
Handling User Profiles for the Secure and Convenient Configuration and
Management of Mobile Terminals and Services

G. Bartolomeo(1), F. Berger(2), H.J. Eikerling(2), F. Martire(1), S. Salsano(3)

(1) Radiolabs, Rome, Italy, (2) Siemens Business Services C-LAB, Paderborn, Germany,
(3) DIE, Univ. of Rome “Tor Vergata”

Abstract

Profiled information is becoming of fundamental

importance to configure and manage Mobile Terminal
and Services for the personalized use according to the
needs and preferences of a mobile user. This paper
describes an architectural approach for the
customization of terminals and services accessed via
these terminals, focusing on the secure handling and
applying of user profiles taking into consideration the
distribution of the profile data.

1. Introduction
Mobile users nowadays are surrounded by a plethora of
different types of networks, services, and terminals.
Though this is obviously favorable for the user, the
complexity needs to be managed in a rather obtrusive
and secure way. Architectural approaches for doing
this are being studied by the FP6 projects Ubisec [3]
and Simplicity [4]. Within Ubisec the security and
configuration aspects of nomadic service discovery and
access are examined for an environment being
composed of separate elementary networks (EN)
interlinked with each other through a global network
(GN). The GN might be partly absent, thus centralized
services like for instance trusted third parties for
providing basic security services like for instance
issuing and validating certificates might at least
temporarily not be accessible. In contrast to this,
Simplicity deals with the configuration management of
mobile terminals and services based on a distributed
brokerage framework in which (virtually) one agent is
associated with the network / service being accessed by
the user and another one is associated with the terminal
and interacts with a special device (Simplicity Device)
which enables the customization process. Since the
entire configuration process in both approaches is
driven by the user, the user profile is an important part
in this picture. However, user profile and other user
related data linked to the identity of a specific user
must be secured and privacy issues should be taken
into account.

In this work we describe an architectural approach
which supports the configuration process on the
application level especially taking into account the
mobility of the users and the complementary use of
different types and instances of terminals. This
approach will be referred to a as Customization
Framework (CF) and represents the combination and
generalization of concepts and solutions developed in
the context of the Ubisec and Simplicity projects. The
CF concept is targeted to include several aspects like
authentication, service discovery, management of
services, user mobility, presence, location awareness
and so on. A key element of the Customization
Framework is the management of profiled user
information, and this aspect will be specifically dealt
with in this paper.
The paper is structured as follows: subsequently we
will give a system overview containing target use cases
and explaining the system principles, the proposed
architecture and the definition of profiles. Afterwards,
we will focus on the security and privacy aspects of
profile handling.

2. System Overview

2.1 Targeted Application Scenarios
The envisaged Customization Framework is intended
for the largest possible set of mobile and context-aware
applications (similar to those described in [6]). Just to
mention a specific set, we can have: mobile worker
scenarios, where the CF assists the user in configuring
its devices and applications for accessing different
networks while being on the move, nomadic leisure
scenarios, where a nomadic user requests to access
media files (either consisting of personal records stored
on his domestic digital recording device or being
provided through a third party content provider) from
his mobile terminal and so on. Depending on the user’s
context, his preferences (e.g., QoS), the capabilities of
his access devices (in terms of supported wireless
transport protocol, display capabilities etc.) and the
communication mechanisms available on the site, the

local applications should be configured automatically.
A comprehensive list of use cases is described in [11].

2.2 System Principles
In this sub section we provide a very high level view of
the system principles, as shown in Fig. 1 which relates
the major entities being involved in the customization
process to each other.
Access Device: we refer to the user terminal as an
access device which hosts the user applications. The
applications are subject to configuration, as well as the
networking interfaces of the terminal and also the
access device itself.

Access
Device

Access and
Transport
Networks

Services /
Resources

Customization
Framework

Profiles,
PUDs

Fig. 1: Scope of the customization framework

Service / Resource Host: hosts the services to be
called by the access device over a network. Similar to
the application accessing the service, the service itself
is also subject to a configuration.
Access and Transport Network: in principle, also
Access and Transport networks could need to be
configured according to the needs of the users.
Personal User Device (PUD)1: is the component that
represents the user in the system. The PUD is
something like a sophisticated key that a user can carry
with him; it stores user profiles including preferences,
user credentials for authentication and authorization
and any other personalization information needed for
the customization of services and applications. Ideally,
the PUD should offer both storage and processing
capabilities and should be capable of crypto features.
The PUD can be implemented using different
technologies like smart cards, flash memories, smart
phones, SIM cards. However, due to memory
limitations of these types of devices, it keeps only most
sensitive information of the user profile as long as the
large amount of the profile data are distributed in a
network repository. This implementation leads to
security problems and a general user’s reluctance to
give personal data to a third party.

