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Abstract – The current specification of the Segment Routing 

(SR) architecture requires enhancements to the intra-

domain routing protocols (e.g. OSPF and IS-IS) so that the 

nodes can advertise the Segment Identifiers (SIDs). We 

propose a simpler solution called PMSR (Poor Man’s 

Segment Routing), that does not require any enhancement to 

routing protocol. We compare the procedures of PMSR with 

traditional SR, showing that PMSR can reduce the operation 

and management complexity. We analyze the set of use cases 

in the current SR drafts and we claim that PMSR can 

support the large majority of them. Thanks to the drastic 

simplification of the control plane, we have been able to 

develop an open source prototype of PMSR. In the second 

part of the paper, we consider a Traffic Engineering use 

case, starting from a traditional flow assignment 

optimization problem, which allocates hop-by-hop paths to 

flows. We propose a SR path assignment algorithm and 

prove that it is optimal with respect to the number of 

segments allocated to a flow.  
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I. INTRODUCTION 

The Segment Routing (SR) architecture [1] is based on 
the source routing approach: border nodes can control the 
edge-to-edge routing of packets at the level of single 
flows by adding proper information in packet headers. 
This way, it offers advanced traffic steering capabilities in 
IP networks maintaining scalability both in the data and 
control planes. In fact, internal nodes do not need to store 
any per-flow state and the traffic steering decisions have a 
configuration impact only on border nodes. 

The SR lends itself to support different applications: 
Virtual Private Networks (VPNs), protection/restoration, 
Traffic Engineering (TE), Service Function Chaining 
(SFC), Operation Administration and Management 
(OAM). Although the standardization activity on the SR 
architecture is relatively recent, the status of the draft is 
mature and different independent implementations are 
now available. Real world deployments are ongoing, as 
SR has captured the interest of network providers and of 
“Over the Top” Providers. 

On the data plane, the Segment Routing architecture 
can be implemented in different ways; in particular MPLS 
and IPv6 are the two data plane technologies that have 
been considered in the standardization. 

Let us consider the control plane. In its current 
specification, the SR architecture [1] (Section II) requires 
enhancements to routing protocols (e.g. [2][3]) in order to 
distribute the Segment Identifiers (SIDs). In Section 0 we 
propose a minimalistic approach that does not need to 

explicitly distribute information among nodes and hence 
does not require enhancements to the routing protocols. 
We refer to this solution as “Poor Man’s Segment 
Routing” (PMSR), but we claim that it can efficiently 
support the large majority of the use cases of traditional 
Segment Routing. In Section III.A, we identify a set of 
use cases among the ones described in [4][5][6] which can 
be supported by the proposed solution. 

In general, the computation of the source routed paths 
and the configuration of the border nodes can be realized 
either in a distributed or in a centralized way. In the 
former case, the control logic of border nodes needs to be 
further enhanced. In the latter case, the Software Defined 
Networking (SDN) architecture [7] represents a perfect 
fit: a SDN approach can be used to properly configure the 
SR services in the border nodes, with minimal or no 
increase of the complexity of the border node. The PMSR 

approach is in line with the SDN philosophy of removing 

complexity from the forwarding nodes. 
To the best of our knowledge, currently there are no 

open source implementations of the IP control plane 
extensions needed to support the traditional full-fledged 
SR architecture (i.e., the routing protocol enhancements). 
On the other hand, we have been able to fully implement 
the control plane and the data plane of PMSR starting 
from open source tools with rather limited effort [8]. 

In the second part of this work we focus on Traffic 
Engineering aspects. We start from a traditional flow 
assignment optimization procedure, which allocates hop-

by-hop paths to flows (Section IV). Then in Section V we 
propose a SR path assignment algorithm both for the 
traditional SR architecture and for the proposed PMSR. 
We prove that, starting from an arbitrary hop-by-hop path, 
it can evaluate the optimal SR path (i.e., the one with the 
minimum number of segments). We describe a simple 
experimental evaluation (Section VI) of the algorithm, 
showing that its execution time is much smaller than the 
execution time of the flow assignment procedure.  

