
CONET: A Content Centric Inter-Networking Architecture

A. Detti, N. Blefari-Melazzi, S. Salsano, M. Pomposini
Department of Electronic Engineering, University of Rome “Tor Vergata”

Via del Politecnico 1, Rome (Italy)

{andrea.detti, blefari, stefano.salsano, matteo.pomposini}@uniroma2.it

ABSTRACT
CONET is a content-centric inter-network that provides users with
a network access to remote named-resources, rather than to
remote hosts. Named-resources can be either data (named-data) or
service-access-points (named-sap), identified by a network-
identifier (a name). CONET interconnects CONET Sub Systems,
which can be layer-2 networks, layer-3 networks or couples of
nodes connected by a point-to-point link. CONET supports the
already proposed “clean-slate” and “overlay” deployment
approaches. In addition, CONET supports a novel “integration”
approach, which extends the IP layer with a new header option
that makes IP itself content-aware. CONET limits the size of
name-based routing tables by including only a subset of all
named-resources; missing entries are looked up in a name-system
and then cached. CONET does not maintain states in network
nodes, to deliver contents.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design

General Terms
Algorithms, Design, Experimentation

Keywords
Internet architecture, content-centric networking, route-by-name,
in-network caching, route caching, IP option.

1. INTRODUCTION
Several papers (e.g. [1][2][3][4]) and research projects ([5][6][7])
propose a shift from “host-centric networking” to “information
centric” or “content-centric” networking. The essence of Content-
Centric Networking (CCN; we will speak of CCN to denote the
general trend) is that the network layer provides users with
contents, instead of providing communication channels between
hosts, and is aware of such contents, at least in the sense of
knowing the “name” of the contents. A CCN architecture should:

- address contents, using an addressing scheme based on names,
which do not include references to their location;

- route a user request, which includes a content-name, toward the
closest copy of the content with such a name (name-based,
anycast routing) and deliver the content to the requesting host;

- provide a native, in-network caching functionality to achieve
efficient content delivery both in fixed and mobile environments
[8];

- exploit security information embedded in the content to avoid
the diffusion of fake versions of contents and to protect the
content, as opposed to exploit connection-based or application-
based security; protecting information at the source is more
flexible and robust than delegating this function to applications,
or securing only the communications channels [4];

- provide a way to differentiate the quality perceived by different
services [9], and provide a per-content quality of service
differentiation, including cache hits performance.

Among the advantages of CCN, discussed e.g. in [3][4], in this
paper we focus on the improved and built-in support of a
replication/caching functionality. Users should “retrieve desired
content regardless of where it comes from – the original source, a
copy on their local disk, or the user next to them in StarbucksTM”
[4].
It is true that content replication is already supported by CDNs
[10], but CDNs are proprietary and closed facilities. It is also true
that in-network caching is already supported by so called-
transparent proxy technologies, but this is done at application
level and requires a stateful tracking of user connections. Stateful
procedures limit the application of caching in high-speed nodes,
where a stateless CCN could instead recognize and cache contents
on the fly.
On the cons side, CCN has some drawbacks and challenges. A
first, obvious, con is that it requires changes in the basic network
operation, which per se is already a big obstacle to take-up of this
approach. A second con is that it raises scalability concerns: i) the
number of different contents and corresponding names is much
bigger than the number of host addresses; this has obvious
implications on the size of routing tables and on the complexity of
lookup functions; ii) in some proposed CCN architectures [3],
guaranteeing bidirectional communication (reverse paths) requires
maintaining states in network nodes. This very argument was,
maybe, too heavily used against the Integrated Services
architecture (and the RSVP protocol) but it is surely an issue that
deserves careful investigations.
When CCN is meant as a replacement of the current network
layer, it poses the challenge of how to efficiently support
communication sessions based on models different from content
retrieval (e.g. http connections for e-commerce applications,
instant messaging, social networking; rtp connections for real-
time communications). These communication sessions rely on
host addresses, and need suitable solutions to work in a CCN
environment, as shown in [11] for SIP based VoIP applications.
The goal of this paper is to introduce a CCN architecture that tries
to achieve the pros of CCN, and specifically a built-in caching
functionality, while mitigating the cons.
Our CONET is an (inter-)network layer that provides users with a
network access to remote named-resources, rather than to remote
hosts.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICN’11, August 19, 2011, Toronto, Ontario, Canada.
Copyright 2011 ACM 978-1-4503-0801-4/11/08...$10.00.

