
SMILE - Simple Middleware Independent LayEr
for Distributed Mobile Applications

Giovanni Bartolomeo, Stefano Salsano,
Nicola Blefari Melazzi

DIE - Dept. of Electronic Engineering
University of Rome “Tor Vergata”

Rome, Italy
{giovanni.bartolomeo,stefano.salsano,blefari}@uniroma2.it

Catia Trubiani
DI : Dept. of Informatics
University of L’Aquila

L’Aquila, Italy
catia.trubiani@di.univaq.it

Abstract—In this paper we introduce SMILE (Simple
Middleware Independent LayEr), a framework whose main
purpose is to facilitate the development of distributed
applications. In the SMILE abstraction an application is
composed by a set of processes that exchange information. The
interfaces of these processes are described using WSDL or by an
equivalent UML definition. Using the open source AndroMDA
tool and starting from the UML interface specification we are
able to generate the skeleton of SMILE applications and most
part of their business logic. An application developed using
SMILE can run on different middleware platforms just changing
its binding, i.e. the code that adapts SMILE to a given
middleware. We have implemented bindings to CORBA, JAVA-
RMI, JADE, JXTA and to an our own communication
mechanism based on SIP suitable for mobile devices. At the end
we hint at the usage of SMILE in service composition and present
some prototype applications.

Keywords- Middleware, Abstract Platform, Service
Composition, Service Oriented Architecture

I. INTRODUCTION
Nowadays, distributed applications usually are written

exploiting a set of facilitation provided by third party software
known in its whole as "middleware". In recent years,
developers have assisted at a spreading of different middleware
platforms related to different programming paradigms in
fashion at a given time. However, after an initial enthusiasm
many middleware platforms have been slowly abandoned in
favour of some others with the obvious inconvenience that
each time the platform had to be changed, the application or
service developed was lost or the developer had to rewrite most
of its code. There is a learning curve associated with
programming on a given middleware and a significant amount
of time is spent in learning how does the middleware works
rather than developing applications.

On the other hand, sometimes it is good to have a
prototyping environment which can be used to develop and
testing applications in a safe and cheap environment before
deploying them on the work field. Without neglecting that
many non-functional aspects (time, memory, QoS) may be
different in the two environments, nevertheless it is often

cheaper to obtain a rough "preview" of the functional model of
the application, before deploying it on the real middleware
platform. Obviously efforts should be minimized when porting
the application from the testing to the real environment.

In this paper we propose SMILE [1], a "Simple Middleware
Independent LayEr" between the application and the
underlying middleware platform which allows the developer to
focus on modelling the application business logic instead of
writing middleware specific code. By developing an
application using SMILE, the developer is assured that her
application will run on a number of different middleware
platform without any change in the source nor in the compiled
code.

According to [2], SMILE can be seen as an abstract
platform. Thus, an application written for SMILE has a
functional model which is totally independent from the
underlying middleware which is bound to at runtime through a
so called “binding”. As in WSDL [3], a “binding” is a link
between SMILE applications and one concrete middleware
platform which the application is running on. It is for this
reason that we can properly claim SMILE as ‘independent
layer’; the added value for SMILE is to be immune to specific
middleware fashions and the consequent problems.

What SMILE does is simply to use possible provided
middleware facilitations on behalf of the application. These
may include naming services addressing, message routing
mechanisms, directory services, application lifecycle and
deployment mechanisms, etc. If some of these features lack in
a particular middleware platform, the middleware-specific
SMILE binding supplies them; as a consequence SMILE gives
application developers a simple and uniform interface,
provided as a set of API wrapping the aforementioned features.

As any machine running SMILE applications could
potentially provide more than one binding with underlying
middleware platforms, thanks to the SMILE abstraction layer
that machine might act as a “bridge” between platforms. In a
Service Oriented Architecture (SOA) [4], simple services can
be composed to create complex ones. Therefore, using SMILE,
a composed service can be implemented using single
components running not only on different machines, but also
on different middleware platforms. However, interoperability
between different middleware platforms is a quite recent issue

[5],[6],[7] and we’ll not go into details in this paper, reserving
to deal with it in further works.