II. CURRENT SEGMENT ROUTING 

ARCHITECTURE 

In the Segment Routing architecture [1] the route of a 
packet is enforced through an ordered list of 
processing/forwarding functions, called segments, that is 
inserted in the packet header by a border node. A segment 
may consist in a logical or physical element, for example 
a network node, a network link, or a packet filter. Each 
segment is identified by a Segment ID (SID). The scope 
of a SID can be global or local. Global SIDs are defined 



 

globally in a SR domain and are recognized by all 
network nodes of the domain. Instead, Local SIDs are 
defined locally within a node. The use of local SIDs by 
other nodes requires an explicit distribution mechanism or 
some form of centralized coordination. 

Among the different types of segments described in 
[1], we consider Prefix segments, Node segments and IGP 
Adjacency segments (IGP stands for Interior Gateway 
Protocol). Their corresponding Segments IDs are denoted 
as Prefix-SIDs, Node-SIDs and Adj-SIDs. 

The Prefix-SIDs represent IGP prefixes, i.e. blocks of 
IP addresses that are advertised, by the routing protocol, 
through the nodes composing the network. The routing 
algorithm (Shortest Path First) is used by each node to 
evaluate the shortest path towards the prefix and to add a 
corresponding entry in its routing table. With SR, a node 
can associate a Prefix-SID to its attached prefix and 
advertise it. To clarify with an example in the MPLS 
architecture (with global SIDs), a node that has the 
network 10.10.1.0/24 attached can associate the MPLS 
label 10001 as Prefix-SID and advertise this association 
using the routing protocol. All nodes will forward the 
MPLS label 10001 using the routing information available 
for the network 10.0.1.0/24. 

A particular case of Prefix-SID is the Node-SID, 
which considers a /32 prefix, i.e. a single node. “From 

anywhere in the network, a Node-SID enforces the 

ECMP-aware shortest-path forwarding of the packet 

towards the related node.” [1] (ECMP stands for Equal-
Cost Multiple-Path routing). In particular, the “loopback 
interface” address that is used to univocally refer to a 
router is associated to a Node-SID and advertised by each 
router. Even if a Node-SID is a particular type of Prefix-
SID, from now on we will denote as Prefix-SIDs only the 
SIDs that are not Node-SIDs, i.e. those that effectively 
represent a range of IP addresses with a netmask different 
from /32.  

The Node-SIDs, corresponding to the loopback 
interface of a node, are advertised by the node itself, while 
the Prefix-SIDs are advertised by the nodes that inject the 
routes into the IGP domain. The SID values cannot be 
arbitrarily chosen by the nodes, but a global coordination 
is needed. Quoting from [1]: “A Prefix-SID/Node-SID is 

allocated […] according to a process similar to IP 

address allocation. Typically the Prefix-SID/Node-SID is 

allocated by policy by the operator (or Network 

Management System) and the SID very rarely changes.”. 
The global coordination procedure needs: i) to contact all 
nodes that can advertise the SIDs; ii) to map prefixes and 
loopback interface addresses to SIDs in a coordinated 
manner. The logical scalability of this management 
procedure is O(ρ+η), where ρ is the number of prefixes 
and η is the number of nodes that will advertise their 
loopback interface. Routing protocol extensions are used 
to automatically disseminate the mapping between SIDs 
and prefixes/nodes, otherwise the scalability of the 
configuration would become O(η·(ρ+η)). 

