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ABSTRACT 
Several solutions have been proposed for mobility management in 
IP based heterogeneous networks, working at different protocol 
levels, from layer 2 up to application level. In order to take the 
handover decision, many solutions require to monitor the 
performance of the heterogeneous networks to which the mobile 
device is connected. Measuring the physical or link level 
performance on a given wireless access networks does not provide a 
reliable indication of the perceived level of service when the 
application flows are handed over that wireless access network. It is 
therefore needed to take measurements at IP level, on the 
(bidirectional) path from the Mobile Host to an intermediate node 
handling the mobility or even to the remote Correspondent Host. 
Gathering such measurements in a timely, effective and efficient 
way is not an easy task. In this paper we show that a naïve approach 
using application level active measurements is highly CPU 
intensive. This would severely impact battery usage in Mobile 
Hosts and does not scale if intermediate mobility management 
nodes are involved. On the contrary we show that an 
implementation of active measurements in the Linux kernel has a 
very low CPU usage. In this approach an efficient use of batteries in 
Mobile Host can be achieved and intermediate mobility 
management nodes can scale up to monitoring thousands of flows 
towards Mobile Hosts. Finally we discuss how combining passive 
and active measurements could further improve the solution.  

Categories and Subject Descriptors 
C.2.1 [Computer-Communication Networks]: Network 
Architecture and Design 

Keywords 
Mobility management, measurement based, vertical handover, 
performance evaluation. 

1. INTRODUCTION 
Several solutions have been proposed in the last 15 years for 
mobility management in IP based heterogeneous networks, working 
at different protocol levels [1], from layer 2 up to application level. 
Nevertheless, mobility management is still an open issue for 
research and standardization and work is still actively ongoing in 
this area. 

 
We consider a scenario in which the terminals have different 
wireless interfaces (e.g. WiFi, 3G/4G, WiMax). We assume that 
multiple interfaces can be active at the same time, therefore a 
decision must be taken on which interface will be selected at a given 
time (handover decision). A review of the handover decision 
process can be found in [2], the decision process can be terminal 
based or network based and several factors can be taken into 
account, from received signal strength on the radio interface, to cost 
of connectivity, desired QoS, battery usage and so on. Among these, 
it is relatively easy to evaluate the radio link performance on a given 
wireless access networks. Unfortunately, this does not provide a 
reliable indication of the level of service provided to the Mobile 
Host when its application flows are handed over that wireless access 
network. In order to achieve such indication, measurements should 
be taken at IP level on the path from the Mobile Host up to the 
intermediate node that handles the mobility or up to the 
Correspondent Host if the mobility is handled end-to-end. 
 
Gathering such measurements in a timely, effective and efficient 
way is not an easy task. We will focus on a mobility management 
solution called UPMT (Universal Per-application Mobility 
Management using Tunnels) [3], but this issue is common to all 
mobility management solutions that combine heterogeneous 
networks using IP (e.g. Mobile IP [3], HIP – Host Identity Protocol 
[5]). Therefore our findings are of general value in this respect. 
 
The UPMT solution (introduced in section 2) is based on tunneling 
over UDP and can be applied to different scenarios. In particular in 
this paper we will consider two scenarios: i) Internet access 
provided to a Mobile Host over heterogeneous access networks; ii) 
Networked Robot System, i.e. a machine-to-machine 
communication scenario using heterogeneous wireless networks. 
These scenarios will be described in section 3. Section 4 will 
describe the tunnel performance measurement mechanisms, 
designed in order to minimize the complexity and the state 
information to be maintained. Sections 5 and 6 will respectively 
deal with the implementation of the designed mechanisms in user 
space and in kernel space under Linux OS. The CPU processing 
performance of the two implementations are compared in section 7. 
Section 8 provides some hints for the design of a mixed active and 
passive measurement approach and finally section 9 reports some 
conclusions. 

