the VMs (e.g. using thep tool) does not provide
reliable measurements. The correct information alkibe
resource usage of each single VM can be gatheced fhe
virtualization environment, for example on Xen lhse
systems we relied on thentop tool, which must be run as

and NeST the deployment is simplified because th&ootin the Xen based Virtualization Server. Theref for the

underlying connectivity among the VMs is automdtica
provided by the testbed management infrastructure.

IP forwarding & routing component

Virtual ports

P
— OF Capable Switch - OFCS
SDN ~ (Open vSwitch)
Ethernet VXLAN tunnel “ports”
over UDP
—

eth1.199 port Physical interface with “testbed”

IP address (e.g. 192.168.1.x)
Figure 13. Implementing VXLAN tunnels using Openitsh (OVS)

A first option to build the tunnels is to use theeuspace
OpenVPN tool (with no encryption). The performanise
poor, as performing encapsulation in user spacerg CPU
intensive. A possible approach to enhance perfocmas to
rely on specific hardware and/or on software moslube
optimized I/O library like Intel DPDK [30]. We pref a
solution that is applicable on generic Linux desiceo we

OFELIA environment we have developed a python medul
that collects CPU load information for each VM ofiro
interest in the Xen server usixgntop and it formats it in a
JSON text file. The Measurement Tools retrieveJBON file
from the python module with a simple message exgham a
TCP socket. In the GOFF environment the measurenhagat
are provided through a Zabbix interface [46) python
module gathers the data from the Zabbix API. In KhéM
based NeST testbed, we relied onxiretop tool.

The Measurement Tools provide a general framewuak t
can be easily adapted to different needs. Curremdyhave
developed tools able to generate UDP traffic andydther
CPU load information from the virtualization enviraent.
An experimenter can easily extend this frameworkruo
his/her tests and collect the measures of interest.

VIl. PERFORMANCEEVALUATION ASPECTS

In this section we analyze some performance aspdctise
OSHI prototype implementation over distributed SDN

consider an approach based on the VXLAN tunnelg [33testbeo_ls. The openness of the OSHI_sqution malkessible
provided by Open vSwitch. OVS implements VXLAN to design and implement new services based on b S

tunnels in kernel space [32], dramatically impravin
performance with respect to OpenVPN. The desigrihef
VXLAN tunneling solution for OSHI over a distribute

paradigm and run experiments to validate them antbo
compare different implementation options. Thanks tlie
Mantoo suite, an experimenter can deploy a largaesc

network over a distributed testbed. In our view #mded B. Performance comparison of tunneling mechanisms

value provided by OSHI/Mantoo will be the opportynio |5 this experiment we evaluated the processing rmaet
get feedback on Control Plane design issue from thgtroduced by the tunneling mechanisms (OpenVPN and
implementation and the experiments. VXLAN) used to deploy the overlay experimental tyuges

On the other hand in this section we focus on sD@& over distributed SDN testbeds. We considered thmesa
Plane aspects of our prototype implementation. fetienale topology of the previous subsection.

for this evaluation is to provide an indication dhe 40

scalability of the emulation approach in distrilbltestbeds 35

made up of Linux Virtual Machines running on typica 30

Virtualization Servers. It is not our purpose tsess Data 1 o Gl
Plane forwarding performance for a production resalytion 3 20 5 & RO
working at line speed in the core of ISPs’ WANSisTtiype of ® 15 3 & i
evaluation will be needed if OSHI will be portedeovthe so 10 S ROUTER 1P
called white box switches, high performance forwarding R

equipment with an open Operating System that can be 0

customized by third-party developers, but this ds future e e

work. Figure 14. Best Effort IP forwarding performance.

The first two experiments (sections VII.A, VII.B)ave
been performed over an OFELIA testbed. We usedptbié
tool as traffic source/sink in the CE routers ardeyate UDP
packet flows from 500 to 2500 packet/s. In thegeeerents
the UDP packet size was 1000 bytes (using UDP packe
ranging from 100 bytes to 1400 bytes, the perforceanas
been only influenced by the packet rate). We evatlidhe
CPU load in the PE routers with ouxentop based
Measurement Tools. We executed periodic polling an
gathered the CPU load of the monitored VMs. In gachwe
collected 20 CPU load samples with polling interiralthe
order of two seconds: the first 10 samples areadifr and