The third type of segment defined in [1] is the 
Adjacency segment. It corresponds to a unidirectional 
adjacency of the routing protocol, that is a specific 

outgoing link from a source node towards a destination 
node. The Adjacency segments are represented by Adj-
SIDs and, usually, they are local SIDs, that can be 
processed only by the node that has advertised it. For 
example, assume that node n advertises its global Node-
SID GNn and one local Adj-SID LAnm for the outgoing 
interface from node n to node m. A packet carrying the list 
of segments {GNn, LAnm} will be forwarded first to node 
n, then by the node n towards the node m. The local Adj-
SID needs to be advertised by the node n to all the other 
nodes, so that the ingress border node that evaluates SR 
path can include it in the segment list, but this has no 
impact on the routing state of the crossed nodes. It is also 
possible to advertise an Adjacency segment as a global 
segment, in the example above a global Adj-SID GAnm 
can be advertised by node n. The segment list to obtain 
the same behavior will be reduced to a single segment 
{GAnm}, but the routing state of all nodes of the network 
should be dynamically updated following the distribution 
of the global Adj-SID. In fact, all network nodes should 
be capable to process the SID GAnm, by forwarding the 
packet towards node n, while the node n will be the only 
one that will forward the packet on its outgoing interface 
toward m. Global Adj-SIDs greatly increase the amount of 
routing state that needs to be maintained by nodes. 

The Adj-SIDs are interesting for Traffic Engineering 
purposes because they allow to map an arbitrary path, 
composed by a sequence of links, into a list of segments. 
Using only Node-SIDs in SR paths, it is not possible to 
use links that are not chosen by the IGP protocol to reach 
the destination node of the link, such as a backup link 
with high assigned cost. In fact, Node-SIDs always 
forward packets on paths selected by the IGP protocol. 

In the MPLS SR Data Plane the use of indexes has 
been proposed for SIDs: the MPLS label, that represents a 
segment is generated by combining the index value with 
the information related to the sets of MPLS labels made 
available by a given node for SR (called Segment Routing 
Global Block - SRGB). This approach requires the 
distribution of the SRGB information through extensions 
to the routing protocols. As mentioned in [5] “Several 

operators have indicated that they would deploy the SR 

technology in this way: with a single consistent SRGB 

across all the nodes. They motivated their choice based on 

operational simplicity...”. We also rule out the possibility 
of having different SRGBs advertised by the nodes and 
we only use “absolute” SIDs. 

III. POOR MAN’S SEGMENT ROUTING (PMSR) 

In PMSR, we want to avoid the distribution of SIDs by 
the SR nodes, as it would imply significant extensions to 
the routing protocol and to the routing daemons 
implementing the protocol. For this reason, we only use 
global SIDs that can be automatically generated by each 
node in a distributed fashion, with no need of explicit 
advertising (and no extensions to routing protocols). We 
advocate that a significant coverage of the SR use cases 
can be achieved by only using global segments that can be 
automatically generated. 



 

In case of Node-SIDs, it is relatively easy to define an 
automatic mapping between the IP addresses of the node 
loopback interface and the SID. In case of MPLS SR 
architecture, the SID is a MPLS label, and a mapping 
between IP address of the loopback interface and the 
corresponding MPLS label is needed. Assuming that the 
IP addresses of the loopback interfaces of the nodes 
belong to a contiguous range of IP addresses, this 
mapping is typically as simple as extracting the N 
rightmost bits of the IP address and then offsetting the 
resulting value in a specifically allocated portion of the 
MPLS label space (e.g., N=16, if we want to allow for 
65536 different nodes in the IGP routing domain, while 
the whole available MPLS label space is of 20 bits). 

Mapping arbitrary prefixes into SIDs with an 
automatic procedure is not so easy. Therefore we simply 
consider not to use Prefix-SIDs in our PMSR architecture. 
We will show that we do not lose too much functionality 
with this choice. On the other hand, we cannot get rid of 
Adj-SIDs, for the reasons explained in the previous 
section. Hence, in order to avoid the use of local Adj-
SIDs, we propose the introduction of a new type of global 
segment called direct-link segment identified by a direct-

link SID (DL-SID). Similarly to a Node-SID, a DL-SID 
identifies a target destination node to be reached with the 
following difference: if the node that is processing a DL-