II. USING WSDL AS INTERFACE DESCRIPTION LANGUAGE
SMILE applications can be programmed directly at source

code level or designed through an UML tool. We allows the
SMILE application designer to produce UML artefact in a way
so that there is an isomorphism between the UML description
and the Web Service Description Language (WSDL) 1.1 [3].

As it has been shown in [8], by defining a suitable UML
metamodel it is possible to univocally map a UML service
description into an equivalent WSDL description and vice
versa. Though the use of WSDL has been mainly limited to
Web Services definitions, we find that some possibilities
offered by this language has been not totally exploited in this
context. For example, of the four different kinds of operation
allowed by WSDL 1.1 two of them, namely “notification” and
“solicit-response” operations are actually not used at all in Web
Services. However, these operations are instead very common
in event based programming, where one process may wish to
be notified whenever a certain event occurs. Thus, as explained
in [5], it has been found out that WSDL maps also to
programming models beyond traditional Web Services,
including for example Publish/Subscribe paradigm.
Considering the aforementioned issues, we’ve chosen to adopt
WSDL as interface definition language for SMILE
applications; a number of further reasons are hereafter
explained.

Most “traditional” IDLs (Corba-IDL, Microsoft-IDL, etc.),
have been designed specifically for object oriented
frameworks: for example, they allow multiple inheritance and
polymorphism in the interface definition; unfortunately, these
features are specific to a given programming paradigm and
cannot be easily mapped into others. Think at FIPA Agents [9]:
they are not objects but Agents, their interaction is not based on
method calls, but on message exchanges. This is reflected for
example in the JADE framework [10] which doesn’t allow
subtyping and polymorphism for its Agents. In SMILE we
preferred to leave very simple each process interface, avoiding
complex interface definition and the complexities which
multiple inheritance and polymorphism might generate.
However, it has to be clarified that this choice doesn’t preclude
the possibility to use inheritance in the custom, third party
domain objects, which may be defined as “types” in the XML
schema section inside WSDL and exchanged as SMILE
messages’ arguments.

Furthermore, the choice of WSDL allows SMILE applications
to be backward compatible with existing Web Services
providing WSDL defined interfaces, so that all existing Web
Services can be potentially used as primitive service
components in order to compose more complex services. As
well, it is possible to use existing authoring tools for WSDL.
The developer would therefore experience the feel that she’s
writing a Web Service, whereas in fact the defined service may
run also on any other middleware platform.

III. EASE OF USE
As aforementioned, the guidelines followed while

designing SMILE have been to try and abstract as much as
possible the facilitations commonly provided by the most
known middleware platform, like communication between
distribute nodes, directories, searching capabilities and so on.
Of course, given the wide spectrum of platforms which SMILE
aims to cover, the principle was to keep as less as possible in
terms of specific technology, whenever possible obtaining a
common abstract programming model to propose to the
application developer.

SMILE has been designed taking into account a number of
existing middleware platforms, analyzing them and picking up
their common features. Hereafter (Table I) we report a
comparison between the most known middleware platforms, in
terms of programming paradigm, architecture, provided lookup
facilitations and communication methods. CORBA [11] is a set
of specifications by the Object Management Group (OMG)
defining a complete standard architecture based on the key
principle of separation between the object's interface and
object's implementations, so a given client may use the object's
interface without being aware of its implementations. JXTA
[12] is a set of open, generalized peer-to-peer (P2P) protocols
that allow any connected device on the network to
communicate and collaborate as peers. JADE [10] is an
implementation of the FIPA specification, a middleware based
on the agent oriented programming paradigm; one important
feature of this platform is the logical separation between
computations, interactions and semantics.

The OSGi [13] specifications define a framework that is a
Java based platform capable of remote management and re-
configuration of services (“bundles components”) that run over
the core OSGi platform at runtime. Services that operate within
an OSGi environment are managed using an application life
cycle model allowing the platform to install, start, pause, stop
or uninstall bundle components. Finally in the Web the Service
Oriented Architecture [4] is sometimes intended as a synonym
of the “SOAP Architecture” being implemented using
standards such as SOAP as message exchange protocol, WSDL
for interface definition, BPEL as service composition language
and UDDI as service lookup protocol.

