
978-1-5090-0223-8/16/$31.00 ©2016 IEEE

PMSR - Poor Man’s Segment Routing,
a minimalistic approach to Segment Routing

and a Traffic Engineering use case
Stefano Salsano(1), Luca Veltri(2), Luca Davoli(3), Pier Luigi Ventre(1), Giuseppe Siracusano(1)

(1) Univ. of Rome Tor Vergata - (2) Univ. of Parma - (3) Univ. of Parma / Consortium GARR

Abstract – The current specification of the Segment Routing

(SR) architecture requires enhancements to the intra-

domain routing protocols (e.g. OSPF and IS-IS) so that the

nodes can advertise the Segment Identifiers (SIDs). We

propose a simpler solution called PMSR (Poor Man’s

Segment Routing), that does not require any enhancement to

routing protocol. We compare the procedures of PMSR with

traditional SR, showing that PMSR can reduce the operation

and management complexity. We analyze the set of use cases

in the current SR drafts and we claim that PMSR can

support the large majority of them. Thanks to the drastic

simplification of the control plane, we have been able to

develop an open source prototype of PMSR. In the second

part of the paper, we consider a Traffic Engineering use

case, starting from a traditional flow assignment

optimization problem, which allocates hop-by-hop paths to

flows. We propose a SR path assignment algorithm and

prove that it is optimal with respect to the number of

segments allocated to a flow.

Keywords – Segment Routing, Network Architecture, Traffic

Engineering, Software Defined Networking, Open Source.

I. INTRODUCTION

The Segment Routing (SR) architecture [1] is based on
the source routing approach: border nodes can control the
edge-to-edge routing of packets at the level of single
flows by adding proper information in packet headers.
This way, it offers advanced traffic steering capabilities in
IP networks maintaining scalability both in the data and
control planes. In fact, internal nodes do not need to store
any per-flow state and the traffic steering decisions have a
configuration impact only on border nodes.

The SR lends itself to support different applications:
Virtual Private Networks (VPNs), protection/restoration,
Traffic Engineering (TE), Service Function Chaining
(SFC), Operation Administration and Management
(OAM). Although the standardization activity on the SR
architecture is relatively recent, the status of the draft is
mature and different independent implementations are
now available. Real world deployments are ongoing, as
SR has captured the interest of network providers and of
“Over the Top” Providers.

On the data plane, the Segment Routing architecture
can be implemented in different ways; in particular MPLS
and IPv6 are the two data plane technologies that have
been considered in the standardization.

Let us consider the control plane. In its current
specification, the SR architecture [1] (Section II) requires
enhancements to routing protocols (e.g. [2][3]) in order to
distribute the Segment Identifiers (SIDs). In Section 0 we
propose a minimalistic approach that does not need to

explicitly distribute information among nodes and hence
does not require enhancements to the routing protocols.
We refer to this solution as “Poor Man’s Segment
Routing” (PMSR), but we claim that it can efficiently
support the large majority of the use cases of traditional
Segment Routing. In Section III.A, we identify a set of
use cases among the ones described in [4][5][6] which can
be supported by the proposed solution.

In general, the computation of the source routed paths
and the configuration of the border nodes can be realized
either in a distributed or in a centralized way. In the
former case, the control logic of border nodes needs to be
further enhanced. In the latter case, the Software Defined
Networking (SDN) architecture [7] represents a perfect
fit: a SDN approach can be used to properly configure the
SR services in the border nodes, with minimal or no
increase of the complexity of the border node. The PMSR

approach is in line with the SDN philosophy of removing

complexity from the forwarding nodes.
To the best of our knowledge, currently there are no

open source implementations of the IP control plane
extensions needed to support the traditional full-fledged
SR architecture (i.e., the routing protocol enhancements).
On the other hand, we have been able to fully implement
the control plane and the data plane of PMSR starting
from open source tools with rather limited effort [8].

In the second part of this work we focus on Traffic
Engineering aspects. We start from a traditional flow
assignment optimization procedure, which allocates hop-

by-hop paths to flows (Section IV). Then in Section V we
propose a SR path assignment algorithm both for the
traditional SR architecture and for the proposed PMSR.
We prove that, starting from an arbitrary hop-by-hop path,
it can evaluate the optimal SR path (i.e., the one with the
minimum number of segments). We describe a simple
experimental evaluation (Section VI) of the algorithm,
showing that its execution time is much smaller than the
execution time of the flow assignment procedure.