border‐nodes

SN

serving‐node

IN

internal‐node

R

plain IP router

BN

CSS n.2
(IPv4 network)

CSS n.3
(L2 link)

CSS n.1
(overlay link)

SN

R
BN BN

BN

Name
Sys.

Fig. 1 - CONET Architecture

Named-resources can be data (named-data) or service-access-
points (named-sap), identified by a network-identifier (NID). By
default, the NID is an anycast address and CONET may contain
multiple replicas of the same named-resource.
In the case of named-data (e.g. a file), CONET enables users to
retrieve it by using the best set of networked devices (caches,
mirror servers, etc.) that can provide that named-data. In the case
of a named-sap (e.g. the logical port of a server), CONET
provides the means to exchange point-to-point data between a
requesting entity and an entity addressed by such named-sap. The
named-sap case can be extended to multicast; in this case the NID
of a named-sap has a multicast meaning, rather than an anycast
one. The main features of CONET are:

- it is stateless: network nodes do not maintain information on the
ongoing communications;

- it limits the size of name-based routing tables by caching only a
subset of all possible routes; missing routing entries are looked
up in a name-system and then cached;

- it can be integrated in the actual IP networks by using a new
header option, which makes IP itself content-aware [12]. In this
case, the nodes could use hybrid routing tables containing both
IP network addresses and names. However, CONET also
supports the traditional clean-slate or overlay deployment
approaches.

In the following we present the details of our solution and
substantiate these statements. For lack of space, we do not deal
with security issues and we only consider the transfer of named-
data, neglecting the use of CONET for named-sap (D3.1 in [7]
provides further details on named-sap).

2. THE CONTENT INTER-NETWORK
(CONET)

2.1 Network Architecture
CONET is a system that interconnects CONET Sub Systems
(CSSs) (see Fig. 1). A CSS contains CONET nodes and exploits
an under-CONET technology to transfer data among CONET
nodes. A CSS could be:

- a couple of nodes interconnected by a point-to-point link, e.g. a
PPP link or a UDP/IP overlay link;

- a layer-2 network, e.g. Ethernet, or a layer-3 network, e.g. a
private/public IPv4 or IPv6 network, or a whole IP Autonomous
System, or even the whole current Internet.

named‐data

chunk

named‐data CIUs

carrier‐packets

under‐CONET data‐unit

Network Identifier

Chunk Number

interest CIU

Segment info

copied in
carrier‐packet
header

carrier‐packet
payload header

Header

(Network‐Identifier)
(Chunk Number)
(Payload Type)

carrier‐packet

Payload Header
(segment info)