Figure 15 compares the CPU load for OSHI IP fonivaydn
the OpenVPN, VXLAN and no tunneling scenarios.dh de
appreciated that VXLAN tunneling adds a reasondbly
processing overhead, while OpenVPN tunneling would
dramatically reduce the forwarding capability of @sHI
node in the testbeds. The theoretical CPU saturatite for
OpenVPN tunneling is in the order of 3500 p/s, whis 4
imes lower than in the no tunneling case. The riteal
PU saturation rate for VXLAN tunneling is oril$% lower
than the no tunneling case, showing that VXLAN is a

efficient mechanism to deploy overlay topologies.
90

the last 10 are averaged to get a single CPU lahtey Then s ~

we evaluated the mean and the 95% confidence alterv o L "

(reported in the figures) over 20 such runs. Thgeerment in 60 T

section VII.C has been executed on the NeST testblee 5 50 e

above described methodology has been used, but the &, o ¢ OpenVPN
generated packet rate ranged from 12.5 kp/s to g2 with 0 Bl
UDP packet size of 100 bytes, we evaluated CPU hadll in 20 ﬁné'i No-Tunnel
PE and CR OSHI nodes, using thiet-top tool. Finally, the 10—

experiments in sections VII.D and VII.E have beerf@grmed 0

on the GOFF testbed. o 10 packetl.i:i. /%) e

A. Best Effort IP performancein OSHI Figure 15. CPU Load for different tunneling mecisans.

With reference to the architecture in Figure 2, soenpared C. Performance comparison of different forwarding
the forwarding performance of IP Best Effort paskiet OSHI approaches over the distributed SDN testbed

(where each packet crosses the Open vSwitch twestim |n this experiment we evaluated the processing lo&d
marked as “OSHI IP” in Figure 14) with plain IP faarding different forwarding approaches over the distrilduteDN
(the Open vSwitch is removed and the OSHI nodefites testbeds considering the topology shown in FigateFbr the
are directly connected to IP forwarding engine, kedras OSHI solution, we considered IP forwarding (OSH) &nhd
“ROUTER IP”). In the next section, we refer to tBSHI-IP SBP forwarding (OSHI VLL). Then we assumed plain IP
case as “No-Tunnel”, as no tunneling mechanisnsésluThis forwarding as a reference (ROUTER IP).
experiment is not automatically deployed using the gparow Canary Sparrow
Topology3D and Deployer, and we setup a limitecblogy
with two CE nodes and two OSHI nodes. In the expent
results (see [9] for details) we can appreciate RAJCoad
penalty for OSHI IP forwarding with respect to ROER IP
forwarding ranging from 11% to 19% at differentesat The
theoretical CPU saturation rate for plain ROUTER IP
forwarding is in the order of 14000 p/s. OSHI IPwarding
reduces the theoretical CPU saturation rate to gongein Canary

the order of 12500 p/s (corresponding to 11% perémrce Figure 16. Physical network Figure 17. Overlay network for the
penalty). in the NeST testbed experiment on NeST

— &) reosHin

CR-OSHI1, CR-OSHI2|
= e A

@l “><'|

e [s~

a|beg

CR-OSHI3 CR-OSHI4|

— &8, reosHi

We executed the performance tests of OSHI IP, O@HlI
and ROUTER IP using the VXLAN tunneling solutiondan
collected the CPU load both for the access PE rodethe
first CR node (see results in Figure 18). In caselain IP
forwarding (ROUTER IP) the packets have to croes@pen
vSwitch which handles the VXLAN tunneling (see Higu
13), therefore as expected there is no advantatie respect

to OSHI IP. The OSHI VLL solution is the least CPU

P El
>

intensive as it exploits MPLS label switching iretopen
vSwitch. The CPU performance penalty of OSHI

forwarding w.r.t. OSHI VLL is less than 10%. The CkPads
for PE and CR are different in absolute values beeahe
respective VMs are mapped in two different Virtmation
Servers with different processors. In the experimen
physical core of the Virtualization Servers was lesively
allocated to each VM. For the PE node the theak@PU
saturation rate is in the order of 320 kp/s for OSHLL,

while for the CR node hosted on the more perfornsanter
the theoretical CPU saturation rate is in the oodér Mp/s.