Finally, we note that SMILE allows to integrate different
systems built upon middleware platforms as well as solutions
different than a “traditional” middleware. This is because
SMILE has been designed taking into account not only
middleware platforms offering a complete suite of
functionalities such as remote communication, directories,
lookup facilitations, and so on, but also in order to support
simpler communication mechanisms, e.g. protocols such as
Java RMI and SIP [14]. Protocols offer just a limited set of the
aforementioned functionalities (typically message exchanges
and addressing mechanisms) thus it is necessary to add
features merged with the existing ones in order to obtain a
complete middleware solution. Examples of these latter include
Java RMI distributed with the Java Development Kit, and the
application layer protocol SIP which, other than being using to
establish Internet telephone calls and other multimedia
communications, can be used as well as a transport protocol.

IV. SMILE: CORE AND BINDING
SMILE has been divided into two layers: one common core

model and many underlying bindings to each middleware
platform. We’ve chosen to base the SMILE common core
model on a peer-to-peer model. Each peer entity in SMILE
runs a business logic, called SMILE process. A process may
seamlessly communicate with other local or remote processes
through asynchronous message exchanges.

The choice of an asynchronous communication model, yet
an obvious consequence of the distribute, networked nature of
the system, doesn’t preclude the possibility to emulate
synchronous communications at application level, but at the
same time doesn’t impose to limit to it.

The main class in the SMILE API is BoundProcess which
allows SMILE processes to

• have assigned an unique identifier (ProcessID),
functionality taken from the Process interface;

• execute custom code whenever some events, like
initialization/shutting down or Message reception,
occur, functionality respectively inherited from the
ProcessLifecycle interface and taken from the
Receiver interface;

• send asynchronous Message(s), taken from the
Process interface;

• perform service publishing and searching operation
on a registry (so called “Yellow Pages”), taken
from the ProcessServiceManagement interface. In
order to do this, each process is given the possibility
to publish a service Descriptor (which holds the
offered services in terms of service type and allowed
operations) and search for service Descriptors using
a suitable template (DescriptorFilter).

In Figure 1 we report a Package Diagram in order to
underline how SMILE decouples its abstraction layer from the
underlying technology. This picture shows the following
packages: SMILE keeping the definition of the SMILE core;
SIP, CORBA and JXTA are packages whose names refer to the
correspondent bindings; and finally the UserApplication which

extends the BoundProcess class, enabling the 3rd Party
Application to inherit its features. As it is possible to note, the
UserApplication has no visibility on the particular binding,
however it can exploit the common features they provide
(message exchanges, search facilitations, etc.) because these
latter are wrapped using the abstract BoundProcess class.

Figure 1. SMILE main classes and packages

By using a code generator compliant with the Model
Driven Architecture approach [15], such as for example
AndroMDA [16], the source code of a 3rd Party Application can
be built almost automatically starting from a corresponding
UML model. The resulting application inherits automatically
all the features and properties coming from the BoundProcess
class, as described before, thus the produced code maintains
portability and can potentially run on every middleware
platform, assuming a suitable SMILE binding is available for
that platform. Due to space limitations, we cannot go into more
technical details, which can be found in [17].

V. SIP BINDING
In this section we propose an overview of one of the

implemented bindings, the JSON/SIP binding, which has
allowed us to port the SMILE framework on mobile devices
like cellphones. We used an implementation of the SIP

MIDDLEWARE PLATFORMS

Name Entity Architecture Lookup Communication

CORBA Object Client Server Trading Service Synchronous call

FIPA (JADE) Agent Peer to Peer
Directory
Facilitator

Agent
Asynchronous call

JXTA Peer Peer to Peer Advertisement Pipe

OSGi Bundle Peer to Peer Directory based
(LDAP) Synchronous call

SOAP
Architecture

Web
Services Client Server UDDI Synchronous call

TABLE I. A COMPARATIVE ANALYSIS OF THE MOST KNOWN MIDDLEWARE PLATFORMS

protocol [18] coupled JSON (JavaScript Object Notation) [19],
a lightweight data-interchange format, which allows to manage
serialization and deserialization of custom data structures in a
simple way. Our prototype implementation has been targeted
to Java J2ME MIDP phones.