SID has a direct link toward the node identified by the 
DL-SID, the direct link is used rather than the shortest 
path dictated by the routing protocol. Conversely, if the 
node does not have a direct link toward the target node, it 
will process the segment in the same way it processes a 
Node-SID addressing the same destination node. In order 
to simplify the usage of DL-SIDs they should be 
automatically generated from the target node they address. 
In case of MPLS SR, the DL-SID can be defined starting 
from the Node-SID identifying the destination node, and 
adding a bit to distinguish between DL-SID and Node-
SID. In case of IPv6SR, DL-SIDs must be IPv6 addresses 
(globally valid in the network domain) deterministically 
derived from the loopback interface addresses. As an 
example, we can suppose that Node-SIDs are restricted to 
have an odd numbered Device address part of the IPv6 
address, so that the DL-SIDs will be even numbered, 
obtained by adding one to the Device address part of the 
IPv6 address of the localhost interface. 

A limitation of the proposed DL-SID approach is that 
it does not allow the handling of multiple parallel links 
between two routers at layer 3, i.e. with different IP 
addresses. If present, such multi-links must be handled at 
layer 2 and seen at IP level as a single link. Having 
multiple parallel links bonded at layer 2 is anyway a 
typical solution for operators, so we believe that it is not a 
critical limitation. 

There are advantages in using the automatically 
generated global DL-SIDs rather than the local Adj-SIDs 
or the global Adj-SID. Consider the strict source routing 
case, that is enforcing a path through a set of links. Using 
local Adj-SIDs, the segment list will have a length equal 
to the double of the number of links. In fact, for each link 
to be crossed, first the source node needs to be addressed, 

then the local Adj-SID will indicate the outgoing link. 
Using global Adj-SIDs, the list will be equal to the 
number of links, but the global Adj-SIDs needs to be 
advertised and one entry for each advertised Adj-SID 
needs to be added in the routing state of all nodes. In 
PMSR, with automatically generated global DL-SIDs the 
length of a segment list to enforce a path through a set of 
links also equals the number of links (like with the global 
Adj-SID), but there is no need to advertise SIDs, and in 
each node it is only needed to add an additional entry for 
each node instead that for each link. 

Let η be the number of nodes and k be the number of 
unidirectional links; in the worst case, k=O(η2). 

 
 Traditional SR PMSR 

 
Local 

Adj-SID 
Global 

Adj-SID 
Autom. 

DL-SIDs 

Need to configure nodes 
with SIDs 

Yes, O(η) 
nodes 

Yes, O(η) 
nodes 

No 

Need to advertise SIDs Yes Yes No 

Routing state O(η) 
O(η+k), 

O(η+η2) 
O(2η) 

SR path length for a 
path of λ links 

LLocal-Adj-SID 
≤ 2λ 

LGlobal-Adj-SID ≤ 
λ 

LDL-SID ≤ 
2λ 

Table 1 – Traditional SR vs. PMSR 

Note that, in case of strict source routing, a list of local 
Adj-SIDs corresponding to the number of the links would 
actually be enough. However, we do not consider this 
solution for two reasons. First, because it is critical in case 
of failures of nodes/links in the path: intermediate nodes 
cannot reroute the packets and protection should be 
enforced edge-to-edge. Second, we are interested to the 
case of loose source routing (i.e. the segment list only 
includes a subset of the nodes in the path), because we 
want to use a small number of segments to create paths in 
SR. If loose source routing is used, we will see that in 
some cases a DL-SID could be not enough to uniquely 
identify a specific path and a couple of Node-SID + DL-

SID will be needed. Table 1 summarizes the comparison 
between using PMSR (with global DL-SIDs) and the 
traditional SR with local and global Adj-SIDs. 

A. Node tables update procedures 

The SR-capable forwarding nodes need to populate 
their forwarding tables with entries related to the SIDs. In 
the traditional SR architecture, besides the Control Plane 
enhancements to distribute the SIDs, proper mechanisms 
to insert/update the forwarding table entries are needed. 
As an example, when receiving an announcement for a 
prefix-SID, the node will add an entry for the SID. If the 
forwarding architecture of the node allows it, the entry 
will be a “pointer” to the existing routing entry for the 
prefix. In this way, the routing toward the prefix can 
change, but the entry for the SID does not need to be 
updated. If it is not possible to add the “pointer”, the entry 
for the SID needs to explicitly specify the next 
hop/outgoing interface and, in this case, it needs to be 
updated later if the routing towards the prefix will change. 
In the MPLS-based architecture, the SID is a MPLS label, 
therefore an entry will be added to the label forwarding 
tables, either specifying a logical link between the label 



 

and the IP forwarding information of the prefix or 
providing the indication of the next hop/output interface. 