40

* CR-OSHIIP

* CR-OSHIVLL
CR-ROUTER IP
PE-OSHI IP
PE-OSHI VLL
PE-ROUTER IP
CR-OSHI IP

%CPU LOAD

CR-OSHI VLL

CR-ROUTER IP

P-OSHI IP

PE-OSHI VLL

PE-ROUTER-IP

00 12500 25000 37500 50000 62500 75000 87500 10000 112500 125000

RATE (P/s)

Figure 18. CPU load with VXLAN tunneling.

D. Performance evaluation of encapsulation for PW service

In this experiment we evaluated the performancealpgen
introduced by the encapsulation mechanism impleeaefar
the PW service (section IV.D). We have performeds th
experiment over the GOFF testbed (physical topoligy
represented in Figure 19) using the overlay toppkitpwn in
Figure 20. As usual, the iperf tool has been usedraffic
source/ sink in the CE routers and generates UDdkepa
flows. We evaluated the CPU load in the OSHI-PEBh &
periodic polling approach. A sample is provided Zgbbix
every minute, representing the average calculatedhis
period with 1-second-interval samples. For eachd Itvel
(packet rate) we executed a single run of 7 minaed
collected 7 CPU load values, the first 2 are didedrand the
last 5 are averaged to get a single CPU mean lalag vThen
we evaluated the relative standard deviation (RSD)
ascertain the reliability of the results. The RSDailways
smaller that 5% in all runs.

In the PE nodes, the implementation of the IP VEtvice
is based on the design shown in Figure 2, while RN
service considers the architecture described inrgig. We
wanted to estimate the overhead introduced by t6& And
by the operations of the GRE tunnel. We generat&P U
packet flows with a rate ranging from 2000 to 18@@@ket/s
(datagram size is 1000 byte as usual). The coreldgp is

represented in Figure 20. In the experiment, 3 @E8Bng as
traffic sources/sinks, were connected to each Ris Was
needed because the generation rate of a singlenCis
specific testbed setup was at most 6000 packetiseep the
CPU load of the CE VMs under a safety threshold.

? B A

OSHI-CR1 :d ‘_—t OSHI-CR3

OSHI-PES "$ & OSHI-PE2

L)

/1IN 1\

CE6 CE7 CE8 CE9 CE10 CEM
Figure 20. Overlay network for the
experiment on GOFF

&

Figure 19. GOFF Physical
network

In the experiment results (see Figure 21) we can
appreciate a CPU load penalty for OSHI PW forwagdiith
respect to OSHI VLL forwarding in the order of 1524%.
Apparently, the CPU load penalty is decreasing dlative
terms at higher CPU load. These results shows tbenpal
improvements that could be achieved by nativelypsujing
EOMPLS tunneling in the switches instead of usihg t
developed ACE and the GRE encapsulation.

90

-~

EY >

P

”~
70
~

P -~
P

60 P
= “n.~ -
& e VL
<50 .—i—/’
& [P o u PW
9 u
B 40 PR
H m 4 b —_— VLL

30 71 ~ - = PW

‘)/
20
¥
10 +—§
0 | | | | ! ! :
0 4000 8000 12000 16000 20000 24000 28000 32000

packet rate (p/s)

Figure 21. CPU load for different OSHI services.

E. Performance analysis of OVSinternal mechanisms.

In this section, we shortly report about two expemts that
concern the evaluation of OVS internal mechanisihigese
experiments do not directly concern OSHI, but teapport
the choice of OVS as the software based OpenFlpalta
switch integrated in OSHI node and show the effectess of
the proposed Mantoo platform for the setup, depkrymrand
control of the experiments and the collection off@enance
results. For space reasons, the detailed resuls tat been
included and can be found in [47].

The first experiment investigates the impact of kkenel
flow cache implemented in OVS. In the OVS architeet the
first packet of a flow arriving at a node is fordad to a
Linux user space process, while the following p&skare
using a flow cache in the kernel. OVS performarscegtimal
as long as the packets are forwarded using theekdlow
cache. For the same traffic pattern we measured ¢6%
utilization for kernel cache processing and 94%azation for
user space processing. For the OSHI solution, weeged the
design insight that the number of active SBPs shoeinain
within the limit of the kernel flow table. We evalied (details
in [47]) how many flow table entries are needed dor IP

VLL or L2 PW service, so that we relate the dimensif the
flow table with the maximum number of service imgtes.

controller can instruct the hybrid IP/SDN nodesptrform
SDN based forwarding for specific traffic flows. i$hdea of

The second experiment evaluated how the number afupporting such hybrid nodes is already includedthia

active flows in the flow tables influences the famding
performance of OVS. The comforting result is thadreasing
the number of active flows in the tables does nffténce the
forwarding performance. This is obviously valid lasg as
the active flows are less than the size of theewbrhe results
is a prove of the efficient implementation of flowokup
mechanisms, at least for the traffic patterns Wathave used
in our experiments.