2. UPMT BASICS 
UPMT is a solution for mobility management over heterogeneous 
networks based on IP in UDP tunneling. In this section we shortly 
recall its main features, further details in [3][7][8]. A Mobile Host 
establishes IP in UDP tunnels over its active network interfaces with 
its “correspondent” UPMT node. This correspondent UPMT node 
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can be another Mobile Host (see Figure 4), an “Anchor node” (see 
Figure 3) or a correspondent UPMT aware Fixed Host. The tunnels 
are used to exchange the IP packets according to the format shown 
in Figure 1. The “external” packet has IP source and destination 
addresses corresponding to the IP addresses of the interfaces of the 
Mobile Host and of the correspondent UPMT node. The internal 
encapsulated packet can keep the same IP source and destination 
addresses irrespective of the interfaces used for sending and 
receiving the packet. This allows seamless handovers of flows 
among multiple tunnels setup between the Mobile Host and the 
correspondent UPMT node.  

IP UDP IP UDP or TCP application

Tunnel header
IP src: real_iface_addr
IP dest: AN_addr

Original header
IP src: virtual iface
IP dst: CH_addr

 

Figure 1. UPMT packet format 

In our Linux implementation of UPMT, the UPMT kernel module 
provides a virtual interface called UPMT0 as a regular networking 
device, as shown in Figure 2. A “virtual” IP address can be assigned 
to it and the legacy applications will see a standard networking 
device. The UPMT encapsulation and mobility management is 
completely transparent for the applications that can use plain 
sockets to communicate.  
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Figure 2. UPMT virtual interface vs. physical interfaces 

 

3. SCENARIOS OF INTEREST 
The UPMT solution can be applied to different scenarios, we will 
consider two of them in this paper. The first scenario is called 
“Internet access” and it is shown in Figure 3. A Mobile Host is 
connected to an “Anchor Node” via different access networks and it 
has to choose the “best” access network over time. If a given access 
network is used and the connectivity towards the Anchor Node 
through such access network fails, the active flows should be 
immediately handed over another access network. If the failure 
happens on any node or link behind the radio access point in the 
path toward the Anchor Node, it is undetectable using the radio link 
monitoring. The only option is to perform a continuous monitoring 
at IP level.  
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Figure 3. Internet Access scenario 

In the second scenario (Figure 4), a set of devices, like for example 
Networked Robot Systems (NRS) [6] which are typically composed 
by a set of UGV/UAV (Unmanned Ground/Aerial Vehicle) or the 
devices of a WSN (Wireless Sensor Network) use multiple 
heterogeneous interfaces to communicate. We will refer to these 
devices as “Mobile Hosts” to keep the same notation of the previous 
scenario. Each Mobile Host could use up to three independent WiFi 
interfaces, a WiMax interface, two or three 3G interfaces of 
different operators, a VHF transceiver. The WiFi networks can 
operate in mobile ad-hoc mode with routing protocols like OLSR 
(Optimized Link State Routing Protocol) [11]. In this scenario the 
UPMT is used (i) to hide the plethora of underlying communication 
interfaces to the applications running on the devices, (ii) to improve 
the efficiency of the communication resource usage by forwarding 
application packets taking into account theirs urgency and 
criticality. The Mobile Hosts will only see a virtual interface called 
UPMT0 (we are using the Linux operating system) with a statically 
configured IP address. This IP address will be used by the devices 
to communicate each other, irrespective of the IP addresses that will 
be used on the physical interfaces. The multiple tunnels will be used 
to exploit diversity: if a Mobile Host has two active interfaces and 
its correspondent Mobile Host has also two active interfaces, four 
tunnels could potentially be established (see Figure 4).  
 
