
Simple Mobile Services for IMS

Andrea Polidoro, Stefano Salsano, Giovanni Bartolomeo

Dept. Electronic Engineering, University of Rome “Tor Vergata”

{andrea.polidoro, stefano.salsano, giovanni.bartolomeo}@uniroma2.it

Abstract
In this paper we present an open source platform for

mobile services execution and creation that has been

ported to work into the IMS architecture. The platform

has been developed in the context of the Simple Mobile

Services research project and it includes a mobile client

called MOVE (Mobile Open and Very Easy) developed

using the Java 2 Micro Edition (J2ME) platform. The

paper describes the features of the service

execution/creation platforms, then it shortly introduces

the IMS (IP Multimedia Subsystem) , finally it describes

the process of porting the Simple Mobile Services

architectural elements into the IMS architecture

1. Introduction

Considering the huge penetration of mobile phones,

mobile services have not yet reached their potential (end

expected) market success. Among the reasons, there is the

fact that mobile services are often difficult to use and to

configure, difficult to find, difficult to develop and

deploy. The “Simple Mobile Services” project has

addressed these issues with the design and development of

an open source platform for mobile service execution and

creation.

The IP Multimedia Subsystem (IMS) architecture has

been standardized by 3GPP. Using IMS, the operators can

offer a potentially unlimited set of services to their

customers. On the other hand, there are still some issues

with the vision of IMS: there is no clear idea of a killer

application for IMS, it is not clear how services will be

provided, who will be able to develop services, if and

how the operator will “open” their IMS platform to other

developers. There is also a “chicken and egg” problem, as

services/applications are missing because IMS platforms

are not still in place, and IMS platform may not be

deployed until there are clear ideas of “killing

applications” that IMS can provide..

In this paper we describe how we have ported the Simple

Mobile Services platforms into the IMS architecture. We

aimed to demonstrate that the services/solutions that we

have developed in the SMS project can be run within an

IMS scenario, using the IMS technology and approach.

We have mostly based our implementation on an Open

Source approach. In fact, the SMS service execution

platform is composed of:

- an open source client for Mobile devices (MOVE) [3]

which uses J2ME technology,

- an open source communication middleware

(“SMILE” [4]) based on SIP (we used the open source

mjsip stack [6])

- a set of “server side” components that can be open

source or closed source

As IMS platform, we have used the open source

“OpenIMScore” [9]. The MOVE client is developed using

Java 2 Micro Edition (J2ME) assuming the CLDC

configuration so that is portable across a large set of

mobile devices. We have extended the MOVE client to

support IMS and we have released the result using an

open source licence. To the best of our knowledge, this

client is the only IMS client that runs on the J2ME and it

is open source.

2. The MOVE Application

The Simple Mobile Service architecture relies on

applications running on mobile devices, combining local

and remote “components”.

MOVE (Mobile Open & Very Easy) is an example of a

mobile application exploiting the SMS architecture.

Implemented as a Java 2 Micro Edition MIDlet, MOVE is

a “service browser” that allows users to access the

required services among the available ones. Services are

implemented by using several components, which may

reside in the local MOVE application or may be located in

a remote server and communicate through a lightweight

middleware as described in Section 0.

Services implemented for MOVE up to now include:

- MEMs (Mobile Electronic Memos) messaging and

handling. MEMs are electronic notes containing a

structured set of attributes associated with a specific class

of information and can be used by humans and

applications to exchange information, for example related

to a location, a person, a service, the status of an ongoing

activity, etc. Figure 1-7 shows a possible use of a MEM

describing a restaurant. Users “capture” MEMs from the

environment or from other services, store them for future

use (Figure 1-2 to Figure 1-4), share them with other users

(Figure 1-8) and send them as input to other components

(like the maps/navigation component, Figure 1-5). MEMs

allow to drastically reduce the amount of information to

be entered manually by users, which is a key feature for

mobile services. The MEM concept [2] has been

introduced by the SMS project and is considered an

important enabler for simplifying the usage of mobile

services.

- A maps/navigation application for outdoor

environments. This component (Figure 1-5) can show

street maps, find addresses and businesses, connect to an

external GPS receiver via Bluetooth to get the current

device position and show the route towards destinations. It

interfaces with a proxy, which provides an abstraction

layer for a generic maps/navigation service, and makes it

possible to use different service providers, such as Google

Maps or MSN Maps & Directions.

