
Efficient Measurements of IP Level Performance to Drive
Interface Selection in Heterogeneous Wireless Networks

Fabio Patriarca
Dip. Ingegneria Elettronica

Università di Roma “Tor Vergata”
Roma, Italy

fabio.patriarca.2@uniroma2.it

Stefano Salsano
Dip. Ingegneria Elettronica

Università di Roma “Tor Vergata”
Roma, Italy

stefano.salsano@uniroma2.it

Francesco Fedi
SSI – Sistemi Software Integrati

Taranto, Italy

francesco.fedi@ssi.it

ABSTRACT
Several solutions have been proposed for mobility management in
IP based heterogeneous networks, working at different protocol
levels, from layer 2 up to application level. In order to take the
handover decision, many solutions require to monitor the
performance of the heterogeneous networks to which the mobile
device is connected. Measuring the physical or link level
performance on a given wireless access networks does not provide a
reliable indication of the perceived level of service when the
application flows are handed over that wireless access network. It is
therefore needed to take measurements at IP level, on the
(bidirectional) path from the Mobile Host to an intermediate node
handling the mobility or even to the remote Correspondent Host.
Gathering such measurements in a timely, effective and efficient
way is not an easy task. In this paper we show that a naïve approach
using application level active measurements is highly CPU
intensive. This would severely impact battery usage in Mobile
Hosts and does not scale if intermediate mobility management
nodes are involved. On the contrary we show that an
implementation of active measurements in the Linux kernel has a
very low CPU usage. In this approach an efficient use of batteries in
Mobile Host can be achieved and intermediate mobility
management nodes can scale up to monitoring thousands of flows
towards Mobile Hosts. Finally we discuss how combining passive
and active measurements could further improve the solution.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design

Keywords
Mobility management, measurement based, vertical handover,
performance evaluation.

1. INTRODUCTION
Several solutions have been proposed in the last 15 years for
mobility management in IP based heterogeneous networks, working
at different protocol levels [1], from layer 2 up to application level.
Nevertheless, mobility management is still an open issue for
research and standardization and work is still actively ongoing in
this area.

We consider a scenario in which the terminals have different
wireless interfaces (e.g. WiFi, 3G/4G, WiMax). We assume that
multiple interfaces can be active at the same time, therefore a
decision must be taken on which interface will be selected at a given
time (handover decision). A review of the handover decision
process can be found in [2], the decision process can be terminal
based or network based and several factors can be taken into
account, from received signal strength on the radio interface, to cost
of connectivity, desired QoS, battery usage and so on. Among these,
it is relatively easy to evaluate the radio link performance on a given
wireless access networks. Unfortunately, this does not provide a
reliable indication of the level of service provided to the Mobile
Host when its application flows are handed over that wireless access
network. In order to achieve such indication, measurements should
be taken at IP level on the path from the Mobile Host up to the
intermediate node that handles the mobility or up to the
Correspondent Host if the mobility is handled end-to-end.

Gathering such measurements in a timely, effective and efficient
way is not an easy task. We will focus on a mobility management
solution called UPMT (Universal Per-application Mobility
Management using Tunnels) [3], but this issue is common to all
mobility management solutions that combine heterogeneous
networks using IP (e.g. Mobile IP [3], HIP – Host Identity Protocol
[5]). Therefore our findings are of general value in this respect.

The UPMT solution (introduced in section 2) is based on tunneling
over UDP and can be applied to different scenarios. In particular in
this paper we will consider two scenarios: i) Internet access
provided to a Mobile Host over heterogeneous access networks; ii)
Networked Robot System, i.e. a machine-to-machine
communication scenario using heterogeneous wireless networks.
These scenarios will be described in section 3. Section 4 will
describe the tunnel performance measurement mechanisms,
designed in order to minimize the complexity and the state
information to be maintained. Sections 5 and 6 will respectively
deal with the implementation of the designed mechanisms in user
space and in kernel space under Linux OS. The CPU processing
performance of the two implementations are compared in section 7.
Section 8 provides some hints for the design of a mixed active and
passive measurement approach and finally section 9 reports some
conclusions.