We assume that ad-hoc routing protocols are used in the wireless 
mobile networks. In particular if the Mobile Hosts have multiple 
WiFi interfaces, different WiFi channels can be used for creating 
multiple (up to three) parallel mobile ad-hoc networks. This will 
create redundancy and different options to send packets from one 
Mobile Host to another. The UPMT module will hide this 
redundancy to the applications running in the Mobile Hosts. The 
applications will only see one interface and one static IP address 
despite a continuous change in the underlying wireless networks 
connections. The NRS Mobile Hosts operate on a “Virtual Mobile 
Network” that is dynamically mapped over multiple Physical 
Mobile Networks. 
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Figure 4. Networked Robot System (NRS) scenario 

In both scenarios, there is the need to monitor which tunnels provide 
connectivity between each couple of Mobile Hosts and what is the 
performance (delay and loss rate) of the connected tunnels. The 
UMPT solution allows for the detection of a sudden loss of 
connectivity or a sharp decrease in performance on a connected 
tunnel improving the overall system reactivity to external event, a 
key properties for distributed real-time systems such as the NRS . 
 
In general, such monitoring and measurement can be done using an 
active approach (i.e. sending probe packets) or with a passive 
approach (i.e. trying to infer connectivity status and tunnel 
performance from the observation of existing traffic). In principle, 
the passive approach is preferable because it does not introduce 
additional traffic into the network. Typically, it is not feasible to 
only rely on passive measurements, because measurements and 
monitoring are needed also in absence of traffic. Therefore the 
choice is between using active measurements only (simpler but less 
efficient in terms of network and CPU load) or a combination of 
active and passive measurements (more complex but more 
efficient). 
 
In this paper we discuss the mechanisms to perform connectivity 
check and performance measurements considering also the practical 
implementation of these mechanisms in the UPMT solution. In 
particular we focus on the CPU processing load that is imposed by 
these procedures on Mobile Hosts and on mobility management 
nodes where present.  

4. DESIGN OF THE PERFORMANCE 
MEASUREMENTS PROCEDURES 
We refer to the procedure that monitors the connectivity over a 
tunnel and evaluates the network performance as the “Keep alive” 
procedure. Let us first describe this procedure in the Internet access 
scenario. The procedure is periodically executed by the Mobile Host 
which sends a “probe” packet towards the Anchor Node for each 
active tunnel. The Anchor Node sends back a “probe reply” packet. 
 
In the Internet access scenario this procedure can also serve the 
purpose of maintaining the tunnel connections active through NAT 
(Network Address Translation) boxes in the path between the 
Mobile Host and the Anchor Node. 
 
The “Keep alive” procedure is designed to perform at the same time 
a connectivity check and an evaluation of network performance 
parameters like Round Trip Time (RTT) and loss rate. Our design 

goal for this procedure is to keep it simple and to minimize the 
amount of state information to be maintained by the Mobile Host 
and by the Anchor Node. 
 
The Mobile Host numbers the probe packets with a sequence 
number and adds a timestamp when sending the packet. The 
sequence number is per tunnel, therefore a state variable is needed 
for each tunnel. The Anchor Node will copy this information 
(sequence number and client timestamp) in the probe reply packet 
and will add its own timestamp. In this way, the Mobile Host can 
evaluate the RTT delay from the received probe reply packet 
without keeping a state information. This “per packet” RTT 
information can be accumulated using an EWMA (Exponentially 
Weighted Moving Average) so that a single state variable per tunnel 
can represent the RTT performance of the tunnel. It is also possible 
to use two different EWMA state variables using different 
smoothing factors in order to have the information at two different 
time scales (for example a shorter time scale in the order of few 
seconds and a relatively longer time scale in the order of few tens of 
seconds).  
 
The details for the evaluation of the RTT EWMA are as follows. 
The definition for the EWMA Sk of a variable x available at regular 
time intervals {tk} with period T (tk = k·T) is:  

ܵ ൌ · ߙ  ௧ݔ   ሺ1 െ ሻߙ   ·  ܵିଵ
ܵ ൌ ݔ

 

where Sk is the EWMA of x at time tk = k·T, and α (0< α <1) is the 
“smoothing factor”. A higher α implies a higher weight of more 
recent observations of x. We extend this definition for the general 
case in which the values of the variable x are available at non 
regular intervals. Let {tk} be the sequence of time instants at which 
an observation xtk is available. Let Δk = tk - tk-1. Given a reference 
time interval T, we can define the EWMA as follows:  

ܵ ൌ ቂ1 െ ሺ1 െ ሻߙ
∆ೖ

்ൗ ቃ · ௧ݔ    ሺ1 െ ሻߙ
∆ೖ
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The smoothing factor now depends on the time interval between 
two different observations. If Δk = T the smoothing factor is exactly 
α, like in the simpler case.  
 