- A navigation application for indoor environments, which

can show maps of a given “local” area like a shopping

mall, an airport, a campus, etc. providing walking

directions to points of interest. It may either be connected

to an indoor positioning system, like an indoor

localization system based on Zigbee tags, or use other

means to acquire the user location, including visual tags

recognition and manual user input.

Figure 1: Screenshots from the MOVE application

- A “Find my Friends” service, which provides

information about the location of friends and it is fully

integrated with the outdoor and indoor maps/navigation

components, so that friends’ positions can be shown on

the maps and directions can be asked on how to reach a

friend.

Among other available components we quote a weather

information service, a train schedule and

departure/arrivals information services, a proxy to the

well-known online photo sharing application Flickr.com;

These services have been adapted to the mobile

environment not only by performing modifications to their

content, as usually done by existing “mobile browsers”;

rather, their interaction paradigm has been changed to

better fit the users’ experience over their mobile devices.

For instance, data are pre-fetched so that the latest

information is always available, minimizing the user

interaction time. Likewise, manual input of information by

users is drastically limited by exploiting context (location,

current activity, time, etc.) and/or user profile information,

made available by MOVE.

The platform is designed to offer a richer set of services

with respect to the ones listed above. Ongoing work

includes for example the implementation of other

components such as: Semacode to scan visual tags,

Bluetooth access, instant messaging, RSS reader, and a set

of proxies to other services available on the web.

Internet

SMILE – JSON/SIP

middleware

SMILE – JSON/SIP

middleware

SIP

SBC

SIP

Registrar

and Proxy

SMS platform

Server side

Meteo Service

Indoor Navigation

MEM client

Location/Navigation Proxy

Meteo Proxy

MEM server

Outdoor navigation

Mobile Terminal

Web Map

service

(Google Map /

MSM Maps &

Directions)

Web Meteo

service

(Kataweb /

yahoo)GPRS/UMTS/

WiFi access

Uniroma2

campus network

Flickr

Find My Friends

Trenitalia Web

information

service

Figure 2: Test-bed scenario

We stress that the proposed platform is, to the best of our

knowledge, the only one based on open-specifications,

offering an open-source framework able to put together

services and applications in a seamless and easy way. We

also stress the novelty of the MEMs concept. MEMs are

easily shared across different components and can be seen

as tools to simplify the user interaction and as a “glue”

that links services together .

The project has implemented a real test-bed whose

architecture is depicted in Figure 2. Components and

services implemented up to now, together with a rich

documentation, are available in [3].

3. The SMILE Framework

SMILE ([4], see also [3]) is an abstraction layer written

in Java which supplies a simple and unified framework for

developing distributed, component-based applications.

The components that need to interact are implemented as

“SMILE peers”. SMILE features an application-level

peer-to-peer communication paradigm, which allows each

peer to communicate with other peers either by sending

asynchronous messages or by using synchronous remote

procedure calls, at their convenience. In addition, it offers

support for peer lifecycle as well as registration and

lookup facilitations which may be exploited by any peer to

find other peers.

Being an abstraction layer, SMILE is not a self-contained

middleware and needs a “binding” to an underlying

mechanism in order to implement actual communications.

Components can therefore be developed using the SMILE

framework, irrespectively of the concrete mechanisms that

will be used for the communication. This way,

applications maintain their portability across different

middleware platforms and devices.

Formerly, we have implemented SMILE bindings on

RMI, CORBA and JXTA middleware, all targeted to

desktop platforms (e.g. using JAVA Standard Edition). In

contrast, the JSON/SIP binding developed in the SMS

Service Execution Platform allows all applications coded

for SMILE to run on fixed hosts as well as on mobile

devices implementing a J2ME virtual machine, without

any change in their SMILE-based interfaces. It is worthy

to note that, despite there exist examples of middleware

platforms ported to mobile devices, it often happens that

the set of APIs that they offer is only a subset of the ones

provided by the original platform. Thus, applications need

to be manually adapted to run on the mobile version.

Mainly, this is because the original middleware platform

has been thought for a traditional desktop environment,

and is not provided in the form of an abstraction layer,

like SMILE.