1 In the Simplicity Project the PUD is called Simplicity Device
(SD).

Customization Framework: handles the configuration
(i.e., profile data) information that is used to configure
the application on the access device as well as for the
services on the service host. The information can be
either accessed through a network or, alternatively,
through local profile manager. This is due to the fact
that for certain profile data the retrieval of the profile
over the network might be inefficient or might be
indicated in order to support the access to certain
profile information (user / identity related information)
in off-line situations (which essentially is an aspect of
nomadicity).

2.3 System Architecture
The main architectural entities that constitute the
Customization Framework are shown in Fig. 2:
Terminal Brokers (TB), Network Brokers (NB),
Personal User Devices (PUD). The Brokers are the
software entities that implement the Customization
Framework in the Access Device and in the Network.
Their functionalities may include: collection and
combination of information from other entities,
provision of the resulting information (context,
preferences, policies) to other entities, management of
network-related functionalities (e.g. advanced mobility
management), provisioning of services and service
discovery. The brokers communicate each other
through a (XML based) inter-broker protocol.

Terminal Broker
The Terminal Broker is the entity that manages the
interaction between the information stored in the PUD
and the terminal in which the PUD is plugged in. On
the other side it enables to perform service discovery
and usage, adaptation of services to terminal
capabilities. To realize these features it may request
global information (e.g. the list of available services
which the user has subscribed to) that TB presents to
the user via a graphical interface.
The TB is logically decomposed into a set of
components called subsystems which cooperate in
order to perform the tasks described above. The most
important subsystem for the customization feature is
the Profile Access Manager (TB-PAM) that gives
access to the required user profile information needed.
This information may reside on a device being attached
to or being part of the access device in order to perform
service customization.

Broker

User Terminal

TB

Application

NB

Customization Server
Resource Server

Streaming

Download

PUD

Broker

Access Device

TB

Application
Application

Application NB

Services/
Resource Server

Application

PUD

Access and
Transport
Networks

Application

Fig. 2: Architectural entities of CF

Network Broker
The Network Broker System is the entity at network
side that allows for a user friendly, easy to use and
context-aware service provisioning. It does so by
coordinating the selection, distribution of and
subscription for information originating from different
and potentially distributed resources like for instance
terminal devices, location tracking systems, or network
monitoring functions.
Note that the Network Broker is not a single central
entity in a given network, it is implemented in a
distributed and scalable way, but these distribution
aspects are out of the scope of this document. The
design of the NB is based on subsystems that are quite
a replication of the subsystems inside the TB. The
rationale for this is that a sub-system will request a
given service to the local sub-system which will
contact the corresponding remote sub-system if it is not
able to provide the service locally. In fact the Network
Broker hosts a counterpart of the TB-PAM, named
NB-PAM and is able to perform operations similar to
those performed by the TB-PAM on the user profile.
Personal User Device Profile Manager (PUD)
As pointed out in the previous section, the PUD is
something like a key which the end user can carry on
with him allowing him accesses a number of
personalized services customized using profile
information kept inside it.

2.4 Profile access management
The profile access management is composed of two
cooperating managers, one assigned to the Terminal
Broker (TB-PAM) and the other to the Network Broker
(NB-PAM). They deal with request issued by the
application residing on the terminal, e.g. for retrieving
or updating / editing profile information. For handling
these requests, each PAM has a layered internal
architecture. At the top level there is an element named
Profile Request Handler (PRH). The PRH is the major
component for handling security aspects in the system