It is interesting to observe that the RTT is a “bidirectional” delay 
measurement, as it takes into account the transit delay in the tunnel 
in both directions. In the described solution, no state information is 
needed on the server, only a state variable is used per tunnel in the 
client in order to accumulate the EWMA of the RTT. Measuring the 
One Way Delay (OWD) would require clock synchronization 
between the Mobile Host and the Anchor Node. 
 
Let us consider now the estimation of loss rate. We describe a 
simple procedure that can measure the “Round Trip” loss rate lRT, 
i.e. the probability that a packet is dropped when travelling from the 
Mobile Host to the Anchor Node and then back from the Anchor 
Node to the Mobile host. lRT can be expressed in function of the 
uplink loss rate lup (from Mobile Host to Anchor Node) and of the 
downlink loss rate ldown as follows: 

lRT = lup + ldown – (lup*ldown)  
When lup and ldown are small, lRT lup + ldown 
 
Obviously, knowing lRT is suboptimal in case one needs a separate 
estimation of lup and ldown but there is a great saving in the 
complexity of the procedure and in the state information to be 
maintained.   
 



The Mobile Host evaluates the Round Trip loss rate every K probes, 
i.e. over a time interval equal to K·TKA where TKA is the configured 
interval for the Keep Alive procedure. For each tunnel, the Mobile 
Host will simply count the number of probe replies received in the 
in the time interval using a state variable called ReceivedProbes, 
while OutSeqNum is the state variable counting the number of sent 
probes. The following pseudo code describes the algorithm 
performed when sending out a probe and receiving a probe reply.  
 
When sending out a probe 
OutSeqNum = OutSeqNum + 1 
If OutSeqNum mod K = 0 { 
   LossRate = max [(K-ReceivedProbes)/K , 0] 
   ReceivedProbes = min [ ReceivedProbes – K , 0] 
} 

 
When receiving a probe reply 
ReceivedProbes = ReceivedProbes +1  

 
Note how the ReceivedProbe state variable is reset when evaluating 
the loss rate every K probe intervals. Due to the RTT delay, a probe 
reply could not be received in time, in this case the algorithm will 
measure a loss event over the observation period. If the RTT 
remains constant, in the next period the number of probe and probe 
reply will match and no loss will be detected. If the RTT decreases, 
one can receive a number of replies larger than K in an observation 
interval. In this case the excess probe replies are accounted for in 
the next observation period. 
 
The Round Trip Loss rate that is evaluated on each period can be 
accumulated using an EWMA like the RTT. In this case another 
state variable will be added per each tunnel. 
 
Overall, the state variables that need to be maintained in the Mobile 
Host per single tunnel to be monitored are: 
(OutSeqNum, ReceivedProbe, RTT-EWMA, lRT-EWMA). 
 
No state information per tunnel (related to the performance 
monitoring) needs to be maintained in the Anchor Node. Therefore 
the solution is scalable with the number of Mobile Hosts that need 
to be handled by an Anchor Node, as far as the state information is 
concerned. 
 