VIII. RELATED WORK

OpenFlow specifications since the first version thie
protocol. Two types of devices are considered: @Fy-and
OF-hybrid which can support both OF processing and
standard L2/L3 functionalities. Currently, only préetary
hardware switches implement the hybrid approaclerioff
also L3 standard routing capabilities. OSHI repnese fully
Open Source OF-hybrid solution designed to be lflexand
scalable, so as to facilitate experimentation doridlylP/SDN
networks at large scale.

The Google B4 WAN [21] is an integrated hybrid IBN6

Pure SDN solutions based on SDN capable switchtes-in solution, and it has likely been the first applicat of the

connected with a centralized controller

have beerSDN approach to a large-scale WAN scenario. In Bde

demonstrated both in data-centers and in geogralbhic solution the traditional distributed routing protts coexist

distributed research networks, such as OFELIA [hOEU,

GENI [11] and Internet2 [12][13] in US. To the bestour

knowledge, these solutions do not integrate L3inguivithin

the SDN capable L2 switches. We argue that an EBRark

requires a more sophisticated approach that caivehat
interwork with legacy IP routers and IP routing tools. As
stated in [7], a hybrid SDN model that combines Samd

traditional architectures may “sum their benefitshiles
mitigating their respective challenges”. Some réosnorks

address the hybrid
perspectives.

with a SDN/OpenFlow approach. In particular, the \BAN

sites are interconnected with traditional routimgl he SDN-
based centralized Traffic Engineering solution épldyed as
an overlay on top of basic routing. Differentlyfmdhe OSHI
solution, the routing protocols are processed byvese
external to the switches. Google B4 solution isppietary
and it is highly tailored to the needs of their@fie scenario,
composed of few large sites that needs to be ionected.
As such, it does not represent a typical ISP WARvVDEK,

IP/SDN networking from differentmade up by a large number of geographically disted

nodes. On the other hand, OSHI is designed as arigeand

In [14] the authors presented an Open Source Lab@lpen solution for hybrid IP/SDN networks.

Switching Router that generates OSPF and LDP pacising
Quagga. The node computes the MPLS labels thathare
installed in the switches using the OpenFlow (OFftqrol.
This architecture does not exploit a logically celited
controller. Instead, it considers a traditionatiilsited control
plane, while it uses OF only locally in a node yochronize
the FIBs and to program the data plane.

This work significantly extends the preliminary uéts
described in [5]: 1) the implementation of SDN lthpaths is
based on MPLS labels rather than VLAN tags, solvimg
scalability issues; 2) in addition to the IP VLLnrgee the
proposed solution offers the L2 PW service and \threual
Switch Service on top of it; 3) the detailed designd
implementation aspects of an OSHI node are destrifjethe

RouteFlow [15] creates a simulated network made oMantoo platform has been extended, for exampleoitv n

virtual routers at the top of a SDN controller. T$imulated
network is a copy of the physical one. The controllses the
BGP protocol to interact with routers of neighbanthins
and it simulates intra domain protocols (OSPF, Sp-I
between the virtual routers. A traditional IP rogtiengine
(Quagga [16]) computes the routing tables thataentually
installed into the physical nodes via the OF protodhe
Cardigan project [18] is based on a fork of RouteFl
Cardigan realized a distributed router based ontéfdow
concepts and deployed it in a public Internet ergea
showing the applicability of SDN/OpenFlow in a puation
context. The “SDN-IP” solution proposed in [19] s
similar principles. It is based on the ONOS SDN toulter
[20] and it also interacts with external domainingsBGP.
Differently from RouteFlow, the controller
instantiate virtual routers to simulate the excleamd intra
domain routing protocols, but it centralizes thetiay logic
for better efficiency.