2. UPMT BASICS
UPMT is a solution for mobility management over heterogeneous
networks based on IP in UDP tunneling. In this section we shortly
recall its main features, further details in [3][7][8]. A Mobile Host
establishes IP in UDP tunnels over its active network interfaces with
its “correspondent” UPMT node. This correspondent UPMT node

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
PE-WASUN’12, October 21–22, 2012, Paphos, Cyprus.
Copyright 2012 ACM 978-1-4503-1621-7/12/10...$15.00.

can be another Mobile Host (see Figure 4), an “Anchor node” (see
Figure 3) or a correspondent UPMT aware Fixed Host. The tunnels
are used to exchange the IP packets according to the format shown
in Figure 1. The “external” packet has IP source and destination
addresses corresponding to the IP addresses of the interfaces of the
Mobile Host and of the correspondent UPMT node. The internal
encapsulated packet can keep the same IP source and destination
addresses irrespective of the interfaces used for sending and
receiving the packet. This allows seamless handovers of flows
among multiple tunnels setup between the Mobile Host and the
correspondent UPMT node.

IP UDP IP UDP or TCP application

Tunnel header
IP src: real_iface_addr
IP dest: AN_addr

Original header
IP src: virtual iface
IP dst: CH_addr

Figure 1. UPMT packet format

In our Linux implementation of UPMT, the UPMT kernel module
provides a virtual interface called UPMT0 as a regular networking
device, as shown in Figure 2. A “virtual” IP address can be assigned
to it and the legacy applications will see a standard networking
device. The UPMT encapsulation and mobility management is
completely transparent for the applications that can use plain
sockets to communicate.

Virtual
interface

eth0 wifi0 pp0
Physical
interfaces

IP yIP x IP z

Physical IP
addresses

upmt0

Virtual IP
address

Figure 2. UPMT virtual interface vs. physical interfaces

3. SCENARIOS OF INTEREST
The UPMT solution can be applied to different scenarios, we will
consider two of them in this paper. The first scenario is called
“Internet access” and it is shown in Figure 3. A Mobile Host is
connected to an “Anchor Node” via different access networks and it
has to choose the “best” access network over time. If a given access
network is used and the connectivity towards the Anchor Node
through such access network fails, the active flows should be
immediately handed over another access network. If the failure
happens on any node or link behind the radio access point in the
path toward the Anchor Node, it is undetectable using the radio link
monitoring. The only option is to perform a continuous monitoring
at IP level.

Mobile Host
(MH)

Correspondent
Host (CH)

Anchor Node
(AN)

NAT 1

NAT 2

Anchor
NAT

IP/UDP
Tunnel 2

IP/UDP
Tunnel 1

Figure 3. Internet Access scenario

In the second scenario (Figure 4), a set of devices, like for example
Networked Robot Systems (NRS) [6] which are typically composed
by a set of UGV/UAV (Unmanned Ground/Aerial Vehicle) or the
devices of a WSN (Wireless Sensor Network) use multiple
heterogeneous interfaces to communicate. We will refer to these
devices as “Mobile Hosts” to keep the same notation of the previous
scenario. Each Mobile Host could use up to three independent WiFi
interfaces, a WiMax interface, two or three 3G interfaces of
different operators, a VHF transceiver. The WiFi networks can
operate in mobile ad-hoc mode with routing protocols like OLSR
(Optimized Link State Routing Protocol) [11]. In this scenario the
UPMT is used (i) to hide the plethora of underlying communication
interfaces to the applications running on the devices, (ii) to improve
the efficiency of the communication resource usage by forwarding
application packets taking into account theirs urgency and
criticality. The Mobile Hosts will only see a virtual interface called
UPMT0 (we are using the Linux operating system) with a statically
configured IP address. This IP address will be used by the devices
to communicate each other, irrespective of the IP addresses that will
be used on the physical interfaces. The multiple tunnels will be used
to exploit diversity: if a Mobile Host has two active interfaces and
its correspondent Mobile Host has also two active interfaces, four
tunnels could potentially be established (see Figure 4).