Let us now move from the “Internet access” scenario to the  
“Networked Robot System” scenario. In this case there is no notion 
of Mobile Host/Anchor Node, but the two Mobile Hosts are “peers” 
each other. Both Mobile Hosts can be interested to measure the 
performance of the tunnels in order to decide how to send the flow 
directed toward the other Mobile Host. One possibility is that both 
Mobile Hosts independently perform the Keep Alive procedure, 
taking their own measurements. This will duplicate the probe traffic 
load on the network. A smarter solution is that only one of the two 
Mobile Hosts will perform the Keep alive procedure and will 
continuously report the results to the other side. Given that for each 
tunnel one of the two ends plays the role of the client (the one that 
has sent out the Tunnel Setup Request) and the other end plays the 
server role, the former Mobile Host can take the responsibility to 
send the probe packets. Two main modifications are needed in this 
case: i) the probe packets will also carry the evaluated RTT-EWMA 
and lRT-EWMA so that these values will be communicated to the 
Mobile Host playing the server role; ii) the Mobile Host playing the 
server role needs to implement a timer for each tunnel that will be 
triggered when no probe requests arrive for a certain interval, 
meaning that the tunnel is under a critical failure.  

5. USER SPACE IMPLEMENTATION 
The Keep-alive procedure described in the previous section have 
been first designed and implemented at the user level. The UPMT 
software is composed of a kernel module dealing with encapsulation 
of packets into tunnels and of a Java application that offers a GUI to 
the user and manages the signaling messages between the UPMT 
remote entities. The signaling is based on the SIP protocol and 
implemented using the Open Source MjSip stack [10]. Therefore we 
relied on this software infrastructure and implemented the Keep-
alive probe packets using SIP MESSAGE methods [11]. The SIP 
MESSAGE is a SIP request message that does not create a session, 
but can be used to transfer any information. The receiving entity 
will reply with a SIP 200 OK message according to the SIP protocol 
rules. The SIP stack implementation will manage multiple 
retransmission of the request if no reply comes in within a timeout. 
We enhanced the SIP stack adding a new SIP header to the 
messages, called Timestamp. When performing the Keep-alive 
procedure, the Mobile Host will send a SIP MESSAGE toward the 
correspondent UPMT node, adding the Timestamp header (time is 
expressed in millisecond since Jan 1 1970). The initial part of the 
SIP MESSAGE is reported in Figure 5, showing the new 
Timestamp header.  
 
MESSAGE sip:160.80.103.66:5060 SIP/2.0 
Via: SIP/2.0/UDP 5.6.7.8:40000;rport;branch=z9hG4b 
K809f1ea0 
Max-Forwards: 70 
To: <sip:160.80.103.66:5060> 
From: <sip:1.2.3.30>;tag=251807832719 
Call-ID: 314335872631@5.6.7.8 
CSeq: 1 MESSAGE 
Expires: 3600 
User-Agent: mjsip 1.7 
Timestamp: 1339598185957 

Figure 5. SIP MESSAGE for the Keep alive probe 

Implementing the above solution was relatively easy as we reused 
the available code structure of UPMT. Unfortunately, when we 
performed scalability tests (as reported in section 7) we found out 
that the solution was using a relatively high amount of CPU power. 
We could have switched to a simpler solution in application space, 
taking out the overhead added by using the SIP protocol. Taking 
also into account the latency requirements typical of NRS we 
adopted a kernel space implementation. In fact, part of the load is 
due to the continuous switching from kernel to the application when 
sending and receiving packets. 

6. KERNEL SPACE IMPLEMENTATION 
We designed and implemented the Keep alive procedure with all the 
performance measurements done within the UPMT Linux kernel 
module. Linux kernel timers are used to schedule the sending of 
probe packets for each active tunnel. It is possible to 
activate/deactivate the Keep-alive procedure for each tunnel by 
sending configuration commands from a user space application. 
 
The probe packet is a UDP packet incapsulated within the tunnel. 
The external IP destination address and UDP destination port are 
the ones of the tunnel. The internal IP destination address is the 
same of the tunnel, the UDP source and destination ports are used to 
distinguish a Keep alive probe packet. 
 