II. CURRENT SEGMENT ROUTING

ARCHITECTURE

In the Segment Routing architecture [1] the route of a
packet is enforced through an ordered list of
processing/forwarding functions, called segments, that is
inserted in the packet header by a border node. A segment
may consist in a logical or physical element, for example
a network node, a network link, or a packet filter. Each
segment is identified by a Segment ID (SID). The scope
of a SID can be global or local. Global SIDs are defined

globally in a SR domain and are recognized by all
network nodes of the domain. Instead, Local SIDs are
defined locally within a node. The use of local SIDs by
other nodes requires an explicit distribution mechanism or
some form of centralized coordination.

Among the different types of segments described in
[1], we consider Prefix segments, Node segments and IGP
Adjacency segments (IGP stands for Interior Gateway
Protocol). Their corresponding Segments IDs are denoted
as Prefix-SIDs, Node-SIDs and Adj-SIDs.

The Prefix-SIDs represent IGP prefixes, i.e. blocks of
IP addresses that are advertised, by the routing protocol,
through the nodes composing the network. The routing
algorithm (Shortest Path First) is used by each node to
evaluate the shortest path towards the prefix and to add a
corresponding entry in its routing table. With SR, a node
can associate a Prefix-SID to its attached prefix and
advertise it. To clarify with an example in the MPLS
architecture (with global SIDs), a node that has the
network 10.10.1.0/24 attached can associate the MPLS
label 10001 as Prefix-SID and advertise this association
using the routing protocol. All nodes will forward the
MPLS label 10001 using the routing information available
for the network 10.0.1.0/24.

A particular case of Prefix-SID is the Node-SID,
which considers a /32 prefix, i.e. a single node. “From

anywhere in the network, a Node-SID enforces the

ECMP-aware shortest-path forwarding of the packet

towards the related node.” [1] (ECMP stands for Equal-
Cost Multiple-Path routing). In particular, the “loopback
interface” address that is used to univocally refer to a
router is associated to a Node-SID and advertised by each
router. Even if a Node-SID is a particular type of Prefix-
SID, from now on we will denote as Prefix-SIDs only the
SIDs that are not Node-SIDs, i.e. those that effectively
represent a range of IP addresses with a netmask different
from /32.

The Node-SIDs, corresponding to the loopback
interface of a node, are advertised by the node itself, while
the Prefix-SIDs are advertised by the nodes that inject the
routes into the IGP domain. The SID values cannot be
arbitrarily chosen by the nodes, but a global coordination
is needed. Quoting from [1]: “A Prefix-SID/Node-SID is

allocated […] according to a process similar to IP

address allocation. Typically the Prefix-SID/Node-SID is

allocated by policy by the operator (or Network

Management System) and the SID very rarely changes.”.
The global coordination procedure needs: i) to contact all
nodes that can advertise the SIDs; ii) to map prefixes and
loopback interface addresses to SIDs in a coordinated
manner. The logical scalability of this management
procedure is O(ρ+η), where ρ is the number of prefixes
and η is the number of nodes that will advertise their
loopback interface. Routing protocol extensions are used
to automatically disseminate the mapping between SIDs
and prefixes/nodes, otherwise the scalability of the
configuration would become O(η·(ρ+η)).

The third type of segment defined in [1] is the
Adjacency segment. It corresponds to a unidirectional
adjacency of the routing protocol, that is a specific

outgoing link from a source node towards a destination
node. The Adjacency segments are represented by Adj-
SIDs and, usually, they are local SIDs, that can be
processed only by the node that has advertised it. For
example, assume that node n advertises its global Node-
SID GNn and one local Adj-SID LAnm for the outgoing
interface from node n to node m. A packet carrying the list
of segments {GNn, LAnm} will be forwarded first to node
n, then by the node n towards the node m. The local Adj-
SID needs to be advertised by the node n to all the other
nodes, so that the ingress border node that evaluates SR
path can include it in the segment list, but this has no
impact on the routing state of the crossed nodes. It is also
possible to advertise an Adjacency segment as a global
segment, in the example above a global Adj-SID GAnm
can be advertised by node n. The segment list to obtain
the same behavior will be reduced to a single segment
{GAnm}, but the routing state of all nodes of the network
should be dynamically updated following the distribution
of the global Adj-SID. In fact, all network nodes should
be capable to process the SID GAnm, by forwarding the
packet towards node n, while the node n will be the only
one that will forward the packet on its outgoing interface
toward m. Global Adj-SIDs greatly increase the amount of
routing state that needs to be maintained by nodes.