In the proposed PMSR architecture, the procedures for 
populating the forwarding tables are very simple and they 
do not rely on the processing of extensions to routing 
protocols. The entries for Node-SIDs and DL-SIDs are 
added following the routing information for the loopback 
addresses of the network nodes in the domain. For each 
entry related to a node loopback address there will be one 
entry for the corresponding Node-SID and one for the 
corresponding DL-SID. As discussed above, if it is 
possible to have a “pointer” to the routing entry for the 
remote loopback address, the entry will not need to be 
updated later on, otherwise the entry will contain the next 
hop/outgoing interface towards the remote loopback 
address and it will need to be updated if the routing 
changes.  

For each remote loopback address to be added, the 
following steps are needed: 1) evaluate the Node-SID and 
the DL-SID for the remote node IP loopback address; 2) 
add(update) the entry for the Node-SID, pointing to the 
routing entry or extracting the next hop/outgoing interface 
from the routing entry; 3) if the node does not have a 
direct link toward the remote node, add(update) the entry 
for the DL-SID in the same way as described in step 2) for 
the Node-SID; if the node has a direct link toward the 
remote node, add the entry for the DL-SID pointing to the 
direct outgoing link, irrespective of the routing 
information. The evaluation of the Node-SID and DL-SID 
for the remote node depends on the Data Plane 
technology: for MPLS a label will be evaluated, for IPv6 
an IP address will be considered. The addition of the 
entries will be performed in the label forwarding tables for 
MPLS or in the IP forwarding tables for IPv6. 

B. Analysis of the use cases 

In Table 2 we report which use cases, among those 
presented in [4] [5] [6], are supported by the PMSR 
architecture. In general, all use cases which do not require 
the Prefix segments are well supported.  

From the analysis of the use cases, we realized that 
most of the use cases only require the Node-SIDs. In these 
cases, PMSR directly applies bringing the clear advantage 
of automatic generation of SIDs with no need to enhance 
routing protocols. Some TE related use cases require the 
use of Adj-SIDs, which in PMSR are mapped into DL-

SIDs. In the rest of the paper we identify a TE use case 
that requires Adj-SID in the traditional SR architecture, 
and analyze the implications of using DL-SIDs in the 
PMSR architecture.  

IV. TRAFFIC ENGINEERING USE CASE 

The flow assignment problem consists in assigning a path 
to a set of flows. In a SR context, two types of flow 
assignment problems can be addressed: 1) ECMP-aware 
SR path assignment; 2) traditional hop-by-hop path 
assignment. The former is based on the identification of a 
set of nodes to be crossed, assuming that the flow will be 
evenly spread between the set of equal-cost paths towards 
the next segment by each node in the path. The traditional 

hop-by-hop path assignment does not rely on load sharing 
performed by nodes, because a single path for a flow is 
deterministically assigned. In general, the capacity of 
exploiting TE based on the ECMP-aware path assignment 
is one key advantage of SR, with respect to traditional TE 
architectures (e.g., based on MPLS) that are only capable 
of working with hop-by-hop paths. Anyway, there can be 
use cases that advocate the use of deterministic hop-by-

hop paths. As an example scenario, consider flows 
corresponding to single TCP connections. The ECMP 
output link selection is performed hashing the TCP ports 
and it will deterministically select a single output link for 
each crossed node. The assumption of even load sharing 
across the different ECMP paths is not verified in this 
case, leading to a mismatch between the planned and the 
actual resource allocation.  

In this work, we focus on traditional hop-by-hop path 
assignment. We suppose that a TE path assignment 
algorithm is executed for a given set F of unidirectional 
flows fi. As described in [9], we have used the one 
originally proposed in [10] and [11].  