When originating a probe packet, the kernel module incapsulates 
the inner probe packet into a UDP packet and sends it. When 



receiving a probe packet, the kernel module decapsulates the packet 
like any other packet received on the tunnel. Then a matching with 
UDP destination and source ports is performed to recognize the 
probe packets. If the packet is recognized as a probe, it will not be 
forwarded to a UDP socket to be delivered to user space but it will 
be dropped in the kernel. In this case the kernel module will 
generate the probe reply packet (copying the timestamp from the 
received packet) and will encapsulate it into a UDP packet to be 
sent back to the sender of the probe. The probe (and probe reply) 
packet format is shown in Figure 6. 
 

IP UDP IP UDP or TCP

Tunnel header
IP src: real_iface_addr
IP dest: AN_addr

Original header
IP src: virtual iface
IP dst: CH_addr

Kernel Keep‐Alive Payload

Packet ID
4 bytes

Tunnel ID
4 bytes

Timestamp
4 bytes

 

Figure 6. Probe packet format in the kernel implementation 

As a possible evolution, we plan to define a UPMT management 
packet that can be sent instead of IPv4 and IPv6 packets within a 
tunnel. In this case we will not need the internal IP and UDP 
headers, but we will send such generic UPMT management packet 
as payload of the IP/UDP external packet. Both generation and 
“matching” of the probe/probe request packets will be much faster 
in this case. 
 

7. PROCESSING PERFORMANCE 
There is clearly an advantage in setting the Keep alive rate at the 
highest possible value: it allows to have a more precise estimation 
of RTT and of Round Trip loss rate and to react in a faster way to 
changing network conditions. Unfortunately, there are two factors 
that limit the potential increase or the Keep alive rate: the CPU load 
(on Mobile Hosts and intermediate mobility management nodes, if 
present) and the network load. Of the two factors (CPU load and 
network load) we believe that the most critical one is the CPU load. 
As a thumb rule, a Keep alive rate in the order of 2-3 Keep alive per 
second could be enough to fulfill the requirements of a precise and 
timely estimation of RTT and loss. From the network load 
perspective this would correspond to few hundred bits/second, i.e. 
one order of magnitude less than a VoIP call. On the other hand we 
will show hereafter that the CPU load may become critical even at 
these relatively low rates if an inefficient implementation is used. 
 
In both the Internet access and NRS scenarios, the CPU load has an 
impact on the battery usage for the Mobile Host. Even if the CPU 
load due to the monitoring of few tunnels would be low in absolute 
terms, a reduction of this load has a positive impact on battery 
duration as the performance monitoring procedure needs to be 
continuously executed when the Mobile Host is connected. In the 
Internet access scenario, the CPU processing due to the monitoring 
procedures can even be the bottleneck for the mobility management 
node (i.e. the Anchor Node).  
 
We set up our testbed with virtual machines running on VirtualBox 
[12] in a PC with a Intel® Core™2 Quad CPU Q8400 processor 
running at 2.66Ghz (4GB RAM). We focused on the Internet access 
scenario and considered the CPU utilization in the Anchor Node. 
One virtual machine was running an Anchor node, while the Mobile 
Hosts were running in different virtual machines. We executed the 
Keep alive procedure at different rates both for the user space and 
for the kernel space implementation. We measured the CPU 
utilization using the sar command, a part of the sysstat package. 

 
Figure 7 shows the results for the CPU usage vs. the overall Keep 
alive rate received by the server with the user space implementation. 
The experiments were repeated with a different number of Mobile 
Hosts (1, 2 and 3) for the same aggregated Keep alive rate, showing 
a small dependency on the number of clients (i.e. receiving a total of 
3 Keep alive requests per second from 3 Mobile Hosts is slightly 
heavier that receiving 3 requests per second from a single Mobile 
Host). The results show that the CPU utilization grows linearly with 
the sending rate of the probes. From the results we can estimate the 
maximum Keep alive rate that an access node can sustain within a 
given CPU utilization threshold (e.g. 50%). This maximum Keep 
alive rate is in the order of 100/s. If we assume 2 Keep alive per 
second per tunnel and 2 tunnels per client the maximum number of 
clients for the Anchor Node is in the order of 25. 
 