Compared with these works, our solution assumesthiea
physical nodes still deal with basic IP routing)ghachieving
resilience for basic IP connectivity based on staddIP
routing and easier interoperability with non-OF idesg in the
core network. On top of the basic routing, the SDp&nFlow

supports remote consoles on the emulated Mininetesio
using the web GUI; 5) the experiments have beeidatad
again with the new MPLS based implementation. A derh
the Mantoo platform has been presented in [48].

IX. CONCLUSIONS

In this paper we have presented a novel architectunrd
implementation of a hybrid IP/SDN (OSHI) node. TG8HI
data plane supports the coexistence of best effert
forwarding and SDN based forwarding using MPLS Igbe
The traditional distributed MPLS control plane st meeded
anymore, as all MPLS circuits (Label Switched Patimy
termed SDN Based Paths) are established by means of the
SDN controller. We have shown the implementationlf®f

does not VLL and Layer 2 Pseudo Wire (PW) services. On tbphe

L2 PW service we also have built a layer 2 Virt&alitch
Service (VSS), closely resembling the layer 2 VRoRution
over MPLS. Using the SDN approach, all complex muint
plane functions that take decisions (e.g. optimadet
evaluation) and enforce that decisions (e.g. aaatif PWSs)
are executed outside the OSHI network nodes. Resilt
performance tests executed both in single-host @iongl

(Mininet) and in distributed SDN testbeds have shdhat
OSHl is suitable for large-scale experimentatiatirsgs.

We have described Mantoo, a suite of supportints tfww
experiments with OSHI based services. It
extensible web GUI framework for designing and dating a
topology, called Topology3D. The topology is autdicely

deployed either on Mininet or on distributed testhe
Execution and Measurement tools simplify runninge th

experiments and collecting performance measurements

Developed according to an Open Source model, tHelOS

prototype and the Mantoo suite are valuable tduds ¢nable
further research and experimentation on novel sesviand
architecture in the emerging hybrid IP/SDN networks

So far, we presented the OSHI architecture mosthara
experimenter tool: it easily configures VMs as hghP/SDN
nodes and performs experiments at relatively lssgales

using Mininet emulator or resources over distridutestbeds.

includes a

[13] Internet2 Software Defined Networking Group homgepa
http://www.internet2.edu/communities-groups/advahoetworking-
groups/software-defined-networking-group/

[14] J. Kempf, et al “OpenFlow MPLS and the open solabel switched
router”. In proc. of the 23rd ITC, 2011

[15] C. Rothenberg et al. “Revisiting routing contratibrms with the eyes
and muscles of software-defined networking”, HotSI\ 2012

[16] Quagga home page - http://www.nongnu.org/quagga/

[17] A. Detti, et al. “Wireless Mesh Software DefinedtNerks (wmSDN)”,
CNBuUB 2013 workshop, October 2013, Lyon, France

[18] J. Stringer et al., “Cardigan: SDN distributed megtfabric going live at
an Internet exchange”, IEEE Symposium on Compaeds
Communication (ISCC), 23-26 June 2014

[19] P. Lin et al., “Seamless Interworking of SDN anti &M SIGCOMM
Computer Communication Review, 2013

[20] ONOS - Open Network Operating System home page,
http://onosproject.org/

[21] S. Jain, et al, “B4: Experience with a Globally-lsed Software
Defined WAN” in SIGCOMM, 2013

[22] C. Filsfils, S. Previdi, (Eds.) et al. “Segment Rog Architecture”,
draft-ietf-spring-segment-routing-01, Feb 2015

On the other hand, we recently started working on a[23] E. Rosenetal., "MPLS Label Stack Encoding”, IERIFC 3032
implementation of the OSHI architecture on whitex bo [24] S.Bryant, P. Pate, “Pseudo Wire Emulation EdgEdge (PWES3)

switches [4], in particular using the P-3922 10QGdtch
from Pica8. This work goes into
implementing OSHI in devices that can perform shiitg
and routing at line speed over production netwodkssing

the gap between SDN research and real world neswork

Details on these white box switches experiment ates and
results are available at [6].