 
Use case Support 

IGP-based MPLS Tunneling [4] [5] OK 
Fast Reroute [4] [5] [6] (Management free local 
protection and Managed local protection) 

OK 

Path Protection [6] OK 
Load balancing among non-parallel links [5] NO(1) 
Capacity Planning Process [4] [5] OK 
SDN/SR use case [4] [5] OK 
Service Chaining [5] Easy(2) 
OAM [5] OK 
Interoperability with non-Spring nodes [4] OK 
Disjointness in dual-plane networks [4] [5] OK(3) 
CoS-based Traffic Engineering [5] OK(3) 
Egress Peering Traffic Engineering [4] [5] Possible(4) 

Distributed CSPF-based Traffic Engineering [5] OK 
Deterministic non-ECMP Path [5] OK 

(1) This use case requires the advertising of a special adjacency 
segment that represents multiple outgoing links. In PMSR, this 
could be solved with workarounds based on SDN approach. 
(2) In order to support Service Chaining new locally scoped SIDs 
have to be introduced. This can be easily introduced in PMSR 
with a SDN approach that avoids the need for advertising the 
local SIDs using routing protocols. 
(3) These use cases include Anycast segments. There is no 
substantial difference between these segments and the Node 
segments used in PMSR. 
(4) This use case includes BGP peering segments, which are 
local segments distributed using BGP protocol. PMSR behaves 
exactly like traditional SR here: it can support this use case, but 
it does not avoid the need of distributing information with BGP. 

Table 2 – Use cases 

A. Mapping hop-by-hop paths into SR paths 

For each flow fi, the corresponding hop-by-hop path Pi is 
determined by the sequence of nodes and edges: 
Pi = { ni0=si, ei1, ni1, ei2, ni2, .. , niN-1, eiN, niN=di }. 



 

A SR path, denoted as Si, is a sequence of SIDs used 
to steer packets through a given path (or a ECMP paths):  
Si = {xi1, xi2, xi3, .. , xiM-1, xiM=d} 
In PMSR, each SID can be a Node-SID or a DL-SID. A 
Node-SID is simply represented by the node name n1, 
while the corresponding DL-SID is here represented as 
n1

*. In both cases, the SID corresponds to a node that 
needs to be crossed before reaching the destination node. 
Two consecutive nodes in a SR path Si do not need to be 
adjacent as it is for Pi. When two consecutive nodes are 
not adjacent, the links that will be crossed depend on the 
underlying IP routing. If all the shortest paths from a 
given node toward the next node in the SR path insist on 
the same output link, then the output link is univocally 
determined. If there are multiple shortest paths and they 
insist on different output links, then the output link is not 
univocally determined, and such SR path is not applicable 
to the classical TE approach, in which the network 
operator wants to deterministically route a flow over a 
given path. A SR path is congruent to a hop-by-hop path if 
the route enforced by the SR path is deterministically 
equivalent to the one enforced by the hop-by-hop path. To 
provide examples of hop-by-hop paths, of congruent SR 
paths, and of the use of DL-SIDs, let us consider the 
network topology depicted in Figure 1 and the two hop-

by-hop paths P1 and P2 (for shortness, only nodes are 
reported): 
P1 = { n1, n3, n5, n7 }; P2 = { n1, n2, n3, n4, n5, n6, n7 } 
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Figure 1 – A network topology and two hop-by-hop paths 

The only SR path congruent to the hop-by-hop path P1 is 
S1 = { n1, n3, n5

*, n7
* } 

in which three segments are needed, and the direct-link 
segment IDs n5

* and n7
* are respectively used to select the 

links 3→5 and 5→7. 
There are multiple SR paths that are congruent to the hop-

by-hop path P2; a subset of them is listed hereafter (they 
only contain Node SIDs): 
S2-a = { n1, n2, n4, n7 } 

S2-b = { n1, n2, n3, n4, n7 } 

S2-c = { n1, n2, n3, n4, n5, n6, n7 } 
Among them, S2-a is the optimal SR path, in the sense that 
it has the minimum number of segments. 