Path info

Payload

Network Identifier

Chunk Number

named‐data CIU

Data Chunk

Temporal /Security
Data

segmented in
carrier‐packet
payloads

copied in
carrier‐packet
header

IP CONET
option

Fig. 2 –CONET Information Units (CIUs) and carrier-packets

The devices within a CSS use an autonomous and homogeneous
under-CONET addressing space and, if necessary, an interior
under-CONET routing protocol (e.g. [13]).
CSSs can be defined rather freely. For instance, if CONET
protocols are implemented only in user equipments,
interconnected by the current Internet, then we have only one
CSS: the current Internet. If CONET protocols are implemented in
current border gateways (i.e. where BGP runs), then CSSs
coincide with current Autonomous Systems. If CONET protocols
are implemented in all current routers, then CSSs coincide with
current IP subnets. If CONET protocols are implemented in nodes
that interconnect different layer 2 networks, removing IP, then
CSSs coincide with such layer 2 networks.
CONET nodes exchange CONET Information Units (CIUs):
interest CIUs convey requests of named-data; named-data CIUs
transport chunks of named-data, e.g., parts of a file (see Fig. 2).
To best fit the transfer units of an under-CONET technology, all
CIUs are carried in smaller CONET data units named carrier-
packets.
CONET nodes are logically classified as end-nodes (ENs),
serving-nodes (SNs), border-nodes (BNs), internal-nodes (INs)
and name-system-nodes (NSNs). End-nodes are user devices that
request named-data by issuing interest CIUs. Serving-nodes store,
advertise and provide named-data by splitting the related sequence
of bytes in one or more named-data CIUs, which are transferred
by means of carrier-packets (see again Fig. 2). Border-nodes,
located at the border between CSSs, forward carrier-packets by
using CONET routing mechanisms (i.e. routing-by-name and
inter-CSS source-routing, described below) and cache named-data
CIUs. Optional Internal-Nodes could be deployed inside a CSS to
provide in-network caches; differently from border-nodes,
internal-nodes forward carrier-packets by using only under-
CONET routing mechanisms. Optional Name-System-Nodes are
used in a CSS to assist the CONET routing-by-name process (see
Sec. 3). CONET may be deployed following three approaches:

- overlay approach: CONET on top of the IP layer; CSSs are
couples of nodes connected by overlay links, e.g. UDP/IP
tunnels, as it occurs in the CSS n.1 of Fig. 1;

- clean slate approach: CONET on top of layer-2 technologies
(e.g. Ethernet, PPP, MPLS LSP); CSSs are nodes connected by
layer-2 links/networks, and CONET replaces the IP layer, as it
occurs in the CSS n.3 of Fig. 1;

- integration approach: CONET functionality integrated in the IP
layer by means of a novel IPv4 option [12] or by means of an
IPv6 extension header, as it occurs in the CSS n.2 of Fig. 1.

While different variants of the clean-slate and overlay approaches
have been already discussed in the literature [3], [5], [6], the
proposed integration approach is novel, to the best of our
knowledge; therefore in this paper we focus on this approach,
describing it in Sec. 4. We also note that within our proposed
architecture, the three approaches are not mutually exclusive, but
they can be combined.

2.2 Model of operations
This section provides an example of CONET operation in the
scenario depicted in Fig. 1, considering an end-node that retrieves
a named-data from a serving-node. We assume that the routing
information that enables to reach-by-name the named-data has
been already distributed in the CONET. This process is initiated
by the serving-node that advertises the related network-identifier
by using a name-based routing protocol, as described in Sec. 3.
The retrieval of a named-data involves a sequence of a request -
delivery phases in which the end-node requests and obtains
named-data CIUs and then reassembles the whole named-data
(Fig. 2). For simplicity, in the following we consider a case in
which the named-data is fully contained in a single named-data
CIU that, in turn, is fully contained in a single carrier-packet.
Therefore, only one request-delivery phase is needed.

Request

- an end-node requests the named-data CIU by issuing an interest
CIU, which includes the network-identifier of the named-data;
the interest CIU is encapsulated in a carrier-packet, named I;

- the end-node and intermediate border-nodes route-by-name the
packet I. The route-by-name process singles out the CSS
address of the next border-node toward the serving-node, on the
basis of the network-identifier contained in I. A CSS address is
an address consistent with the traversed under-CONET
technology (e.g., an IPv4 address). Then, the routing engine
encapsulates the carrier-packet I in the under-CONET data-unit
and uses the CSS address as the destination address;

- the CSS address of the end-node and the set of CSS addresses
of the traversed interfaces of border-nodes in the “upward” path
are appended, by these nodes, to the carrier-packet I, within a
control field named path-info1;

- the internal-nodes parse carrier-packet I and then forward it by
using the under-CONET routing engine.