SMILE processes are embedded into SIP User Agents, on
which applications are implemented. Our SIP network
infrastructure is composed by

• a SIP Registrar, which has the aim to maintain the
mapping between user agent identifiers and their IP
addresses;

• a SIP Session Border Controller (SBC), an
intermediary for terminal clients behind NATs;

• Relay, a support for mobile terminals suffer from
limitation in transmitted maximum packet size1.

As said in section , SIP doesn’t provide by itself a complete
middleware solution, thus, in addition to the existing
infrastructure, we implemented a Yellow Pages server, whose
functionality is to allow processes to publish and look for
services, in order to turn this binding into a complete
middleware solution compliant with all mandatory functional
requirements by SMILE.

VI. SERVICE COMPOSITION AND CONTEXT DEPENDENT
SERVICES

Service composition allow developers to solve complex
problems by combining available basic services and ordering
them to best suit their problem requirements. In the context of
SMILE and the SMS Project [20] we are working to give
support to service composition using an UML-based approach.

The methodology we are defining includes automatic
adaptation of the service logic to the context. We specifically
consider composition of components running on mobile
terminals. Our target is to be able to distribute the composed
service logic between terminal and server side, as opposed to
"traditional" centralized Web Service composition solutions,
which instead relies mostly on server side processing. Given
this requirement, a SMILE process is a possible way to
implement a component service. The interfaces of the
components are defined in terms of UML operations, and we
are working to model the composition of components through
UML activity diagrams. Unfortunately neither AndroMDA
nor other state of the art MDA tools support the automatic
generation of code from activity diagrams. Hence a solution we
are considering is to extend the available tools to support this
feature we need.

As far as context adaptation is concerned, we are working
to handle context adaptation since the UML modelling phase;
more information on the context modelling approach we’re
following can be found in [21]. Context information includes
"atomic" and "composite" context. "Atomic" context refers to
context information that is acquired from one specific source
while "composite" context consists of different atomic and/or

1 In our tests, the Nokia 6630 phone has reported a similar
behaviour.

composite context information which are gathered and
processed by different mechanisms.

Once the model is turned into SMILE code, this feature is
taken into account providing component service, implemented
as SMILE processes, with references to context information:
both atomic and composite components can obtain context
information directly from the environment; in addition,
composite components may also gather context information
from the components they are built of. This may happen by
exploiting the functionalities offered by the SMILE Yellow
Pages which allows composite components to look for other
components providing the required class of context
information. For example, we can propose the component
WeatherHere which has the purpose to communicate the
weather in the user actual location; combining the atomic
components providing information about Weather and
Localization the composite component WeatherHere can be
implemented.. This service makes use of the Localization
component to gather the localization of the user, and uses this
parameter as input for the Weather component. Obviously the
same methodology might be applied recursively as the Weather
and Localization components can be seen as a composition of
other components as well. Implemented as a SMILE process,
the WeatherHere component takes care of searching for its
building components (implemented as processes too) and of
publishing into the Yellow Pages a new composite service
masquerading its internal composition strategies to the
application developer.

VII. SMILE AS A SUPPORT TECHNOLOGY FOR PROJECT
DEMONSTRATORS

Inside the SMS project [20] SMILE has been adopted to
implement an evolved “browser” for mobile clients able to
manage pages and start applications (so called SMSlets) by
exploiting request/response and notification messages
originated from servers and or other terminals (Figure 2).
Being built upon the SMILE libraries, the browser application
is totally independent from the underlying middleware and
network mechanisms. This application has been particularly
optimized for cellphones. Graphics and user interaction control
are managed by an our own optimized version of the graphic
engine Thinlet for J2ME MIDP [22], able to render pages
defined as instances of the XML User Interface Language
(XUL) [23].

Figure 2. An evolved “browser” for mobile phones built upon SMILE. The

browser is able to receive notifications from remote servers

A second example of SMILE usage inside the SMS project
is provided by a localization application involving mobile
clients and a server for position tracking. This application takes
into account two different functionalities:

• Notification – a mobile client updates the server
passing information about its position in order to give
the possibility to trace an history of its movements;

• Request/Response – a mobile client asks the server
the position of a certain user, the server sends it back
to the requester in term of coordinates.