 

Figure 7. CPU usage for the user space implementation 

Clearly this result is dependent on the specific hardware that we 
have used for the experiment, but what is of general interest is the 
ratio between the supported number of flows in the user space 
solution and the one in the kernel space solution. Figure 8 reports 
the CPU usage versus the Keep alive rate in the server for the kernel 
space implementation. We did not consider more than one client 
making the request, because the procedure on the server side is now 
completely independent of the number of clients as each probe 
packet is handled in a stateless way (the dependence from the 
number of clients in the user space implementation was due to the 
management of SIP protocol for different Mobile Hosts). Also in 
this case the load on the server grows linearly with the Keep alive 
rate, but the sustainable rate is much higher. If we consider the same 
maximum CPU utilization threshold (50%) we can evaluate that 
50000 Keep alive per second can be handled by the Anchor Node. 
By making the same assumptions considered above, this would turn 
in 12500 Mobile Hosts that can be supported. The gain that we have 
obtained with respect to the user level implementation is in the 
order of 500 times.  

 

Figure 8. CPU usage for the kernel space implementation 



As we mentioned above, this is an important indication also for the 
CPU processing load in the Mobile Host side, which we have not 
explicitly measured. We can expect that such a large reduction of 
the processing load will have a benefic impact on the duration of the 
battery. 

8. PASSIVE MEASUREMENTS 
The tunnel performance measurement procedures proposed in 
section 4 and implemented as described in sections 5 and 6 are only 
based on the active measurement approach. Passive measurements, 
i.e. the capacity to exploit the existing traffic to gather performance 
information could improve the efficiency of the solution. It could 
reduce CPU load and network load and/or increase the accuracy and 
timeliness of performance monitoring for the same CPU and 
network load. Our idea for taking passive measurements is to add 
timestamp and packet counter information to packets in transit on a 
tunnel. As our UPMT tunneling modules operate in kernel space we 
can perform this operation with a minimal CPU overhead while 
encapsulating and decapsulating the packets in the tunnels. As 
anticipated in section 6 we plan to define a UPMT packet format 
that will be transferred within the tunnel (i.e. inside the UDP 
payload of the outer packet). We can easily differentiate between i) 
plain IPv4 and IPv6 packets, ii) UMPT active probe packets that 
only carry the Keep-alive Payload as described in section 6; iii) 
UPMT passive probe packets that carry both information related to 
performance measurement procedures and an IPv4/IPv6 packet. 
Hereafter we present the high level design of the passive 
measurements procedures. Detailed design and implementation is 
ongoing. The passive probe packets use relatively “short” IPv4 and 
IPv6 packets so that adding the performance measurement related 
data will not exceed the Maximum Transmission Unit of crossed 
links. The combined active/passive probe mechanism sends active 
probe packets only when normal traffic is not flowing on a tunnel 
(i.e. it reduces the sending rate of the active probes considering the 
rate of passive probes). On each transmitting end of a tunnel, the 
total number of transmitted packets is counted. This information is 
added in the probe packets, allowing to measure tunnel loss rate 
with much higher accuracy and timeliness, including the evaluation 
of the “unidirectional” loss rate in the two directions.  

9. CONCLUSIONS 
In this paper we have presented the definition and implementation 
of performance monitoring procedures to drive interface selection in 
heterogeneous network. We have proposed a solution to estimate 
RTT and Round Trip loss rate with minimal amount of state 
information and very simple processing. We have implemented the 
solution in user space and in kernel space using the Linux OS. We 
measured the CPU processing load of both solutions and showed 
that the kernel space solution is dramatically more efficient. If we 
consider a mobility management node handling thousands of 
Mobile Hosts, a kernel space implementation seems to be the only 

scalable solution. As for the implementation in a Mobile host that 
should handle a limited number of tunnels, the dramatic reduction in 
processing load helps increasing the battery duration. 
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