1 This info will be used to find the reverse-path to route the

named-data CIU back to the requesting node, in the delivery
phase. In [3] the same goal is achieved by maintaining states in
network nodes. We propose to use source-routing, being aware
of the involved trade-offs, and given that we think that the
number of traversed CONET border nodes should be rather
limited (e.g. CSSs should coincide with Internet Autonomous
Systems).
As an alternative, the path-info field could contain the NID of a
named-sap, specifying where the requesting end-node can be
reached, and the reverse-path routing could be performed by
means of route-by-name procedures. This alternative would be
more convenient if CSSs are smaller and the number of
traversed CONET border-nodes is larger. Also, this alternative
would give to the network operator more freedom in choosing
the reverse-path.

Delivery

- the first in-path CONET node (BN, IN or SN), which is able to
provide the named-data CIU requested by I, will send back the
CIU, without further propagating I;

- this named-data CIU is encapsulated in a carrier-packet, named
C. The carrier-packet C traverses the same CSSs of the carrier-
packet I, but in the downward direction and will reach the
requesting end-node;

- the serving and the border nodes perform the inter-CSS reverse-
path routing in a source-routing fashion, by using the path-info
control field. This path-info is the copy of the one set up in I
during the upward routing;

- within a CSS, the under-CONET technology (e.g. IP) performs
the routing of carrier-packet C; therefore traditional traffic
engineering mechanisms could be used;

- all border-nodes and internal-nodes in the downward path may
cache the named-data CIU contained in C.

We observe that the use of inter-CSS source-routing on the
reverse-path does not require to have “pending” states in the
traversed nodes. We also observe that in the case of end-to-end
sessions bounded within the same IPv4 CSS, the path-info field is
not necessary, as it would be composed only of the IP address of
the end-node, already contained in the IP header.

CONET

Under‐CONET
(L2, IP*, UDP/IP)

Transport

API

every nodes

only end‐nodes

CONET Information Units (CUIs)
carrier‐packets

Fig. 3 - Protocol stack

2.3 CONET protocol stack
As shown in Fig. 3, in every CONET node we can find the
CONET and the Under-CONET layers. The CONET layer is
connectionless, handles CIUs and carriers-packets, and provides
other functionality (e.g. caching, security, etc.).
The end-nodes has also transport-level functionality, supporting
reliability and flow control, and providing the application
programming interface (API), see D3.1 [7] for the definition of
the API between CONET and upper layers. We adopt the
receiver-driven TCP-like approach proposed in [3], which we
briefly recall in the following, adapting it to our terminology. The
transport algorithm issues a sequence of interest CIUs and each of
them requests only a small part of a named-data CIU, e.g. 1500
bytes per interest CIU. By controlling the sending rate of these
interest CIUs, it is possible to obtain a TCP-like flow control
mechanism. For instance, we could replace current TCP ACKs
with interest CIUs and apply TCP congestion-window concepts to
in-flight interest CIUs.
Fig. 2 shows the packetization process, the CONET CIUs (interest
and named-data) and carrier-packets. We started from the names
and structures proposed in [3] and introduced some modifications
both in notation and in functionality. As for the notation, the
“interest packets” and “data packets” proposed in [3] correspond
to our interest CIU and named-data CIU, respectively, but their
protocol information is different (e.g. segment info). In addition,
we introduce the concept of carrier-packets, with the goal of
improving the forwarding speed of CONET.