The Adj-SIDs are interesting for Traffic Engineering
purposes because they allow to map an arbitrary path,
composed by a sequence of links, into a list of segments.
Using only Node-SIDs in SR paths, it is not possible to
use links that are not chosen by the IGP protocol to reach
the destination node of the link, such as a backup link
with high assigned cost. In fact, Node-SIDs always
forward packets on paths selected by the IGP protocol.

In the MPLS SR Data Plane the use of indexes has
been proposed for SIDs: the MPLS label, that represents a
segment is generated by combining the index value with
the information related to the sets of MPLS labels made
available by a given node for SR (called Segment Routing
Global Block - SRGB). This approach requires the
distribution of the SRGB information through extensions
to the routing protocols. As mentioned in [5] “Several

operators have indicated that they would deploy the SR

technology in this way: with a single consistent SRGB

across all the nodes. They motivated their choice based on

operational simplicity...”. We also rule out the possibility
of having different SRGBs advertised by the nodes and
we only use “absolute” SIDs.

III. POOR MAN’S SEGMENT ROUTING (PMSR)

In PMSR, we want to avoid the distribution of SIDs by
the SR nodes, as it would imply significant extensions to
the routing protocol and to the routing daemons
implementing the protocol. For this reason, we only use
global SIDs that can be automatically generated by each
node in a distributed fashion, with no need of explicit
advertising (and no extensions to routing protocols). We
advocate that a significant coverage of the SR use cases
can be achieved by only using global segments that can be
automatically generated.

In case of Node-SIDs, it is relatively easy to define an
automatic mapping between the IP addresses of the node
loopback interface and the SID. In case of MPLS SR
architecture, the SID is a MPLS label, and a mapping
between IP address of the loopback interface and the
corresponding MPLS label is needed. Assuming that the
IP addresses of the loopback interfaces of the nodes
belong to a contiguous range of IP addresses, this
mapping is typically as simple as extracting the N
rightmost bits of the IP address and then offsetting the
resulting value in a specifically allocated portion of the
MPLS label space (e.g., N=16, if we want to allow for
65536 different nodes in the IGP routing domain, while
the whole available MPLS label space is of 20 bits).

Mapping arbitrary prefixes into SIDs with an
automatic procedure is not so easy. Therefore we simply
consider not to use Prefix-SIDs in our PMSR architecture.
We will show that we do not lose too much functionality
with this choice. On the other hand, we cannot get rid of
Adj-SIDs, for the reasons explained in the previous
section. Hence, in order to avoid the use of local Adj-
SIDs, we propose the introduction of a new type of global
segment called direct-link segment identified by a direct-

link SID (DL-SID). Similarly to a Node-SID, a DL-SID
identifies a target destination node to be reached with the
following difference: if the node that is processing a DL-

SID has a direct link toward the node identified by the
DL-SID, the direct link is used rather than the shortest
path dictated by the routing protocol. Conversely, if the
node does not have a direct link toward the target node, it
will process the segment in the same way it processes a
Node-SID addressing the same destination node. In order
to simplify the usage of DL-SIDs they should be
automatically generated from the target node they address.
In case of MPLS SR, the DL-SID can be defined starting
from the Node-SID identifying the destination node, and
adding a bit to distinguish between DL-SID and Node-
SID. In case of IPv6SR, DL-SIDs must be IPv6 addresses
(globally valid in the network domain) deterministically
derived from the loopback interface addresses. As an
example, we can suppose that Node-SIDs are restricted to
have an odd numbered Device address part of the IPv6
address, so that the DL-SIDs will be even numbered,
obtained by adding one to the Device address part of the
IPv6 address of the localhost interface.

A limitation of the proposed DL-SID approach is that
it does not allow the handling of multiple parallel links
between two routers at layer 3, i.e. with different IP
addresses. If present, such multi-links must be handled at
layer 2 and seen at IP level as a single link. Having
multiple parallel links bonded at layer 2 is anyway a
typical solution for operators, so we believe that it is not a
critical limitation.