X. ACKNOWLEDGMENTS

This work was partly funded by the EU in the contekthe
DREAMER project [35], a beneficiary project of tdE=ANT
Open Call research initiative in the GN3plus prbjec

Xl. REFERENCES

[1] “Software-Defined Networking: The New Norm for Neisks”, ONF
White Paper, April 13, 2012

[2] D. Kreutz, et al., “Software-defined networkingcAmprehensive
survey”, Proceedings of the IEEE, 103(1), 2015

[3] C.E. Rothenberg et al, “When Open Source Meetadt&tControl
Planes”, IEEE Computer, vol.47, no.11, Nov. 2014

[4] R. Sherwood “Tutorial: White Box/Bare Metal Swi&di, Open
Networking User Group meeting, New York, May 2014
http://www.bigswitch.com/sites/default/files/preszions/onug-
baremetal-2014-final.pdf

[5] S. Salsano, et al. “Open Source Hybrid IP/SDN ngtimg (and its
emulation on Mininet and on distributed SDN tes#)&dEWSDN
2014, 1-3 September 2014, Budapest, Hungary

[6] OSHI home page http://netgroup.uniroma2.it/OSHI

[7]1 S. Vissicchio et al., “Opportunities and Researbhalénges of Hybrid
Software Defined Networks”, ACM SIGCOMM Computer
Communications Review, Editorial Zone (April 2014).

[8] S. Vissicchio, et al, “Safe Update of Hybrid SDNtWerks”, Technical
report, http://hdl.handle.net/2078.1/134360

[9] P.L. Ventre etal. “OSHI technical report” avaiiit [6]

[10] Marc Sufié et al., “Design and implementation of@rELIA FP7
facility: The European OpenFlow testbed”, CompiNetworks, 2014

[11] Mark Berman et al., “GENI: A federated testbediforovative
network experiments”, Computer Networks, Vol. 61argh 2014

[12] Internet2 home page - http://www.internet2.edu/

the direction of

Architecture”, IETF RFC 3985, March 2005

[25] L. Martini, et al. “Encapsulation Methods for Trawest of Ethernet over
MPLS Networks”, IETF RFC 4448, April 2006

[26] L. Davoli, et al., “Traffic Engineering with SegmeaRouting: SDN-
based Architectural Design and Open Source Impléatien”, poster
paper at EWSDN 2015, Bilbao, Spain.

[27] Networkx home page - http://networkx.github.io/

[28] CISCO Technology white paper “Service Definition&tual Leased
Lines”

[29] Floodlight's home page - http://www.projectfloodiigorg

[30] DPDK: Data Plane Development Kit home page - Hitpdk.org/

[31] Open vSwitch home page - http://openvswitch.org/

[32] J Pettit, E. Lopez, “OpenStack: OVS Deep Dive”, N@2013,
http://openvswitch.org/slides/OpenStack-131107.pdf

[33] M. Mahalingam et al. “VXLAN: A Framework for Overiing
Virtualized Layer 2 Networks over Layer 3 Networkdtaft-
mahalingam-dutt-dcops-vxlan-09.txt, April 10, 2014

[34] S. Lowe blog post “Introducing Linux Network Namasps”
http://blog.scottlowe.org/2013/09/04/introducingtk-network-
namespaces/

[35] DREAMER home page - http://netgroup.uniroma2.it/DREER/

[36] J. Medved, A. McLachlan, D. Meyer, “MPLS-TP Pseudew
Configuration using OpenFlow 1.3” draft-medved-pvwE#aonfig-01

[37] VPLS, RFC 4761 — https://tools.ietf.org/html/rfc476

[38] RYU home page — http://osrg.github.io/ryu/

[39] Steiner tree — http://mathworld.wolfram.com/Steifree.html

[40] L. Kou, G. Markowsky, L. Berman, “A Fast Algorithfar Steiner
Trees”, Acta Informatica, 1981, Volume 15, Issu@2141-145

[41] GOFF home page — https://openflow.geant.net/#

[42] GTS home page - http://gts.geant.net/

[43] “Architecture Description: GEANT Testbeds Servidersion 2”,
Deliverable D6.2 of GN3plus project

[44] The Xen Project home page http://www.xenproject.org

[45] The KVM Project home page http://www.linux-kvm.org/

[46] Zabbix home page - http://www.zabbix.com/

[47] S. Salsano (ed.) et al. “DREAMER final report”, @pgall Deliverable
OCG-DS1.1 of GEANT project, March 2015.

[48] S. Salsano, et al. “Mantoo - a set of managemaei for controlling
SDN experiments”, demo paper at EWSDN 2015, Billsmain