A named-data (i.e. a content) is split in different chunks. The
optimal chunk size is the result of several tradeoffs; we favor a
size roughly equivalent to the size of chunks in current P2P
systems, e.g. 256-512 kbytes. However, the CONET architecture
can support variable chunk sizes.
Each chunk is inserted in a named-data CIU. Named-data CIUs
are the data-units of the caching process and their control
information include the network-identifier, the chunk number, and
temporal and security data.
The network-identifier is a tuple <namespace ID, name>. The
namespace ID determines the format of the name field. Thus, the
name field is a namespace-specific string. Each namespace
follows its own rules to release unique names with its own format.
We specified a default naming format, where the name is the
composition of two hash values, i.e. name=<hash (Principal),
hash (Label)>. Principal and label [2] are flat-names and a hash
function transforms them to a fixed number of bytes (e.g., 6
bytes). A principal is the owner of her named-data and uses the
Principal identifier whose hash is unique in its namespace. Label
is an identifier chosen by the principal to uniquely differentiate
her named-data. For instance, to support the WEB resources we
could define the namespace “www”, which follows the actual
domain name assignment rules and uses the domain name (e.g.
www.cnn.com) as principal identifier and the URL path (e.g.
/foo/index.html) as label.
The temporal-data include time information, like the expiry date,
which can be exploited to implement digital forgetting
mechanisms. Security-data [4] make it possible to validate a
named-data CIU before caching it or delivering it.
An interest CIU is a request of a set of bytes of a named-data CIU,
e.g., from byte X to byte Y (segment info field) of the named-data
CIU n. Z (chunk number field).
Carrier-packets are low-level carriers of CIUs and are the data-
units of the forwarding process. Carrier-packets are reassembled
in border-nodes or in internal-nodes that want to cache the related
named-data CIU, and in end-nodes; this operation is necessary to
validate the content.
A carrier-packet has the following structure (Fig. 2): i) a header
field, which transports a minimal set of control information of the
CIUs, i.e. network-identifier, chunk number and CIU type (e.g.
interest or named-data); ii) a payload-header, which identifies the
byte boundaries of the carried segment (segment info); iii) the
payload (existing only in the case of named-data CIU), which
contains a part of the sequence of bytes contained in the
temporal/security-data and data-chunk fields of a named-data
CIU; iv) the path-info field, previously described in Section 2.2.
We introduced carrier-packets because a named-data CIU could
be too large to be transported by a single under-CONET data-unit
(e.g. 1.5kB for Ethernet and 64kB for IP) and thus it requires to be
segmented. Moreover, carrier-packets make it possible to perform
source-routing; indeed they are strictly related to a specific
communication session between an end-node and a serving-node
(or a cache).

3. NAME-BASED ROUTING: LOOKUP-
AND-CACHE
The name-based routing is the mechanism used to update CONET
name-based routing tables, which are used by end-nodes or
border-nodes to route-by-name interest CIUs. An entry of the
name-based routing table contains the tuple <network-identifier,
mask, next-hop, output-interface>; it is like an IP routing table
entry, but instead of net-prefixes we have name-prefixes, i.e.
couples <network-identifier, mask>. Next-hop is the CSS address

of the next border-node toward the serving-node, as outlined in
Sec. 2.2.
In [1][3] the authors suggest to use traditional routing protocols,
e.g. BGP or OSPF, to disseminate name-prefixes. We name these
approaches prefix-dissemination.
We argue that prefix-dissemination could produce big name-based
routing tables, because the aggregation of names (i.e., network-
identifiers) is not effective, when names do not include
information about “where” is the serving node [14]. For instance,
if we want to support DNS domain names (as we do), a possible
location-based aggregation could be done on the basis of top level
domains [3]. However, in the case of generic top level domains
(.com, .net, etc.) this would not be effective, as current names are
geographically very spread (and numerous: .com names are
currently about 90 millions). We also analyzed the .it country-
code top level domain and found out that about 30% of .it names
are outside Italy, which means that the aggregation would not be
very effective also in this case. To support the cases in which
name-prefix aggregation is not effective, and since it is does not
seem feasible to include all possible names in the routing table,
we propose a name-based routing, which we name lookup-and-
cache. In this approach, a CONET node (end-node or border-
node) uses a fixed number of rows of its name-based routing table
as a route cache. When a node misses the routing info required to
route-by-name an interest CIU, it looks up its routing entry in a
name-system (DNS like) and inserts this entry in the route cache.
When all rows are filled in, new routing entries may substitute old
ones according to a suitable policy. From a logical point of view,
a name-system serves a single CSS and a specific namespace.
If a serving-node is inside the same CSS of the node requesting
the routing info, the name-system returns the CSS-address of the
serving-node. If the serving-node is outside that CSS, the name-
system returns the CSS-address of the egress border-node. If there
are more than one serving-node, or egress border-node (due to
replication operations), the name-system selects the most
convenient destination (e.g. according to known techniques [10]).
Prefix-dissemination and lookup-and-cache approaches can work
separately or they can be combined, e.g. by using prefix-
dissemination for the most popular named-data and lookup-and-
cache for the remaining ones.