There are advantages in using the automatically
generated global DL-SIDs rather than the local Adj-SIDs
or the global Adj-SID. Consider the strict source routing
case, that is enforcing a path through a set of links. Using
local Adj-SIDs, the segment list will have a length equal
to the double of the number of links. In fact, for each link
to be crossed, first the source node needs to be addressed,

then the local Adj-SID will indicate the outgoing link.
Using global Adj-SIDs, the list will be equal to the
number of links, but the global Adj-SIDs needs to be
advertised and one entry for each advertised Adj-SID
needs to be added in the routing state of all nodes. In
PMSR, with automatically generated global DL-SIDs the
length of a segment list to enforce a path through a set of
links also equals the number of links (like with the global
Adj-SID), but there is no need to advertise SIDs, and in
each node it is only needed to add an additional entry for
each node instead that for each link.

Let η be the number of nodes and k be the number of
unidirectional links; in the worst case, k=O(η2).

 Traditional SR PMSR

Local

Adj-SID
Global

Adj-SID
Autom.

DL-SIDs

Need to configure nodes
with SIDs

Yes, O(η)
nodes

Yes, O(η)
nodes

No

Need to advertise SIDs Yes Yes No

Routing state O(η)
O(η+k),

O(η+η2)
O(2η)

SR path length for a
path of λ links

LLocal-Adj-SID
≤ 2λ

LGlobal-Adj-SID ≤
λ

LDL-SID ≤
2λ

Table 1 – Traditional SR vs. PMSR

Note that, in case of strict source routing, a list of local
Adj-SIDs corresponding to the number of the links would
actually be enough. However, we do not consider this
solution for two reasons. First, because it is critical in case
of failures of nodes/links in the path: intermediate nodes
cannot reroute the packets and protection should be
enforced edge-to-edge. Second, we are interested to the
case of loose source routing (i.e. the segment list only
includes a subset of the nodes in the path), because we
want to use a small number of segments to create paths in
SR. If loose source routing is used, we will see that in
some cases a DL-SID could be not enough to uniquely
identify a specific path and a couple of Node-SID + DL-

SID will be needed. Table 1 summarizes the comparison
between using PMSR (with global DL-SIDs) and the
traditional SR with local and global Adj-SIDs.

A. Node tables update procedures

The SR-capable forwarding nodes need to populate
their forwarding tables with entries related to the SIDs. In
the traditional SR architecture, besides the Control Plane
enhancements to distribute the SIDs, proper mechanisms
to insert/update the forwarding table entries are needed.
As an example, when receiving an announcement for a
prefix-SID, the node will add an entry for the SID. If the
forwarding architecture of the node allows it, the entry
will be a “pointer” to the existing routing entry for the
prefix. In this way, the routing toward the prefix can
change, but the entry for the SID does not need to be
updated. If it is not possible to add the “pointer”, the entry
for the SID needs to explicitly specify the next
hop/outgoing interface and, in this case, it needs to be
updated later if the routing towards the prefix will change.
In the MPLS-based architecture, the SID is a MPLS label,
therefore an entry will be added to the label forwarding
tables, either specifying a logical link between the label

and the IP forwarding information of the prefix or
providing the indication of the next hop/output interface.

In the proposed PMSR architecture, the procedures for
populating the forwarding tables are very simple and they
do not rely on the processing of extensions to routing
protocols. The entries for Node-SIDs and DL-SIDs are
added following the routing information for the loopback
addresses of the network nodes in the domain. For each
entry related to a node loopback address there will be one
entry for the corresponding Node-SID and one for the
corresponding DL-SID. As discussed above, if it is
possible to have a “pointer” to the routing entry for the
remote loopback address, the entry will not need to be
updated later on, otherwise the entry will contain the next
hop/outgoing interface towards the remote loopback
address and it will need to be updated if the routing
changes.

For each remote loopback address to be added, the
following steps are needed: 1) evaluate the Node-SID and
the DL-SID for the remote node IP loopback address; 2)
add(update) the entry for the Node-SID, pointing to the
routing entry or extracting the next hop/outgoing interface
from the routing entry; 3) if the node does not have a
direct link toward the remote node, add(update) the entry
for the DL-SID in the same way as described in step 2) for
the Node-SID; if the node has a direct link toward the
remote node, add the entry for the DL-SID pointing to the
direct outgoing link, irrespective of the routing
information. The evaluation of the Node-SID and DL-SID
for the remote node depends on the Data Plane
technology: for MPLS a label will be evaluated, for IPv6
an IP address will be considered. The addition of the
entries will be performed in the label forwarding tables for
MPLS or in the IP forwarding tables for IPv6.