We assume that ad-hoc routing protocols are used in the wireless
mobile networks. In particular if the Mobile Hosts have multiple
WiFi interfaces, different WiFi channels can be used for creating
multiple (up to three) parallel mobile ad-hoc networks. This will
create redundancy and different options to send packets from one
Mobile Host to another. The UPMT module will hide this
redundancy to the applications running in the Mobile Hosts. The
applications will only see one interface and one static IP address
despite a continuous change in the underlying wireless networks
connections. The NRS Mobile Hosts operate on a “Virtual Mobile
Network” that is dynamically mapped over multiple Physical
Mobile Networks.

Mobile Host
(MH)

Net X

IP/UDP
Tunnels

Mobile Host
(MH)

Net Y

Net X

Net Y

Figure 4. Networked Robot System (NRS) scenario

In both scenarios, there is the need to monitor which tunnels provide
connectivity between each couple of Mobile Hosts and what is the
performance (delay and loss rate) of the connected tunnels. The
UMPT solution allows for the detection of a sudden loss of
connectivity or a sharp decrease in performance on a connected
tunnel improving the overall system reactivity to external event, a
key properties for distributed real-time systems such as the NRS .

In general, such monitoring and measurement can be done using an
active approach (i.e. sending probe packets) or with a passive
approach (i.e. trying to infer connectivity status and tunnel
performance from the observation of existing traffic). In principle,
the passive approach is preferable because it does not introduce
additional traffic into the network. Typically, it is not feasible to
only rely on passive measurements, because measurements and
monitoring are needed also in absence of traffic. Therefore the
choice is between using active measurements only (simpler but less
efficient in terms of network and CPU load) or a combination of
active and passive measurements (more complex but more
efficient).

In this paper we discuss the mechanisms to perform connectivity
check and performance measurements considering also the practical
implementation of these mechanisms in the UPMT solution. In
particular we focus on the CPU processing load that is imposed by
these procedures on Mobile Hosts and on mobility management
nodes where present.

4. DESIGN OF THE PERFORMANCE
MEASUREMENTS PROCEDURES
We refer to the procedure that monitors the connectivity over a
tunnel and evaluates the network performance as the “Keep alive”
procedure. Let us first describe this procedure in the Internet access
scenario. The procedure is periodically executed by the Mobile Host
which sends a “probe” packet towards the Anchor Node for each
active tunnel. The Anchor Node sends back a “probe reply” packet.

In the Internet access scenario this procedure can also serve the
purpose of maintaining the tunnel connections active through NAT
(Network Address Translation) boxes in the path between the
Mobile Host and the Anchor Node.

The “Keep alive” procedure is designed to perform at the same time
a connectivity check and an evaluation of network performance
parameters like Round Trip Time (RTT) and loss rate. Our design

goal for this procedure is to keep it simple and to minimize the
amount of state information to be maintained by the Mobile Host
and by the Anchor Node.

The Mobile Host numbers the probe packets with a sequence
number and adds a timestamp when sending the packet. The
sequence number is per tunnel, therefore a state variable is needed
for each tunnel. The Anchor Node will copy this information
(sequence number and client timestamp) in the probe reply packet
and will add its own timestamp. In this way, the Mobile Host can
evaluate the RTT delay from the received probe reply packet
without keeping a state information. This “per packet” RTT
information can be accumulated using an EWMA (Exponentially
Weighted Moving Average) so that a single state variable per tunnel
can represent the RTT performance of the tunnel. It is also possible
to use two different EWMA state variables using different
smoothing factors in order to have the information at two different
time scales (for example a shorter time scale in the order of few
seconds and a relatively longer time scale in the order of few tens of
seconds).

The details for the evaluation of the RTT EWMA are as follows.
The definition for the EWMA Sk of a variable x available at regular
time intervals {tk} with period T (tk = k·T) is:

ܵ ൌ · ߙ ௧ݔ ሺ1 െ ሻߙ · ܵିଵ
ܵ ൌ ݔ

where Sk is the EWMA of x at time tk = k·T, and α (0< α <1) is the
“smoothing factor”. A higher α implies a higher weight of more
recent observations of x. We extend this definition for the general
case in which the values of the variable x are available at non
regular intervals. Let {tk} be the sequence of time instants at which
an observation xtk is available. Let Δk = tk - tk-1. Given a reference
time interval T, we can define the EWMA as follows:

ܵ ൌ ቂ1 െ ሺ1 െ ሻߙ
∆ೖ

்ൗ ቃ · ௧ݔ ሺ1 െ ሻߙ
∆ೖ

்ൗ · ܵିଵ

ܵ ൌ ݔ

The smoothing factor now depends on the time interval between
two different observations. If Δk = T the smoothing factor is exactly
α, like in the simpler case.