4. INTEGRATING CONET IN IP
In this section, we describe a technique to support the CONET in
a CSS that is an IP network (IP-CSS), e.g. the CSS n.2 of Fig. 1.
The IP network can correspond to the whole public Internet;
therefore this technique is a way to offer CONET services in the
Internet. We propose a so-called integration approach, which: i)
does not imply to give up IP, as in the clean-state approach; ii)
performs better than a CONET placed on top of IP, as in the
overlay approach. The idea of the integration approach is to make
IP itself content-aware, as follows. We propose to transport the
header of a CONET carrier-packet in a novel IPv4 option (or IPv6
extension header), which we name CONET option (see Fig. 2 and
[12]). Border and internal CONET nodes of an IP-CSS are
nothing else than IP routers extended with CONET functionality.

HW FW Engine
(route cache)

IN OUT

slow forwarding path

fast forwarding path

CPU cache

Fig. 4 – Architecture of a CONET node of an IP-CSS

Fig. 4 shows a possible architecture of a border or internal
CONET node. We have a fast forwarding path that handles
forwarding operations for CONET carrier-packets and for plain IP
packets. The hardware (RIB or FIB) routing table includes not
only IP net-prefixes but also name-prefixes, which address both
remote named-data and local cached named-data. The latter
entries point to the local cache engine. Other CONET and IP
functions with less stringent delay constraints are performed by a
CPU. For instance, the CPU performs IP and name-based routing,
implements caching algorithms, reassembles named-data CIU to
cache them, replies to interest CIUs that request a cached data,
etc. Most of these operations require parsing incoming CONET
CIUs, which are “copied” in the CPU while at the same time
being forwarded by the HW engine.
The advantages of this approach with respect to the overlay one is
that it allows CONET nodes to quickly forward carrier-packets,
without the need of a slow deep packet inspection. This is a
fundamental requirement to deploy content-centric features in
nodes where a high packet rate demands a fast forwarding
operation. In addition, this approach allows deploying CONET
routing-by-name functions only in a subset of nodes (i.e. border-
nodes and end-nodes) while allowing performing caching in all
nodes running the new IP option (i.e. internal nodes). On the
contrary, in the overlay approach, caching in all nodes would
require to deploy routing-by-name functionality in all nodes.
The disadvantage of the integration approach is that we require a
new IP option, but this is much less disruptive than the clean-state
approach. The integration approach lends itself to different
deployment scenarios.
It is possible to think to an extreme case in which an IP-CSS
corresponds to the whole Internet and routing-by-name functions
are performed only in end-nodes. In-network caching would still
be possible simply by introducing the new IP option and without
the need of introducing routing-by-name functions within the
routers.
Another scenario is to partition the Internet in a set of IPv4 CSSs
that interoperate only by using CONET protocols. Each CSS uses
an IPv4 addressing that is unique only inside that CSS and bounds
the scope of IP routing to that CSS. Therefore, new providers
offering public CONET services can deploy their networks
without necessarily having the availability of public IP addresses,
and without increasing the size of the routing table of Internet
backbone routers. This scenario could be a solution to the problem
of the growing size of Internet backbone routing table [14],
moving that problem to the issue of scalability of the CONET
routing-by-name mechanisms, which in any case needs to be
addressed in CCN architectures.