This system works in both outdoor and indoor environment.
In particular, the outdoor positioning system relays on GPS
information, whereas the indoor system uses a location
technology based on Zigbee tags (Figure 3).

Figure 3. An indoor location based application exploiting SMILE

As well, SMILE has been also employed in a reengineering
of the Simplicity project [24] demonstrator. In this
demonstrator, the user is able to use his “Simplicity Device”
(implemented as a mobile phone) to interact with a Simplicity
enabled terminal and exploits its functionalities. Some parts of
the Simplicity demonstrator has been modified in order to
replace the underlying middleware with SMILE, without
affecting the original functionalities.

Figure 4. The reengineered Simplicity demonstrator ported on the JADE

agent platform using SMILE

Figure 4 shows the demonstrator running under SMILE
using the JADE agent platform binding. Surprisingly, a number
of unexpected features were added to the original
demonstrator, inherited from the underlying abstraction layer.
For example, it has been possible to distribute among different
terminals the processes which in the original demonstrator
were running inside one single terminal, without making any
changes to the original code.

VIII. CONCLUSIONS
In this paper we have presented SMILE (Simple

Middleware Independent LayEr), an abstract platform with the
aim of easing the development of distributed applications and
increasing their portability across different middleware
platforms. SMILE achieves this goal by decoupling the
application from the concrete platform it runs on, wrapping
middleware specific facilitations (naming services addressing,
message routing mechanisms, directory services, application
lifecycle and deployment mechanisms, etc.) into a set of simple
and uniform interfaces, thus helping the developer to focus on
the application’s business logic rather than on middleware
specific code. The same SMILE APIs are also available for
mobile devices and have been successfully adopted in order to
implement several projects’ demonstrators.

IX. RELATED WORKS
An abstract platform is a collection of characteristics

assumed in the construction of models of applications at some
point of the design process. This notion has been recently
formalized in [2] which describes a methodology in two steps.
During the first step, a designer identifies a number of levels of
abstractions and, for each of them related abstract platforms
and modelling languages. The designer also describes
transformations between these abstraction levels. In the second
step, the defined abstract platforms and transformations are
implemented. Finally the application is designed and, through a
number of manual and automatic transformations it is possible
to obtain models and/or code for each abstract platform.

Other works in literature are less focused on modeling, and
target abstraction and interoperability between specific

platforms at a different levels. [5] presents an approach for
mobile client interoperability with existing services
implemented using different middleware platforms based on an
asynchronous communication model, the use of WSDL as a
standard to describe abstract service definition and exploiting
facilitations provided by the OpenCOM framework [25].
However, the paper focus on interoperability between mobile
client and existing middleware applications, rather than on
portability of applications across different middleware
platforms. In [6] it is presented the idea of an abstract service
definition for pervasive services, based on an abstract “unified
service model” describing the service and how it can be
consumed. The interoperability with concrete services upon
different middleware platforms is achieved by a “bridge layer”
which maps the abstract model to concrete services. [26]
describes a system which aims to integrate the world of Web
Services with agent technologies. The integration is achieved
by a gateway agent which translates SOAP request/response to
ACL messages and vice versa. The system takes care also of
administering mechanisms for service publication and
discovery, using on one hand the WSDL Service Descriptions
and on the other an appropriate ontology described in OWL for
publication of services into the Director Facilitator. This work
is based on the central concept of a gateway which translates
message from one language to another. However, the aim of
SMILE is to work “one layer above” and to provide a common
semantic for data sharing between (potentially) any
middleware platform. [27] describes the idea of integrating the
Web Services paradigm with peer-to-peer technologies like
JXTA. A “WSPeer” acts as an interface to hosting and
invoking Web Services. It aims to be applicable to a variety of
network architectures including standard Web service
architectures using technologies such UDDI and HTTP, and
P2P style networks. An important difference between WSPeer
and SMILE resides in the message exchange. WSPeer uses
only SOAP messages whereas SMILE is not restricted to one
specific protocol. This way we can manage two additional
operations offered by WSDL that can not be carried by SOAP
messages.