B. Analysis of the use cases

In Table 2 we report which use cases, among those
presented in [4] [5] [6], are supported by the PMSR
architecture. In general, all use cases which do not require
the Prefix segments are well supported.

From the analysis of the use cases, we realized that
most of the use cases only require the Node-SIDs. In these
cases, PMSR directly applies bringing the clear advantage
of automatic generation of SIDs with no need to enhance
routing protocols. Some TE related use cases require the
use of Adj-SIDs, which in PMSR are mapped into DL-

SIDs. In the rest of the paper we identify a TE use case
that requires Adj-SID in the traditional SR architecture,
and analyze the implications of using DL-SIDs in the
PMSR architecture.

IV. TRAFFIC ENGINEERING USE CASE

The flow assignment problem consists in assigning a path
to a set of flows. In a SR context, two types of flow
assignment problems can be addressed: 1) ECMP-aware
SR path assignment; 2) traditional hop-by-hop path
assignment. The former is based on the identification of a
set of nodes to be crossed, assuming that the flow will be
evenly spread between the set of equal-cost paths towards
the next segment by each node in the path. The traditional

hop-by-hop path assignment does not rely on load sharing
performed by nodes, because a single path for a flow is
deterministically assigned. In general, the capacity of
exploiting TE based on the ECMP-aware path assignment
is one key advantage of SR, with respect to traditional TE
architectures (e.g., based on MPLS) that are only capable
of working with hop-by-hop paths. Anyway, there can be
use cases that advocate the use of deterministic hop-by-

hop paths. As an example scenario, consider flows
corresponding to single TCP connections. The ECMP
output link selection is performed hashing the TCP ports
and it will deterministically select a single output link for
each crossed node. The assumption of even load sharing
across the different ECMP paths is not verified in this
case, leading to a mismatch between the planned and the
actual resource allocation.

In this work, we focus on traditional hop-by-hop path
assignment. We suppose that a TE path assignment
algorithm is executed for a given set F of unidirectional
flows fi. As described in [9], we have used the one
originally proposed in [10] and [11].

Use case Support

IGP-based MPLS Tunneling [4] [5] OK
Fast Reroute [4] [5] [6] (Management free local
protection and Managed local protection)

OK

Path Protection [6] OK
Load balancing among non-parallel links [5] NO(1)
Capacity Planning Process [4] [5] OK
SDN/SR use case [4] [5] OK
Service Chaining [5] Easy(2)
OAM [5] OK
Interoperability with non-Spring nodes [4] OK
Disjointness in dual-plane networks [4] [5] OK(3)
CoS-based Traffic Engineering [5] OK(3)
Egress Peering Traffic Engineering [4] [5] Possible(4)

Distributed CSPF-based Traffic Engineering [5] OK
Deterministic non-ECMP Path [5] OK

(1) This use case requires the advertising of a special adjacency
segment that represents multiple outgoing links. In PMSR, this
could be solved with workarounds based on SDN approach.
(2) In order to support Service Chaining new locally scoped SIDs
have to be introduced. This can be easily introduced in PMSR
with a SDN approach that avoids the need for advertising the
local SIDs using routing protocols.
(3) These use cases include Anycast segments. There is no
substantial difference between these segments and the Node
segments used in PMSR.
(4) This use case includes BGP peering segments, which are
local segments distributed using BGP protocol. PMSR behaves
exactly like traditional SR here: it can support this use case, but
it does not avoid the need of distributing information with BGP.

Table 2 – Use cases

A. Mapping hop-by-hop paths into SR paths

For each flow fi, the corresponding hop-by-hop path Pi is
determined by the sequence of nodes and edges:
Pi = { ni0=si, ei1, ni1, ei2, ni2, .. , niN-1, eiN, niN=di }.