5. PERFORMANCE CHECKS
This section describes two experimental performance checks.

5.1 Lookup-and-cache
We remind that the routing-by-name process involves only
interest-CIUs, since data-CIUs are routed back to the end-node by
means of source-routing (see Section 2.2). The CONET nodes
involved in routing-by-name are either end-nodes or border-
nodes. In case of end-nodes, the lookup-and-cache approach
resembles the interaction between an Internet host and a DNS
server, where the host implements a local DNS cache service.
Therefore, we argue that lookup-and-cache is feasible on end-
nodes and we focus on its feasibility in border-nodes.
We assume to replace a standard TCP session between a client
and a WEB server with a CONET session (exchange of CONET

CIUs) between an end-node and a serving-node, or an
intermediate cache. Specifically, we assume that:

- an URL <http://IP address:80 (or domain-name)/path> is
replaced by the network-identifier: namespace=”www”,
principal=”IP address:80”, label=”path”;

- TCP segments are replaced by carrier-packets that convey
segments of named-data CIUs;

- TCP ACKs are replaced by carrier-packets that convey interest
CIUs (see Sec. 2.3).

With these assumptions, we can map a real Internet trace, formed
by TCP segments and ACKs, to a “CONET trace”, formed by
carrier-packets. We applied this re-mapping to two Internet traces:
the first one captured on an interface at 10 Gbit/s of a tier-1 router
[16]; the second one captured on an interface at 10 Mbit/s of a
tier-3 router [15].

Fig. 5 – Lookup frequency of a tier-3 and a tier-1 border-node

The two re-mapped traces have been fed to a CONET border-
node, which we emulated in SW, to analyze the effectiveness of
the lookup-and-cache routing for a tier-1 and a tier-3 border-node.
Following the approach suggested in [2], we assumed that
routing-by-name is performed only on the base of the principal
identifier. This means that a name-based routing entry has the
form <namespace, hash(principal),*> and that all the named-data
of a given principal are stored in a serving-node (and in its
replicas, if any). We also assume that the route cache adopts a
Least Recently Used (LRU) caching policy, discarding the least
recently used item first.
Fig. 5 shows the obtained results in terms of name-lookups per
second issued by the border-node to the name-system, versus the
size of the route cache. The route caching performance improves
(i.e. lower lookup frequency) in a log-like fashion versus the
cache size. In the case of the tier-3 node, we have about 2 lookups
per second and a cache-miss probability of about 10-3, by using a
route cache of 2k entries. In the case of the tier-1 node, we have
about 10 lookups per second and a cache-miss probability of
about 10-4, by using a route cache of 8k entries. Considering that
nowadays BGP routers handle about 350k entries and 2 or 10
lookups per seconds are reasonable values, we can conclude that
lookup-and-cache seems feasible with the current technology.

5.2 CONET-IP integration
In this section, we verify the feasibility of conveying the header of
carrier-packets in an IPv4 option, i.e. the CONET option. The
rationale of this test lies in the fact that IP routers tend to process
packets with IP options in the slow forwarding path; therefore,
current IP routers could become a critical performance bottleneck
for our solution, as plain IP routes and CONET nodes would need
to co-exist in a hypothetical real deployment scenario.

Fig. 6 – Throughput and round-trip-delay of IP packets with
and without CONET options on different Internet paths

To check the behavior of current IP routers, we sent IP packets
with and without our CONET option (simultaneously) on the on
on the Internet and we measured the difference in terms of round-
trip-delay and throughput (i.e. the available capacity between a
sender and a receiver). We used eleven PlanetLab nodes, spread
over the Internet (Asia, Europe, North America, Australia). Each
measurement was performed between a PlanetLab node and a
node in our premises (Rome, Italy). Each measurement has been
repeated ten times and Fig. 6 reports the average values.
As regards the throughput, we observe that we have almost the
same performance, with and without the CONET option, for the
first nine PlanetLab end-nodes. On the other hand, we observed
considerable differences in the case of the last two end-nodes.
Further analysis revealed that: i) on the Beijing-Rome path there
is a router that statistically drops half of the packets with IP
options; ii) on the Colgate-Rome path there is a router (in
Australia) that drops all packets with IP options. The problem
regards a minority of the examined routers, depends on a software
configuration and we conjecture that these policies are enforced to
prevent DoS attacks [17]; such policies could be modified, so as
to accept CONET carrier packets without restrictions. As regards
the round-trip-delay, we observe a small increase of the latency
for packets with the CONET option. Overall, our measurements
show that IP routers, properly configured, would not be a critical
performance bottleneck, and therefore the use of the IP CONET
option seems feasible (see also [18] for a similar analysis).