It is interesting to observe that the RTT is a “bidirectional” delay
measurement, as it takes into account the transit delay in the tunnel
in both directions. In the described solution, no state information is
needed on the server, only a state variable is used per tunnel in the
client in order to accumulate the EWMA of the RTT. Measuring the
One Way Delay (OWD) would require clock synchronization
between the Mobile Host and the Anchor Node.

Let us consider now the estimation of loss rate. We describe a
simple procedure that can measure the “Round Trip” loss rate lRT,
i.e. the probability that a packet is dropped when travelling from the
Mobile Host to the Anchor Node and then back from the Anchor
Node to the Mobile host. lRT can be expressed in function of the
uplink loss rate lup (from Mobile Host to Anchor Node) and of the
downlink loss rate ldown as follows:

lRT = lup + ldown – (lup*ldown)
When lup and ldown are small, lRT lup + ldown

Obviously, knowing lRT is suboptimal in case one needs a separate
estimation of lup and ldown but there is a great saving in the
complexity of the procedure and in the state information to be
maintained.

The Mobile Host evaluates the Round Trip loss rate every K probes,
i.e. over a time interval equal to K·TKA where TKA is the configured
interval for the Keep Alive procedure. For each tunnel, the Mobile
Host will simply count the number of probe replies received in the
in the time interval using a state variable called ReceivedProbes,
while OutSeqNum is the state variable counting the number of sent
probes. The following pseudo code describes the algorithm
performed when sending out a probe and receiving a probe reply.

When sending out a probe
OutSeqNum = OutSeqNum + 1
If OutSeqNum mod K = 0 {
 LossRate = max [(K-ReceivedProbes)/K , 0]
 ReceivedProbes = min [ReceivedProbes – K , 0]
}

When receiving a probe reply
ReceivedProbes = ReceivedProbes +1

Note how the ReceivedProbe state variable is reset when evaluating
the loss rate every K probe intervals. Due to the RTT delay, a probe
reply could not be received in time, in this case the algorithm will
measure a loss event over the observation period. If the RTT
remains constant, in the next period the number of probe and probe
reply will match and no loss will be detected. If the RTT decreases,
one can receive a number of replies larger than K in an observation
interval. In this case the excess probe replies are accounted for in
the next observation period.

The Round Trip Loss rate that is evaluated on each period can be
accumulated using an EWMA like the RTT. In this case another
state variable will be added per each tunnel.

Overall, the state variables that need to be maintained in the Mobile
Host per single tunnel to be monitored are:
(OutSeqNum, ReceivedProbe, RTT-EWMA, lRT-EWMA).

No state information per tunnel (related to the performance
monitoring) needs to be maintained in the Anchor Node. Therefore
the solution is scalable with the number of Mobile Hosts that need
to be handled by an Anchor Node, as far as the state information is
concerned.

Let us now move from the “Internet access” scenario to the
“Networked Robot System” scenario. In this case there is no notion
of Mobile Host/Anchor Node, but the two Mobile Hosts are “peers”
each other. Both Mobile Hosts can be interested to measure the
performance of the tunnels in order to decide how to send the flow
directed toward the other Mobile Host. One possibility is that both
Mobile Hosts independently perform the Keep Alive procedure,
taking their own measurements. This will duplicate the probe traffic
load on the network. A smarter solution is that only one of the two
Mobile Hosts will perform the Keep alive procedure and will
continuously report the results to the other side. Given that for each
tunnel one of the two ends plays the role of the client (the one that
has sent out the Tunnel Setup Request) and the other end plays the
server role, the former Mobile Host can take the responsibility to
send the probe packets. Two main modifications are needed in this
case: i) the probe packets will also carry the evaluated RTT-EWMA
and lRT-EWMA so that these values will be communicated to the
Mobile Host playing the server role; ii) the Mobile Host playing the
server role needs to implement a timer for each tunnel that will be
triggered when no probe requests arrive for a certain interval,
meaning that the tunnel is under a critical failure.