In the following we explain how we can allow SMILE

applications to work seamlessly in J2ME CLDC devices,

using JSON over SIP as a binding. Basically, we needed

to address two issues: i) implementing a suitable

serialization mechanism; ii) solving the NATs and

firewalls traversal problem.

As regards the first issue, a serialization mechanism is

needed to transform the internal representation of objects

into a stream of bytes that can be interpreted and

reconverted at destination. In Java 2 Standard Edition

(J2SE), such a mechanism is built in. On the contrary,

J2ME does not have an automatic serialization

mechanisms and normally the application developer has to

implement her own serialization mechanism for each

application. Our approach has been to design a “seamless”

serialization mechanism, which is performed by the

framework itself: as shown in Figure 3, we create Java

data types starting from a WSDL definition of the

interfaces. The instances of these data type have methods

to automatically produce at runtime a corresponding

serialized stream (marshalling), and to rebuild the original

object from a received stream (unmarshalling). Even if

this approach is suitable for any serialization format, we

have chosen JSON, which is a lightweight framework.

Marshalling

Unmarshalling

Data

Definition

Level

Data

Instance

Level

SMS

interface

definition

Data

Model

SMILE/JAVA

(J2ME=J2SE)

data types

& methods

definition

JAVA

objects

Data

InstancesJSON

representation

of objects

Tx

Rx

SIP

JSON

SMILE

APIs

WSDL

F

igure 3: From interface definition to message instances

As regards the second issue, it is well known that NATs

and firewalls do not allow peer to peer communications

among mobile devices; for example, a peer within a

“natted” network is not reachable from the outside world.

In order to transport SMILE messages, we use the SIP

protocol [5] and we resort to a known NAT traversal

solution for SIP, based on the so called “Session Border

Controller” element. The overall architecture of the

JSON/SIP binding of SMILE over SIP is shown in Figure

4.

The SIP infrastructure is composed of the Registrar and

Proxy, which maintains the mapping between SIP user

agent identifiers and their IP addresses, and route calls to

the recipients, and by the Session Border Controller

(SBC) playing the role of intermediary for mobile clients

behind NATs. This infrastructure allows the exchange of

SIP “MESSAGEs” among mobile devices and between

mobile devices and server side elements, even if they

reside in different networks and behind NATs and

firewalls. The SIP infrastructure elements and the SIP

stack for both mobile devices and server side are based on

the open source MjSip project [6]. The JSON/SIP binding

of SMILE implements a fragmentation/defragmentation

mechanism needed to send relatively large SMILE

messages over SIP “MESSAGEs”. It is based on a sliding

window and avoids the fragmentation at IP level.

SIP

SBC

SIP

Registrar

and Proxy

Server side

elements

SMILE

library

Communication

middleware

Mobile Terminal

Yellow

page

SMILE

library

SMILE

library
SMILE

library

Figure 4: SMILE middleware and SIP elements

Figure 4 also shows the Yellow Page server, which allows

SMILE peers to register/deregister their services and look

for services offered by other peers. The SMILE

abstraction layer offers this yellow page service to the

applications, but the applications are not forced to use it

(i.e., direct communication can be established without the

support of the Yellow Page).

4. The IMS Architecture

The IMS [8] architecture is quite complex because it is

composed of several entities and interfaces (as shown in

Figure 5). However in this section we describe the main

elements of the IMS network, that are the IMS Core

Network elements and the Application Servers.

P - CSCF

S - CSCF
MGCF HSS

Cx

IP Multimedia Networks

IM -
MGW

CS Network

M n

Mb

Mg

Mm

MRFP

Mb

Mr

Mb

Legacy mobile

signalling

Networks

I-CSCF

Mw

Mw

Gm

Mj
Mi

BGCF

Mk

Mk

C, D,
Gc, Gr

UE

Mb

Mb

Mb

MRFC

SLF

Dx

Mp

CS

CS

IMS Subsystem

Cx

Mm

AS

ISC Sh

Ut

BGCF
Mg

Dh

Figure 5: The IMS architecture

The IMS Core Network (CN) is composed of a database

server (HSS) and three sip Server (CSCF).

4.1 HSS: Home Subscriber Server

The HSS (Home Subscriber Server) is the user’s

information repository. It stores, for each user, user profile

information (e.g. the services subscribed from the user),

security information (e.g. authentication and

authorization) location information, and other items.