with respect to privacy and other security aspects of
personalized data as will be described later on. The two
PRHs on the Terminal Broker and on the Network
Broker can communicate with each; furthermore, they
communicate with their respective underlying
elements, called Data Access Managers (DAMs).
These latter in turn are able to communicate with the
last layer element of the PAM architecture, the
controllers. There may be many controllers (e.g., a
PUD controller for accessing the data on the PUD or
another one for accessing the data residing on a
network repository) as each controller is associated
with a given data storage repository. This design
pattern has been chosen because it allows designing the
DAM independently of the interfaces exposed by the
each data storage repository. Inside the PAM, the TB-
PRH is the core component responsible for processing
requests coming from third party services or
applications which might involve the retrieval or
modification of profile information. Each request must
be supplied with the needed credentials of the
requester. The TB-PRH first checks these credentials,
then checks the access rights associated to the
requester and, depending on the result of the check,
permits or denies accesses to the profile element.
In other words, the TB-PRH logic does answer the
following questions: “Who wants to access what?
What does it wants to do with that?” The details of
handling privileges during the processing request will
be described in the subsequent paragraph.

2.5 Handling of profile data distribution
The Data Access Manager (DAM), located inside the
TB-PAM, is the entity in charge of supporting and
managing the distribution of profile data over different
storage resources complementing the user related data
stored on the PUD. Inside the DAM, the user profile is
arranged in a way similar to how files are arranged into
a modern hierarchical file system. Each part of the user
profile is can be an XML file, a text file or a binary file
stored on the physical PUD or on the network
repository; furthermore, these file may be encrypted if
needed. The DAM offers an abstraction of the user
profile on which it is possible to operate without
knowing where and how data are physically stored.
This also simplifies the definition of a request format
which has to tag the methods for reading and writing
the profile data in an abstract and rather generic way.
From an external (application) point of view, there is
just one user profile stored in XML format accessible
through the DAM.

Network
repository

Terminal Broker Network Broker
TB-PAM NB-PAM

NB-PRH TB-PRH

TB-DAM NB-DAM

PUD-c RA-c RA-c

PUD

Fig. 3: Broker architecture for profile management
The DAM encapsulates an XQuery engine and exposes
an interface based on the XQuery/XPath language
specifications [10]. Inside the TB-PAM, the TB-PRH
subsystem exploits the aforementioned interfaces for
reading and/or modifying the user profile according to
the requests it receives form other
subsystems/applications.
The following is an example (dealing with the
negotiation of network characteristics) in which the
DAM is asked about the user preferences in service
QoS:
declare namespace s='http://www.ist-
simplicity.org/SUP';
for $b in ('Quality','Speed’,’Cost’)
for $a in //s:*
where name($a)=$b
return string((name($a),'=',$a,'\n'));

When this query is executed, the DAM returns a list of
preferences formatted as ‘properties’ (i.e. a set of
couple of strings using the syntax ‘key’=’value’):
Quality=0.7
Speed=1.0
Cost=0.5

As mentioned before there might be situations in which
it is impossible or impractical to contact the TB-PAM;
therefore there is a certain necessity to have access to
the user profile data from the Network Broker
bypassing the Terminal Broker. The NB-PAM just
allows this, working as a sort of proxy for the TB-
PAM. Unlike the TB-DAM, however, in order to
guarantee a certain degree of security to the user, the
NB-DAM has an access to the physical profile data
location limited to those pieces of data for which the
NB-PRH has received a delegation and moreover it
can’t contact the PUD directly; anyway data stored into
the PUD may be accessed through a specific request at
PRH level from the NB-PRH to the TB-PRH. using an
appropriate access control language. The delegation
mechanism applies to: a given part of the user profile

which can be given on element, sub-tree or whole
profile set level; a given type of operation which is
possible to perform on that part of the user profile (e.g.
read/modify/delete/…).

2.6 Profile access management
In order to access profile information, the respective
application or subsystem has to issue an according
request. The request has to include the targeted
repository type, the unique identification of the
repository and further information for querying the
profile data. This URIs alike meta-information is
processed inside the DAM. As a prerequisite to
applying this scheme, each resource (e.g., file)
containing pieces of user profile has to be assigned a
unique address.
Following, there are some examples of URIs used to
address a given storage space:
PUD://default?start=0&stop=50&namespace=http:/
/www.ist-simplicity.org/SUP/&name=
UserPersonalProfile/Identity/FullName/text()

By using this URI, the DAM can address a sequence of
bytes inside the PUD, starting from position 0 and
ending at position 50; these bytes contains a plain text
which represents the user’s full name; in the UP, this
data is located inside the element addressed by the
following XPath expression which addresses a text
element inside a given XML tag:
UserPersonalProfile/Identity/FullName/text()