5. USER SPACE IMPLEMENTATION
The Keep-alive procedure described in the previous section have
been first designed and implemented at the user level. The UPMT
software is composed of a kernel module dealing with encapsulation
of packets into tunnels and of a Java application that offers a GUI to
the user and manages the signaling messages between the UPMT
remote entities. The signaling is based on the SIP protocol and
implemented using the Open Source MjSip stack [10]. Therefore we
relied on this software infrastructure and implemented the Keep-
alive probe packets using SIP MESSAGE methods [11]. The SIP
MESSAGE is a SIP request message that does not create a session,
but can be used to transfer any information. The receiving entity
will reply with a SIP 200 OK message according to the SIP protocol
rules. The SIP stack implementation will manage multiple
retransmission of the request if no reply comes in within a timeout.
We enhanced the SIP stack adding a new SIP header to the
messages, called Timestamp. When performing the Keep-alive
procedure, the Mobile Host will send a SIP MESSAGE toward the
correspondent UPMT node, adding the Timestamp header (time is
expressed in millisecond since Jan 1 1970). The initial part of the
SIP MESSAGE is reported in Figure 5, showing the new
Timestamp header.

MESSAGE sip:160.80.103.66:5060 SIP/2.0
Via: SIP/2.0/UDP 5.6.7.8:40000;rport;branch=z9hG4b
K809f1ea0
Max-Forwards: 70
To: <sip:160.80.103.66:5060>
From: <sip:1.2.3.30>;tag=251807832719
Call-ID: 314335872631@5.6.7.8
CSeq: 1 MESSAGE
Expires: 3600
User-Agent: mjsip 1.7
Timestamp: 1339598185957

Figure 5. SIP MESSAGE for the Keep alive probe

Implementing the above solution was relatively easy as we reused
the available code structure of UPMT. Unfortunately, when we
performed scalability tests (as reported in section 7) we found out
that the solution was using a relatively high amount of CPU power.
We could have switched to a simpler solution in application space,
taking out the overhead added by using the SIP protocol. Taking
also into account the latency requirements typical of NRS we
adopted a kernel space implementation. In fact, part of the load is
due to the continuous switching from kernel to the application when
sending and receiving packets.

6. KERNEL SPACE IMPLEMENTATION
We designed and implemented the Keep alive procedure with all the
performance measurements done within the UPMT Linux kernel
module. Linux kernel timers are used to schedule the sending of
probe packets for each active tunnel. It is possible to
activate/deactivate the Keep-alive procedure for each tunnel by
sending configuration commands from a user space application.

The probe packet is a UDP packet incapsulated within the tunnel.
The external IP destination address and UDP destination port are
the ones of the tunnel. The internal IP destination address is the
same of the tunnel, the UDP source and destination ports are used to
distinguish a Keep alive probe packet.

When originating a probe packet, the kernel module incapsulates
the inner probe packet into a UDP packet and sends it. When

receiving a probe packet, the kernel module decapsulates the packet
like any other packet received on the tunnel. Then a matching with
UDP destination and source ports is performed to recognize the
probe packets. If the packet is recognized as a probe, it will not be
forwarded to a UDP socket to be delivered to user space but it will
be dropped in the kernel. In this case the kernel module will
generate the probe reply packet (copying the timestamp from the
received packet) and will encapsulate it into a UDP packet to be
sent back to the sender of the probe. The probe (and probe reply)
packet format is shown in Figure 6.

IP UDP IP UDP or TCP

Tunnel header
IP src: real_iface_addr
IP dest: AN_addr

Original header
IP src: virtual iface
IP dst: CH_addr

Kernel Keep‐Alive Payload

Packet ID
4 bytes

Tunnel ID
4 bytes

Timestamp
4 bytes

Figure 6. Probe packet format in the kernel implementation

As a possible evolution, we plan to define a UPMT management
packet that can be sent instead of IPv4 and IPv6 packets within a
tunnel. In this case we will not need the internal IP and UDP
headers, but we will send such generic UPMT management packet
as payload of the IP/UDP external packet. Both generation and
“matching” of the probe/probe request packets will be much faster
in this case.