We can consider it as an evolution of the HLR (Home

Location Register) in the GSM networks. The HSS

implements the Diameter Protocol [7].

4.2 CSCF: Call-Session Control Function

The CSCFs are the SIP servers that manage and control

the SIP requests received from the UE. Based of the role

that the CSCF has in the IMS CN we can have three kind

of CSCF:

1) The P-CSCF (Proxy CSCF) is the connection point

between the UE (User Equipment) and the CN.

According to SIP terminology we can define the P-

CSCF as the outbound Proxy for the UE. The main

functionalities of the P-CSCF include to establish and

maintain a security association with the UE, forward

its SIP request/response to the CN and generate the

Call Details Records (CDR).

2) The I-CSCF (Interrogating CSCF) is the connection

point between the local CN and the CN of different

operators. Its main job is to forward

requests/responses generated from local UE targeted

to different CN domains. Also it manages the roaming

situations and, during the registration procedure,

assigns an S-CSCF server to the UE that needs to

registers.

3) The S-CSCF (Serving CSCF) performs the session

control services for the UE. During the registration

procedure it acts as a SIP registrar/authentication

server. It means that it retrieves the user’s credentials

stored in the HSS and uses them to challenge the UE.

Also it maintains a session state as needed by the

network operator for supporting the services.

4.3 AS: Application Server

An Application Server is a server that provides a

specialized service. Typically in an IMS network there

will be several ASs. Each AS can implement different

technology (e.g. Java, Servlets, SIP CGI) in order to

provide a user graphical interface but all ASs must

implement a SIP interface with the S-CSCF named ISC

(IMS Service Control). 3GGP defines three kinds of ASs:

- SIP AS: it is the native Application Server for IMS. It

should be used for all the new services exclusively

developed for IMS

- Open Service Access-Service Capability Server (OSA-

SCS): it provides the gateway functionality to execute

OSA services in the IMS.

- IMS-SSF (IP Multimedia Service Switching Function): it

provides a gateway to legacy service networks that

implement CAMEL (Customized Applications for Mobile

network Enhanced Logic) services.

5. Integration of MOVE/SMILE into the IMS

Architecture

The integration of MOVE/SMILE in IMS architecture

consisted in: 1) developing a MOVE client that acts as a

IMS User Equipment; 2) developing SMS Server-side

components in an IMS application server; 3) making

adaptation to the SIP-based SMILE middleware so that it

can work in the IMS environment.

Since the MOVE client and server can use SIP as binding

for SMILE messages, the integration consist in the

adaptation of the SIP stack inside the Move client and

server in order to support the SIP extensions defined in

[10] and in [11].

In the client side the canonical SIP registration has been

adapted in order to perform a IMS registration.

In particular we have added:

- Private/public identity management,

- Support to Service Route Discovery in the

Registration and the Subscribe Registration Package,

- Support to the P-Preferred Identity and the P-Access

Network

In the server side the first step has been to group all the

Simple Mobile Services server-side components

(including the SMILE Yellow Pages) in a single

Application Server. For this reason we defined additional

fields in the “From” and “To” headers in order to

distinguish among different SMILE peers running in the

same Application Server.

Two new fields has been added in the From and To

headers:

pType: it contains information about the kind of service

implemented by the sender (receiver) SMILE peer

pName: it indicates the name of the sender (receiver)

SMILE peer. This can be used to distinguish between

more instance of the same service.

Thus, an example of a valid “From” header is the

following:

From:
<sip:alice@neverland.net;pType=MEMrecei
ver, pName=istance0>;tag 123456;

In the Application Server (AS) implementation, the object

taking care of delivering the SMILE message to the right

SMILE peer is called Dispatcher (Figure 6).

Figure 6 The role of a Dispatcher in the AS

This Dispatcher acts as SIP UA for the SIP stack, so it

receives any SIP MESSAGE sent to its SIP URI.

Whenever the Dispatcher receives a message it retrieves

the SMILE message contained inside the SIP MESSAGE

body, extracts the SMILE peer receiver from the pName

and pType fields contained into the “To” header and

forwards the message to the corresponding SMILE peer.