Tags are referred to by giving a namespace
http://www.ist-simplicity.org/SUP/. We use the entry
“default” to indicate that on the PUD there is just one
storage space available (in the form of a sequence of
bytes). Anyway there may be PUDs which support a
file system storage space. In this case the expression
“default” is replaced with a suitable filename.
NR://filename?namespace=http://www.ist-
simplicity.org/SUP&name=UserSubscribedNetworks

In a similar way, this URI refers to a given file stored
in the network repository storage space owned by the
user. The content of the file is represented by an XML
instance which forms part of the user profile and offers
information about e.g. the user’s subscribed networks.

2.7 User Profile Definition
Personalisation is an element of customisation and the
User Profile is key to the personalisation process. The
User Profile (UP) is further specified by means of the
3GPP Generic User Profile (GUP) [7] concept which
does not specify the data content, but only the format,
i.e. the data model and the schema (Data Description
Method based on XML Schema).
Actually the UP contains five components,
corresponding to User Personal Data, User Devices,
Personal User Devices, Subscribed Networks and

Subscribed Services. The main idea is that the User
Profile is a “User Level” representation of the user
himself and his ambient “information and
communication” context which might change
dynamically due to movements. The figure below
shows that the UP is divided into five components. The
figure shows that there is another level of
representation in addition to the “User Level” that
contains the UP. The “Universe” Level contains the
format descriptions (schemas) of all existing devices,
access networks, services and personal user devices.

Device
schema

Service
schema

User level

User personal
data User devices subscribed

networks
subscribed

services

Universe Level

Personal
Device
schema

UP

Network
schema

User Personal
device

Fig. 4: User Profile – abstract view

In order to analyze an instance of the UP in the “User
Level” for a given user, consider the user devices
component (the same can be applied to the network,
services and Personal device components). This
component includes the representation of all owned
devices, simply “copied” from the device
representation existing in the “Universe level”. For
each device, some user configuration, preferences and
personalization data is added.
In order to define the five components of the “User
Level”, the existing proposals and standards have been
investigated and wherever possible integrated in the
User Profile (e. g. Liberty Alliance Project Personal
Profile (PP) Error! Reference source not found.,
UAProf Schema provided by the WAP Forum [9]).
Actual XML schemas and example instance files can
be found in [12].

3. Security Issues
The appropriate handling of security issues with regard
to ubiquitous environment is a rather contemporary
concern [1], [2]. Security features inside the CF deal
with encryption in order to ensure privacy, hashing of
profile payload data in order to track unauthorized
changes of profile information, and a mechanisms
featuring tamper-resistance of the utilized storage

spaces, authentication of users for accessing data and
authorization for dealing with access privileges.
With respect to the architecture described above, the
following security aspects have to be considered
(numbering refers to Fig. 5)
Mutual authentication of the PAM (either TB-PAM or
NB-PAM) and the application or service has to be
done, preferably only once in the beginning (5).
The transmission of data between the PAM and the
profile storages has to be protected against eaves-
dropping (1).
The delegation of requests from the TB to the NB as
well the access to certain parts of the profile data has to
be authorized (2, 3).
Tracking of fraudulent and unauthorized changes of
request meta-data and data payloads has to be enabled
(4). According to Fig. 5 this is approached as follows:
Encryption is used for the data exchange between the
storage devices and the DAM. The DAM keeps the
encryption keys at a secret place, different from the
location where the profile data is stored. Third-party
applications can only access protected profile data if
they contact the PRH. In the latter case, the
applications have to provide credentials to proof that
they are in fact allowed to access the requested profile
data. Unprotected profile data can be accessed without
providing credentials.
(2) XACML for exchanging delegation. This is a
specific aspect of authorization and two
complementary schemes for this can be supported.
Firstly, a PMI (Privilege Management Infrastructure) is
applied. To establish a PMI in the context of the CF, a
(potentially remote) Attribute Authority and a (local)
Privilege Verifier have to be employed. The Privilege
Verifier communicates with the Attribute Authority to
check for valid authorization. Secondly, authorization
can be performed by providing other forms of
credentials (PINs, passwords, pass phrases) which
come along with the requests.
(3) ACSL for defining policies based on privileges for
access control inside each PRH with respect to the
requesting principal. Similar to (2), two authorization
schemes can be supported.
(4) The use of hash values (e.g., SHA1) permits
uniquely characterize the profile data, so that
tampering of profile data can be observed. A hash
value has to be recomputed by the PRH each time the
profile data is changed. Hashing can be applied to
different parts of the profile, i.e., at the element level,
at the sub-tree level, or on the entire profile data level.
(5) The mutual authentication of the PRH (either TB-
PAM or NB-PAM) and the application / service is
performed by using an enhanced public key
infrastructure (ePKI) solution which supports
connected as well as disconnected modes of devices