A SR path, denoted as Si, is a sequence of SIDs used
to steer packets through a given path (or a ECMP paths):
Si = {xi1, xi2, xi3, .. , xiM-1, xiM=d}
In PMSR, each SID can be a Node-SID or a DL-SID. A
Node-SID is simply represented by the node name n1,
while the corresponding DL-SID is here represented as
n1

*. In both cases, the SID corresponds to a node that
needs to be crossed before reaching the destination node.
Two consecutive nodes in a SR path Si do not need to be
adjacent as it is for Pi. When two consecutive nodes are
not adjacent, the links that will be crossed depend on the
underlying IP routing. If all the shortest paths from a
given node toward the next node in the SR path insist on
the same output link, then the output link is univocally
determined. If there are multiple shortest paths and they
insist on different output links, then the output link is not
univocally determined, and such SR path is not applicable
to the classical TE approach, in which the network
operator wants to deterministically route a flow over a
given path. A SR path is congruent to a hop-by-hop path if
the route enforced by the SR path is deterministically
equivalent to the one enforced by the hop-by-hop path. To
provide examples of hop-by-hop paths, of congruent SR
paths, and of the use of DL-SIDs, let us consider the
network topology depicted in Figure 1 and the two hop-

by-hop paths P1 and P2 (for shortness, only nodes are
reported):
P1 = { n1, n3, n5, n7 }; P2 = { n1, n2, n3, n4, n5, n6, n7 }

3

1 1

6

71

1

3

2

2

1

1

1 1

4

5

3

1 1

6

71

1

3

2

2

1

1

1 1

4

5
3

1 1

6

71

1

3

2

2

1

1

1 1

4

5

P
1

P
2

Figure 1 – A network topology and two hop-by-hop paths

The only SR path congruent to the hop-by-hop path P1 is
S1 = { n1, n3, n5

*, n7
* }

in which three segments are needed, and the direct-link
segment IDs n5

* and n7
* are respectively used to select the

links 3→5 and 5→7.
There are multiple SR paths that are congruent to the hop-

by-hop path P2; a subset of them is listed hereafter (they
only contain Node SIDs):
S2-a = { n1, n2, n4, n7 }

S2-b = { n1, n2, n3, n4, n7 }

S2-c = { n1, n2, n3, n4, n5, n6, n7 }
Among them, S2-a is the optimal SR path, in the sense that
it has the minimum number of segments.

V. OPTIMAL SR ASSIGNMENT PROCEDURE

In the SR assignment problem, given a hop-by-hop
path P, we want to find a congruent SR path S composed
of the minimum number of segments. In this section we
propose an efficient algorithm for the SR assignment, both
for traditional SR and for the proposed PMSR. We prove
that the algorithm finds the optimal solution, i.e. the
shortest list of SIDs that allows the packets to follow the

assigned hop-by-hop path, according to the default routing
tables of the nodes. Let us define the following notation.
• f: a single traffic flow from node s to node d,

characterized by its hop-by-hop path P:
P = { n0=s, n1, n2, .. , nN-1, nN=d };

• tep(x,y): portion of the hop-by-hop path starting from
node x and ending with node y. As particular case,
tep(s,d) is the complete hop-by-hop path from s to d;

• SPN(x,y): the number of equal-cost shortest paths from
x to y, based on the current routing tables that are
considered to be already set-up by a link-state routing
protocol (e.g. OSPF), using Shortest Path First
algorithm;

• sp(x,y): the set of the shortest paths from x to y; if
SPN(x,y) ≡ 1, it is the shortest path from x to y;

• prec(P,x): the preceding node of x along a path P;
• succ(P,x): the succeeding node of x along a path P;
• srp: the SR path containing the list of assigned SIDs;
• sp*(x,y*): the set of direct-links biased shortest paths

from x to y*; a direct-links biased shortest path is built
heading from x to y on a shortest path, unless there is a
direct link from an intermediate node to y, which is
always followed;

• SPN*(x,y*): number of direct-links biased shortest
paths sp*(x,y*).
A pseudo-code representation of the SR assignment

algorithm for the traditional SR architecture is reported in
Figure 2 (T_SRP stands for Traditional SR Path). The
algorithm takes as input the topology and the assigned
hop-by-hop path, and returns as output a congruent
“optimal” SR path.

function T_SRP: (tep(s, d)) → srp
 x = s; y = d; srp = {}
 START:
 p = tep(x, y);
 // check if the sub-path p is the only shortest path
 if ((SPN(x, y) == 1) AND (sp(x, y) == p)) then
 ADD y to srp; goto ADDED:
 else
 // check if the sub-path p is just one link
 if (prec(p, y) == x) then
 ADD Adj-SID of e(x,y) to srp; goto ADDED:
 else
 // no segment added, try with a shorter path
 // (from x to the node that precedes y)
 y = prec(p, y); goto START:
 ADDED:
 if (y != d) then
 // consider the remaining part of the path
 x = y ;y = d; goto START:
 return srp;