V. OPTIMAL SR ASSIGNMENT PROCEDURE 

In the SR assignment problem, given a hop-by-hop 
path P, we want to find a congruent SR path S composed 
of the minimum number of segments. In this section we 
propose an efficient algorithm for the SR assignment, both 
for traditional SR and for the proposed PMSR. We prove 
that the algorithm finds the optimal solution, i.e. the 
shortest list of SIDs that allows the packets to follow the 

assigned hop-by-hop path, according to the default routing 
tables of the nodes. Let us define the following notation. 
• f: a single traffic flow from node s to node d, 

characterized by its hop-by-hop path P: 
P = { n0=s, n1, n2, .. , nN-1, nN=d }; 

• tep(x,y): portion of the hop-by-hop path starting from 
node x and ending with node y. As particular case, 
tep(s,d) is the complete hop-by-hop path from s to d; 

• SPN(x,y): the number of equal-cost shortest paths from 
x to y, based on the current routing tables that are 
considered to be already set-up by a link-state routing 
protocol (e.g. OSPF), using Shortest Path First 
algorithm; 

• sp(x,y): the set of the shortest paths from x to y; if 
SPN(x,y) ≡ 1, it is the shortest path from x to y; 

• prec(P,x): the preceding node of x along a path P; 
• succ(P,x): the succeeding node of x along a path P; 
• srp: the SR path containing the list of assigned SIDs; 
• sp*(x,y*): the set of direct-links biased shortest paths 

from x to y*; a direct-links biased shortest path is built 
heading from x to y on a shortest path, unless there is a 
direct link from an intermediate node to y, which is 
always followed; 

• SPN*(x,y*): number of direct-links biased shortest 
paths sp*(x,y*). 
A pseudo-code representation of the SR assignment 

algorithm for the traditional SR architecture is reported in 
Figure 2 (T_SRP stands for Traditional SR Path). The 
algorithm takes as input the topology and the assigned 
hop-by-hop path, and returns as output a congruent 
“optimal” SR path. 

function T_SRP: (tep(s, d)) → srp  
 x = s; y = d;  srp = {} 
 START: 
 p = tep(x, y); 
 // check if the sub-path p is the only shortest path 
 if ((SPN(x, y) == 1) AND (sp(x, y) == p)) then 
  ADD y to srp; goto ADDED: 
 else 
  // check if the sub-path p is just one link 
  if (prec(p, y) == x) then 
   ADD Adj-SID of e(x,y) to srp; goto ADDED: 
  else 
   // no segment added, try with a shorter path 
   // (from x to the node that precedes y)  
   y = prec(p, y); goto START: 
 ADDED: 
 if (y != d) then 
  // consider the remaining part of the path 
  x = y ;y = d; goto START: 
 return srp; 

Figure 2 – Pseudo-code of SR path assignment for traditional SR 

The DL_SRP algorithm reported in Figure 3 takes as 
input the SR path (that includes Adj-SIDs) computed by 
T_SRP and returns, as output, a SR path that includes only 
Node-SIDs and DL-SIDs. When possible, it replaces a 
couple of Node-SID + Adj-SID with a single DL-SID. 
When a single DL-SID is not enough to enforce the 
required hop-by-hop path, the algorithm will leave a 
couple Node-SID + DL-SID. The algorithm inspects step-
by-step the SR path and replaces any Adj-SID with the 
corresponding DL-SID. The Node-SID that precedes the 



 

Adj-SID is kept only when required, that is when there is 
more than one direct-links biased shortest path from the 
node that precedes the current Node-SID and the 
successive DL-SID, or if such a direct-links biased 
shortest path differs from the hop-by-hop path. 
function DL_SRP: srp → dlsrp 
 dlsrp = {} 
 for (i = 0; i < srp.length; i++) 
  if (srp[i] is an Adj-SID) then 
   d = destination of srp[i];  
   ADD d* to dlsrp; 
  else  
   if (srp[i+1] is not an Adj-SID) then 
    ADD srp[i] to dlsrp; 
   else  
    if (SPN*(srp[i-1],srp[i+1]) > 1 OR 
    sp*(srp[i-1],srp[i+1]*) != tep(srp[i-1],srp[i+1])) 
    then 
     ADD srp[i] to dlsrp; 
 return dlsrp; 