(w.r.t. a trusted third party managing a certification
authority). Since applications interact with profile
storages on behalf of the user through the PAM, the
user may have to authenticate with the application in
the beginning. From the users point of view this has
the advantage of having authentication only be done
once, right in the beginning.

Network
repository

Terminal Broker Network Broker
TB-PAM NB-PAM

NB-PRH

Applications/services

TB-DAM NB-DAM

PUD-c RA-c RA-c

PUD

XACML
2,3

1 1
1

User

TB-PRH

5

5 5

6

6
6

1 1

4 4

Fig. 5: Security issues w.r.t. to Customization
Framework
To control access to profile data, the PRH checks
credentials that are provided together with incoming
requests based on the policies defined in the ACSL.
Just to briefly explain, an access control policy is a set
of rules of the form (cred, profileId, accType,

ctrlKind, scope). Herein cred refers to a credential
intended to proof the right of the requesting entity to
access the desired profile data. The credential can, e.g.,
be a PIN uniquely representing a person, an
application, or a group of people/applications.
profileId refers to the desired profile instance to
access, accType refers to the type of access and can
be one of create, delete, modify, read, write, etc.,
ctrlKind can be one of grant or deny, i.e., there are
rules to explicitly grant or deny access, scope refers to
the scope of the rule, e.g., a single element of the
profile or an element together with its direct sub-
elements or its complete sub-tree.
The policies are used to evaluate whether an access
request is granted or denied. Several access control
languages such as XACML and XACL have already
been defined and used in different domains. Though
the concepts presented here are fairly independent of
this, we use XACML for the purpose.

4. Conclusions
Next-generation wireless system (3G and beyond) will
likely increase the already overwhelming number of
services, access devices, network interfaces that the

user will have to manage. A Customization Framework
able to support the users in the configuration and use of
services and devices is envisaged in this paper. In
particular, the issues related to the management of user
profiles which is an important aspect of the
Customization Framework have been discussed. For
this an architectural framework has been devised,
integrating the results of the two IST projects
Simplicity and UBISEC. Utilizing this framework it is
possible to access the profile data stored in “Personal
User Devices” as well as distributed in network
repositories in a seamless though “controlled” way, i.e.
addressing the security concerns of the users.
We believe that there is a strong need to standardize
the mechanisms related to the definition and handling
of user profiles and this work represents a contribution
in this area.

REFERENCES
[1] Workshop on Security in Ubiquitous Computing, 2002:

http://www.teco.edu/~philip/ubicomp2002ws
[2] Second Workshop on Security in Ubiquitous

Computing, 2003:
http://www.vs.inf.ethz.ch/events/ubicomp2003sec/

[3] UBISEC website: http://www.ubisec.org
[4] IST Simplicity Project: http://www.ist-simplicity.org
[5] B. Rao, L. Minakakis, Evolution of mobile location-

based services, Communications of the ACM, pp. 61-
65, Vol. 46, Dec. 2003

[6] Y.-B. Lin and I. Chlamtac, "Wireless and Mobile
Network Architecture", John Wiley & Sons, Inc., 2001.

[7] 3rd Generation Partnership Project. Data Description
Method (DDM) - 3GPP Generic User Profile (GUP).
Technical specification of Technical Specification
Group Terminals, Version 6.1.0. 2004.

[8] Project Liberty Alliance: http://projectliberty.org
[9] Wireless Application Forum: http://www.wapforum.org/
[10] XQuery 1.0: An XML Query Language, W3C Working

Draft 04 April 2005: http://www.w3.org/TR/2005/WD-
xquery-20050404/

[11] IST Simplicity Project, D2101 - Use cases, requirements
and business models

[12] XML UP Schemas: http://www.ist-simplicity.org