7. PROCESSING PERFORMANCE
There is clearly an advantage in setting the Keep alive rate at the
highest possible value: it allows to have a more precise estimation
of RTT and of Round Trip loss rate and to react in a faster way to
changing network conditions. Unfortunately, there are two factors
that limit the potential increase or the Keep alive rate: the CPU load
(on Mobile Hosts and intermediate mobility management nodes, if
present) and the network load. Of the two factors (CPU load and
network load) we believe that the most critical one is the CPU load.
As a thumb rule, a Keep alive rate in the order of 2-3 Keep alive per
second could be enough to fulfill the requirements of a precise and
timely estimation of RTT and loss. From the network load
perspective this would correspond to few hundred bits/second, i.e.
one order of magnitude less than a VoIP call. On the other hand we
will show hereafter that the CPU load may become critical even at
these relatively low rates if an inefficient implementation is used.

In both the Internet access and NRS scenarios, the CPU load has an
impact on the battery usage for the Mobile Host. Even if the CPU
load due to the monitoring of few tunnels would be low in absolute
terms, a reduction of this load has a positive impact on battery
duration as the performance monitoring procedure needs to be
continuously executed when the Mobile Host is connected. In the
Internet access scenario, the CPU processing due to the monitoring
procedures can even be the bottleneck for the mobility management
node (i.e. the Anchor Node).

We set up our testbed with virtual machines running on VirtualBox
[12] in a PC with a Intel® Core™2 Quad CPU Q8400 processor
running at 2.66Ghz (4GB RAM). We focused on the Internet access
scenario and considered the CPU utilization in the Anchor Node.
One virtual machine was running an Anchor node, while the Mobile
Hosts were running in different virtual machines. We executed the
Keep alive procedure at different rates both for the user space and
for the kernel space implementation. We measured the CPU
utilization using the sar command, a part of the sysstat package.

Figure 7 shows the results for the CPU usage vs. the overall Keep
alive rate received by the server with the user space implementation.
The experiments were repeated with a different number of Mobile
Hosts (1, 2 and 3) for the same aggregated Keep alive rate, showing
a small dependency on the number of clients (i.e. receiving a total of
3 Keep alive requests per second from 3 Mobile Hosts is slightly
heavier that receiving 3 requests per second from a single Mobile
Host). The results show that the CPU utilization grows linearly with
the sending rate of the probes. From the results we can estimate the
maximum Keep alive rate that an access node can sustain within a
given CPU utilization threshold (e.g. 50%). This maximum Keep
alive rate is in the order of 100/s. If we assume 2 Keep alive per
second per tunnel and 2 tunnels per client the maximum number of
clients for the Anchor Node is in the order of 25.

Figure 7. CPU usage for the user space implementation

Clearly this result is dependent on the specific hardware that we
have used for the experiment, but what is of general interest is the
ratio between the supported number of flows in the user space
solution and the one in the kernel space solution. Figure 8 reports
the CPU usage versus the Keep alive rate in the server for the kernel
space implementation. We did not consider more than one client
making the request, because the procedure on the server side is now
completely independent of the number of clients as each probe
packet is handled in a stateless way (the dependence from the
number of clients in the user space implementation was due to the
management of SIP protocol for different Mobile Hosts). Also in
this case the load on the server grows linearly with the Keep alive
rate, but the sustainable rate is much higher. If we consider the same
maximum CPU utilization threshold (50%) we can evaluate that
50000 Keep alive per second can be handled by the Anchor Node.
By making the same assumptions considered above, this would turn
in 12500 Mobile Hosts that can be supported. The gain that we have
obtained with respect to the user level implementation is in the
order of 500 times.

Figure 8. CPU usage for the kernel space implementation

As we mentioned above, this is an important indication also for the
CPU processing load in the Mobile Host side, which we have not
explicitly measured. We can expect that such a large reduction of
the processing load will have a benefic impact on the duration of the
battery.