Figure 3 – Replacement of adjacency SIDs with direct-link SID 

A. Optimality of the SR path assignment 

The proposed SR path assignment algorithm is not 
exhaustive, as there are many possible SR paths that are 
not evaluated. It is therefore needed that the chosen SR 
path is minimal in terms of the number of hops. We have 
demonstrated the optimality, the proof is omitted here for 
space reasons and can be found in [17]. 

VI. IMPLEMENTATION AND EVALUATION  

The PMSR solution and TE algorithms have been 
implemented; further details on the implementation 
(referring to a simpler, earlier version) are described in 
[8][9]. The source code is available at [13], including the 
Java implementation of the flow assignment and SR path 
assignment algorithms. A ready-to-go virtual machine is 
available [12]. A simple experimental evaluation of the 
processing time of the proposed DL-SID-based SR 

assignment algorithm is available in [17] and omitted here 
for space constraints.  

VII. RELATED WORK 

SR-IPv6 [18] provides an open source implementation of 
IPv6 data plane for SR. Control plane and Traffic 
Engineering aspects are not covered in [18]. 

The SPRING-OPEN project [19] is an ONOS [20] use 
case, which provides an SDN-based implementation of 
SR. Its architecture is based on a logically centralized 
control plane, built on top of ONOS, and it drastically 
eliminates the IP/MPLS control plane from the network. 
Compared to SPRING-OPEN, our solution still considers 
a traditional IP control plane (e.g., based on routing 
protocols like OSPF or IS-IS).  

In both [21] and [22] the authors deal with SR-based 
ECMP-aware Traffic Engineering, proposing solutions for 
the optimal allocation of traffic demands using an ECMP-
aware approach. Our TE problem is different, as we start 
from hop-by-hop paths and try to optimize their mapping 
into SR paths, keeping the constraint of the fixed routing 
over the given hop-by-hop path. 

In [23] two SR testbeds are described, one based on a 
SDN scenario and another one based on a PCE scenario. 

Both testbeds share a common SR Path computation 
engine, that performs the hop-by-hop path computation 
and SR path assignment. The proposed SR path 
assignment algorithm provides the shortest segment list, 
but the solution only considers global Node-SID, 
therefore it cannot be applied to topologies with arbitrary 
IGP link costs. In [24] a rather general TE algorithm for 
SR is considered. It evaluates an optimal path for a flow, 
according to an IGP metric and taking into account 
bandwidth and delay constraints; then it minimizes (or 
enforces a bound on) the number of segments. It considers 
ECMP forwarding by default, but can also introduce 
constraints to support a deterministic hop-by-hop path. 
The solution is not able to support arbitrary hop-by-hop 
paths when arbitrary IGP link costs are used.  

VIII. CONCLUSIONS 

In this paper we presented PMSR, a Segment Routing 
solution that does not require enhancements to routing 
protocols. PMSR is based on the use of global segment 
identifiers that can be automatically generated by nodes. 
We discussed the advantages of PMSR (in terms of 
simplification of management and reduction of node 
complexity) and advocated the suitability of PMSR to 
support the typical SR use cases. As the PMSR requires 
the introduction of Direct Link Segments to replace 
traditional SR Adjacency Segments, we considered a 
Traffic Engineering use case that requires the Adjacency 
Segments. We proposed an algorithm for the SR path 
allocation, useful for both traditional SR with Adjacency 
Segments and for PMSR with direct-link Segments. We 
proved that it is optimal in terms of the number of 
allocated segments and empirically verified that the 
execution time is small compared with the TE heuristic 
preliminarily needed to allocate the hop-by-hop path. 
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