REFERENCES
[1] The SMILE project, home page,

http://netgroup.uniroma2.it/twiki/bin/view.cgi/Main/SmilePublic
[2] J.P. Andrade Almeida, Model-Driven Design of Distributed

Applications. Ph.D. Thesis in Computer Science, Telematica Instituut
Fundamental Research Series, No. 018 (TI/FRS/018), Enschede, The
Netherlands, 2006, ISBN 90-75176-422

[3] Web Services Description Language (WSDL) 1.1, W3C Note 15 March
2001,http://www.w3.org/TR/wsdl

[4] Service Oriented Architecture: definition and explanation in Wikipedia,
http://en.wikipedia.org/wiki/Soa

[5] P. Grace, G. S. Blair1, and S. Samuel, “ReMMoC: A Reflective
Middleware to support Mobile Client Interoperability”, Proceedings of
International Symposium on Distributed Object and Application (DOA),
Catania, Italy, November 2003

[6] A. Uribarren, J. Parra, K. Makibar,I. Olalde, N. Herrasti, “Service
Oriented Pervasive Application Based On Interoperable Middleware”,
Workshop on Requirements and Solutions for Pervasive Software
Infracstructure (RSPSI2006), in Pervasive 2006 Workshop Proceedings,
Dublin, Ireland, May 2006

[7] W. K. Edwards, M. W. Newman, J. Sedivy, T. Smith, S. Izadi,
“Challenge: Recombinant Computing and the Speakeasy Approach”,
Proceedings of Mobicom '02, September 2002

[8] V. de Castro, E. Marcos, B. Vela, “Representing WSDL with extended
UML”, Revista Columbiana de Computation, vol. 5, Lug 2004, ISSN
1657 – 2831

[9] Foundation for Intelligent Physical Agents (FIPA), home page,
http://www.fipa.org/

[10] JADE, the Java Agent Development framework, home page,
http://jade.tilab.com/

[11] CORBA explained in wikipedia, http://en.wikipedia.org/wiki/CORBA
[12] The JXTA project, home page, https://jxta.dev.java.net/
[13] The OSGi project, home page, http://www.osgi.org/
[14] J. Rosenberg, SIP: Session Initiation Protocol, IETF RFC 3261,

http://www.ietf.org/rfc/rfc3261.txt
[15] Object Management Group, Model Driven Architecture, home

page,http://www.omg.org/mda/
[16] AndroMDA, home page, http://www.andromda.org/
[17] G. Bartolomeo, S. Salsano, R. Glaschick, SMILE (Simple Middleware

Independent Layer) documentation: tr-smile-v1.0.doc,
http://netgroup.uniroma2.it/twiki/bin/view.cgi/SMS/TechnicalReports

[18] MJSIP, homepage, http://www.mjsip.org/
[19] JSON, homepage, http://www.json.org/
[20] The Simple Mobile Services Project, home page, http://www.ist-sms.org
[21] Q. Z. Sheng, B. Benatallah, “ContextUML: A UML-Based Modeling

Language for Model-Driven Development of Context-Aware Web
Services”, The 4th International Conference on Mobile Business
(ICMB'05), IEEE Computer Society. July 11-13 2005, Sydney,
Australia.

[22] The Thinlet project, home page, http://thinlet.sourceforge.net/home.html
[23] The XML User Interface Language (XUL),

http://www.mozilla.org/projects/xul/
[24] The Simplicity Project, home page, http://www.ist-simplicity.org
[25] The OpenCom framework, home page,
http://www.comp.lancs.ac.uk/computing/research/mpg/reflection/opencom.ph
p
[26] D. Greenwood, M. Calisti, "Engineering Web Service - Agent

Integration," in IEEE Conference of Systems, Man and Cybernetics, The
Hague, 2004

[27] A. Harrison, I. J. Taylor “WSPeer - An Interface to Web Service
Hosting and Invocation”, Proceedings of the 19th IEEE International
Parallel and Distributed Processing Symposium (IPDPS'05) - Workshop
4 - Volume 05

[28] N. Milanovic, M. Malek, "Current Solutions for Web Service
Composition" IEEE Internet Computing, vol. 08, no. 6, pp. 51-59,
Nov/Dec, 2004.