Figure 2 – Pseudo-code of SR path assignment for traditional SR

The DL_SRP algorithm reported in Figure 3 takes as
input the SR path (that includes Adj-SIDs) computed by
T_SRP and returns, as output, a SR path that includes only
Node-SIDs and DL-SIDs. When possible, it replaces a
couple of Node-SID + Adj-SID with a single DL-SID.
When a single DL-SID is not enough to enforce the
required hop-by-hop path, the algorithm will leave a
couple Node-SID + DL-SID. The algorithm inspects step-
by-step the SR path and replaces any Adj-SID with the
corresponding DL-SID. The Node-SID that precedes the

Adj-SID is kept only when required, that is when there is
more than one direct-links biased shortest path from the
node that precedes the current Node-SID and the
successive DL-SID, or if such a direct-links biased
shortest path differs from the hop-by-hop path.
function DL_SRP: srp → dlsrp
 dlsrp = {}
 for (i = 0; i < srp.length; i++)
 if (srp[i] is an Adj-SID) then
 d = destination of srp[i];
 ADD d* to dlsrp;
 else
 if (srp[i+1] is not an Adj-SID) then
 ADD srp[i] to dlsrp;
 else
 if (SPN*(srp[i-1],srp[i+1]) > 1 OR
 sp*(srp[i-1],srp[i+1]*) != tep(srp[i-1],srp[i+1]))
 then
 ADD srp[i] to dlsrp;
 return dlsrp;

Figure 3 – Replacement of adjacency SIDs with direct-link SID

A. Optimality of the SR path assignment

The proposed SR path assignment algorithm is not
exhaustive, as there are many possible SR paths that are
not evaluated. It is therefore needed that the chosen SR
path is minimal in terms of the number of hops. We have
demonstrated the optimality, the proof is omitted here for
space reasons and can be found in [17].

VI. IMPLEMENTATION AND EVALUATION

The PMSR solution and TE algorithms have been
implemented; further details on the implementation
(referring to a simpler, earlier version) are described in
[8][9]. The source code is available at [13], including the
Java implementation of the flow assignment and SR path
assignment algorithms. A ready-to-go virtual machine is
available [12]. A simple experimental evaluation of the
processing time of the proposed DL-SID-based SR

assignment algorithm is available in [17] and omitted here
for space constraints.

VII. RELATED WORK

SR-IPv6 [18] provides an open source implementation of
IPv6 data plane for SR. Control plane and Traffic
Engineering aspects are not covered in [18].

The SPRING-OPEN project [19] is an ONOS [20] use
case, which provides an SDN-based implementation of
SR. Its architecture is based on a logically centralized
control plane, built on top of ONOS, and it drastically
eliminates the IP/MPLS control plane from the network.
Compared to SPRING-OPEN, our solution still considers
a traditional IP control plane (e.g., based on routing
protocols like OSPF or IS-IS).

In both [21] and [22] the authors deal with SR-based
ECMP-aware Traffic Engineering, proposing solutions for
the optimal allocation of traffic demands using an ECMP-
aware approach. Our TE problem is different, as we start
from hop-by-hop paths and try to optimize their mapping
into SR paths, keeping the constraint of the fixed routing
over the given hop-by-hop path.

In [23] two SR testbeds are described, one based on a
SDN scenario and another one based on a PCE scenario.

Both testbeds share a common SR Path computation
engine, that performs the hop-by-hop path computation
and SR path assignment. The proposed SR path
assignment algorithm provides the shortest segment list,
but the solution only considers global Node-SID,
therefore it cannot be applied to topologies with arbitrary
IGP link costs. In [24] a rather general TE algorithm for
SR is considered. It evaluates an optimal path for a flow,
according to an IGP metric and taking into account
bandwidth and delay constraints; then it minimizes (or
enforces a bound on) the number of segments. It considers
ECMP forwarding by default, but can also introduce
constraints to support a deterministic hop-by-hop path.
The solution is not able to support arbitrary hop-by-hop
paths when arbitrary IGP link costs are used.