8. PASSIVE MEASUREMENTS
The tunnel performance measurement procedures proposed in
section 4 and implemented as described in sections 5 and 6 are only
based on the active measurement approach. Passive measurements,
i.e. the capacity to exploit the existing traffic to gather performance
information could improve the efficiency of the solution. It could
reduce CPU load and network load and/or increase the accuracy and
timeliness of performance monitoring for the same CPU and
network load. Our idea for taking passive measurements is to add
timestamp and packet counter information to packets in transit on a
tunnel. As our UPMT tunneling modules operate in kernel space we
can perform this operation with a minimal CPU overhead while
encapsulating and decapsulating the packets in the tunnels. As
anticipated in section 6 we plan to define a UPMT packet format
that will be transferred within the tunnel (i.e. inside the UDP
payload of the outer packet). We can easily differentiate between i)
plain IPv4 and IPv6 packets, ii) UMPT active probe packets that
only carry the Keep-alive Payload as described in section 6; iii)
UPMT passive probe packets that carry both information related to
performance measurement procedures and an IPv4/IPv6 packet.
Hereafter we present the high level design of the passive
measurements procedures. Detailed design and implementation is
ongoing. The passive probe packets use relatively “short” IPv4 and
IPv6 packets so that adding the performance measurement related
data will not exceed the Maximum Transmission Unit of crossed
links. The combined active/passive probe mechanism sends active
probe packets only when normal traffic is not flowing on a tunnel
(i.e. it reduces the sending rate of the active probes considering the
rate of passive probes). On each transmitting end of a tunnel, the
total number of transmitted packets is counted. This information is
added in the probe packets, allowing to measure tunnel loss rate
with much higher accuracy and timeliness, including the evaluation
of the “unidirectional” loss rate in the two directions.

9. CONCLUSIONS
In this paper we have presented the definition and implementation
of performance monitoring procedures to drive interface selection in
heterogeneous network. We have proposed a solution to estimate
RTT and Round Trip loss rate with minimal amount of state
information and very simple processing. We have implemented the
solution in user space and in kernel space using the Linux OS. We
measured the CPU processing load of both solutions and showed
that the kernel space solution is dramatically more efficient. If we
consider a mobility management node handling thousands of
Mobile Hosts, a kernel space implementation seems to be the only

scalable solution. As for the implementation in a Mobile host that
should handle a limited number of tunnels, the dramatic reduction in
processing load helps increasing the battery duration.

10. AKNOWLEDGEMENTS
This work was supported in part by italian regional funding FESR
2007-2013 by Regione Puglia for the project “Sistema per la
bonifica di aree critiche basato su sciame di robot (BEE SAFE)”.
The authors wish to thank Marco Bonola for his work on the design
of UPMT and his precious suggestions and Marco Galvagno for the
implementation of the user space monitoring solution.

11. REFERENCES
[1] D. Le, X. Fu, D. Hogrere, “A Review of Mobility Support

Paradigms for the Internet”, IEEE Communications surveys,
1s t quarter 2006, Volume 8, No. 1

[2] Meriem Kassar, Brigitte Kervella, Guy Pujolle, "An overview
of vertical handover decision strategies in heterogeneous
wireless networks", Computer Communications, Volume 31,
Issue 10, 25 June 2008, Pages 2607–2620

[3] M. Bonola, S. Salsano. “UPMT: Universal Per-Application
Mobility Management using Tunnels”, IEEE GLOBECOM
2009

[4] C. Perkins, Ed., “IP Mobility Support for IPv4, Revised”, IETF
RFC 5944, November 2010

[5] R. Moskowitz, P. Nikander, T. Henderson, “Host Identity
Protocol”, IETF RFC 5201, April 2008

[6] D. Calisi, F.Fedi, A.Leo, D. Nardi, “Software Development for
Networked Robot Systems”, 7th IFAC Symposium on
Intelligent Autonomous Vehicles, September 2010.

[7] S. Salsano, M. Bonola et al., “The UPMT solution (Universal
Per-application Mobility Management using Tunnels)”,
technical report available at
http://netgroup.uniroma2.it/TR/UPMT.pdf

[8] UPMT homepage: http://netgroup.uniroma2.it/UPMT

[9] T. Clausen, P. Jacquet, Eds. “Optimized Link State Routing
Protocol (OLSR)”, IETF RFC 3626

[10] MjSip home page: http://www.mjsip.org

[11] B. Campbell (Editor),“Session Initiation Protocol (SIP)
Extension for Instant Messaging”, IETF RFC 3428, December
2002

[12] Oracle VM VirtualBox, http://www.virtualbox.org