6. CONCLUSIONS
As a conclusion, let us re-consider, in light of our work, the
advantages, the cons and the challenges of CCN, which we
discussed in the introduction. We argue that our proposed CONET
architecture and technical solutions: i) are able to effectively
support in-network caching and content replication; ii) support an
“integration” approach that can be incrementally deployed in
current IP networks; iii) face the scalability limits of name-based
routing with the lookup-and-cache approach; iv) do not need to
maintain states in network nodes; v) support also communication

sessions different from content retrieval, either with the support of
named-sap (N.B. this was only mentioned in this paper) or thanks
to the fact that CONET can smoothly co-exist with IP networks
and therefore such communication session could continue to be
run on classical IP.

7. ACKNOWLEDGMENTS
CONET has been devised in the CONVERGENCE project [7],
which aims at enhancing the Internet with a content-centric,
publish-subscribe service model, based on a common container
for any kind of digital data, including representations of people
and Real World Objects.

8. REFERENCES
[1] D. Cheriton, M. Gritter, “TRIAD: a scalable deployable

NAT-based internet architecture”, Technical Report (2000)”

[2] T. Koponen, M. Chawla, B.G. Chun, et al.: “A data-oriented
(and beyond) network architecture”, ACM SIGCOMM 2007

[3] V. Jacobson, D. K. Smetters, J. D. Thornton et al.,
”Networking named content”, ACM CoNEXT 2009

[4] D. Smetters, V. Jacobson: “Securing Network Content”,
PARC technical report, October 2009

[5] PURSUIT project website: www.fp7-pursuit.eu

[6] 4WARD project website: www.4ward-project.eu

[7] CONVERGENCE website: www.ict-convergence.eu

[8] K Katsaros, G. Xylomenos, G. C. Polyzos: “MultiCache: An
overlay architecture for information-centric networking”,
Computer Networks, Elsevier, Volume 55, Issue 4, 10 March
2011, Pages 936-947

[9] S. Oueslati, J. Roberts, N. Sbihi: “Ideas on Traffic
Management in CCN”, Information-Centric Networking,
Dagstuhl Seminar

[10] D. C. Verma “Content Distribution Networks”, Wiley-
Interscience

[11] V. Jacobson, et al “VoCCN: voice-over content-centric
networks”, ReArch '09 workshop, 2009

[12] A. Detti et al., “An IPv4 Option to support Content
Networking”, Internet Draft, draft-detti-conet-ip-option-00,
Work in progress, March 2011.

[13] D. Oran, “OSI IS-IS intra-domain routing protocol”, IETF
RFC 1142

[14] D. Meyer, L. Zhang, K. Fall, “Report from the IAB
Workshop on Routing and Addressing”, RFC 4984

[15] Waikato Internet Trace Storage,
http://www.wand.net.nz/wits/waikato/1/20050815-000000-
0.php

[16] CAIDA Internet Trace Storage,
https://data.caida.org/datasets/passive-2010/equinix-
sanjose/20101118/

[17] F. Gont, S. Fouant, “IP Options Filtering
Recommendations”, Internet Draft, draft-gont-opsec-ip-
options-filtering-00.txt

[18] R. Fonseca, G. Porter, R. Katz, S. Shenker, and I. Stoica, “IP
options are not an option”, Technical report, EECS
Department, University of California, Berkeley, 2005.