VIII. CONCLUSIONS

In this paper we presented PMSR, a Segment Routing
solution that does not require enhancements to routing
protocols. PMSR is based on the use of global segment
identifiers that can be automatically generated by nodes.
We discussed the advantages of PMSR (in terms of
simplification of management and reduction of node
complexity) and advocated the suitability of PMSR to
support the typical SR use cases. As the PMSR requires
the introduction of Direct Link Segments to replace
traditional SR Adjacency Segments, we considered a
Traffic Engineering use case that requires the Adjacency
Segments. We proposed an algorithm for the SR path
allocation, useful for both traditional SR with Adjacency
Segments and for PMSR with direct-link Segments. We
proved that it is optimal in terms of the number of
allocated segments and empirically verified that the
execution time is small compared with the TE heuristic
preliminarily needed to allocate the hop-by-hop path.

ACKNOWLEDGMENTS

This work builds on the results of DREAMER project,
partly funded by the EU as one of the beneficiary projects
of the GÉANT Open Call research initiative.

REFERENCES
[1] C. Filsfils, S. Previdi (Eds.) et al. “Segment Routing Architecture”,

IETF draft-ietf-spring-segment-routing-04, July 2015
[2] P. Psenak, S. Previdi (Eds.) et al. “OSPF Extensions for Segment

Routing”, IETF draft-ietf-ospf-segment-routing-extensions-05,
June 2015

[3] S. Previdi (Ed.) et al. “IS-IS Extensions for Segment Routing”,
IETF draft-ietf-isis-segment-routing-extensions-05, June 2015

[4] S. Previdi, C. Filsfils (Eds.), “SPRING Problem Statement and
Requirements”, draft-ietf-spring-problem-statement-04

[5] C. Filsfils, P. Francois (Eds.), et al. “Segment Routing Use Cases”,
IETF draft-filsfils-spring-segment-routing-use-cases-01, October
2014

[6] P. Francois, C. Filsfils, B. Decraene, R. Shakir, “Use-cases for
Resiliency in SPRING”, IETF draft-ietf-spring-resiliency-use-
cases-01, March, 2015

[7] “Software-Defined Networking: The New Norm for Networks”,
ONF White Paper, April 13, 2012

[8] L. Davoli, L. Veltri, P. L. Ventre, G. Siracusano, S. Salsano,
“Traffic Engineering with Segment Routing: SDN-based
Architectural Design and Open Source Implementation”, EWSDN
2015, 30 September – 2 October 2015, Bilbao, Spain

[9] L. Davoli, L. Veltri, P. L. Ventre, G. Siracusano, S. Salsano,
“Traffic Engineering with Segment Routing: SDN-based
Architectural Design and Open Source Implementation”, extended

version of poster presented at EWSDN 2015, available at
https://arxiv.org/abs/1506.05941

[10] L. Fratta, M. Gerla, L. Kleinrock, The flow deviation method: an
approach to store-and-forward communication network design,
Network, 3(2):97-133, 1973, John Wiley & Sons

[11] M. Gerla, L. Kleinrock, On the topological design of distributed
computer networks, IEEE Transactions on Communications,
25(1):48-60, 1977

[12] OSHI homepage http://netgroup.uniroma2.it/OSHI
[13] https://github.com/netgroup/SDN-TE-SR
[14] S. Knight et al. “The Internet Topology Zoo”, IEEE Journal on

Selected Areas in Communications, Vol. 29, No. 9, October 2011
[15] S. Salsano et al. "OSHI-Open Source Hybrid IP/SDN networking

and Mantoo-a set of management tools for controlling SDN/NFV
experiments." arXiv preprint arXiv:1505.03579 (2015).

[16] C. Filsfils et al., “Segment Routing with MPLS data plane”, IETF
draft-ietf-spring-segment-routing-mpls-00, November 2014.

[17] S. Salsano et al, “PMSR - Poor Man’s Segment Routing, a
minimalistic approach to Segment Routing and a Traffic
Engineering use case”, extended version, available online:
https://arxiv.org/abs/1512.05281

[18] SR-IPv6 homepage - http://www.segment-routing.org/.
[19] SPRING-OPEN homepage -

https://wiki.onosproject.org/display/ONOS10/Segment+Routing
[20] ONOS homepage - http://onosproject.org/
[21] R, Hartert,, et al. “Solving the General Segment Routing Problem

with Constraint Programming Techniques”
[22] R. Bhatia, et al. “Optimized network traffic engineering using

segment routing”, IEEE INFOCOM 2015
[23] A. Sgambelluri, et al. “Experimental Demonstration of Segment

Routing”, Journal of Lightwave Technology, Vol: PP , Issue: 99
[24] F. Lazzeri, et al., “Efficient label encoding in segment-routing

enabled optical networks”, ONDM 2015