In the opposite direction, when a SMILE peer wants to

send a message to another peer, it specifies its own

identification parameters (sender’s pName and pType),

the recipient identifications parameters (recipient’s

pName, pType and SIP URI) and delivers the SMILE

message to be sent to the Dispatcher. Finally, the

Dispatcher prepares the SIP MESSAGE and sends it

using the SIP Stack.

As we run in an IMS environment, we have to perform

some additional configurations in order to properly

identify the AS not as a SIP User Agent (UA, as it was in

the non-IMS implementation of SMILE) but as an IMS

Application server. To that end, an Application Server

entry has to be added in the HSS with the SIP URI of the

AS, and one or more trigger criteria have to be added in

the SCSF in order to forward the SIP requests to the AS.

In this case the trigger criteria concerns the SIP Method

(only the SIP MESSAGEs have to be forwarded to the

AS) and the destination URI (only the messages with AS

URI in the TO header have to be forwarded to AS).

Finally, because the AS is not an UA the IMS registration

procedure does not need to be performed; finally the S-

CSCF has to be set as outbound proxy for the AS.

6. Open Source Applications and Testbed

In order to showcase the Simple Mobile Services features

inside an IMS Network, we have implemented a test-bed

as depicted in Figure 7.

DISPATCHER
sip:alice@neverland.net

SIP STACK
192.168.1.15:5060

SMILE PEER
pName=meteo0

pType=MeteoServer

SMILE PEER
pName=meteo1

pType=MeteoServer

SMILE PEER
pName=yp0

pType=YellowPages

Figure 7 MOVE/SMILE IMS Testbed

For this test-bed we used 5 machines virtualized in one

physical XEN machine and a set of smartphones (e.g.

Nokia n70, N95, e61). Four of the five virtual machines

are used to implements the IMS core network components

(HSS, P, I, S-CSCF). Each of this machine is equipped

with a Linux Debian Etch operative system. As software

for the IMS core entities we used OSIMS, the Open

Source IMS Core. This is an implementation of IMS

CSCFs and a lightweight (HSS) based on open source

software (SER SIP Express Router for the CSCF and

MySQL for the HSS) developed by Fraunhofer FOKUS.

The Application Server and the MOVE client are based

on the MOVE client and the server side components

developed in the SMS (Simple Mobile Service) project.

Both of them use MjSIP [6], an open source SIP stack

written in java by University of Parma and University of

Rome Tor Vergata. Two different distributions of MjSIP

(namely MjSIP-se and MjSIP-me) have been released to

work respectively in J2SE and J2ME applications as well.

We use MjSIP-me for the MOVE client and MjSIP-se for

the Application Server. In both these implementations, the

sip stack has been suitably modified in order to support

IMS SIP extensions.

The developed open source component are available at

[3], including in particular the IMS compatible SIP stack

for J2ME and the IMS compatible mobile client.

7. Acknowledgements

This work has been performed in the context of IST

Project “Simple Mobile Services” [1], partially funded by

the EU. The author wishes to acknowledge Laila Aoufi,

for her relevant contributions in implementation and proof

of concepts.

8. References

[1] The “Simple Mobile Services” project, Project” IST 2006-

034620, http://www.ist-sms.org

[2] R. Walker, G. Bartolomeo, N. Blefari-Melazzi, S. Salsano:

"MEMs - Mobile Electronic Memos: efficient information

capture and sharing for mobile users", WWRF #18, June

2007, Espoo, Finland.

[3] Simple Mobile Services – Platform documentation,

http://netgroup.uniroma2.it/twiki/bin/view.cgi/Netgroup/S

MSPlatformHome

[4] S. Salsano, G. Bartolomeo, N. Blefari-Melazzi, C. Trubiani,

“SMILE, a Simple Middleware Independent LayEr for

distributed mobile applications”, IEEE WCNC 2008, Las

Vegas, USA, 31 March – 3 April, 2008.

[5] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J.

Peterson, R. Sparks, M. Handley, and E. Schooler. RFC

3261: SIP: Session Initiation Protocol, June 2002.

[6] MjSiP, open source Java implementation of SIP,

http://www.mjsip.org/

[7] P. Calhoun, et al, “Diameter Base Protocol”, IETF RFC

3588, September 2003.

[8] 3rd Generation Partnership Project (3GPP), TS 23.228 IP

Multimedia Subsystem (IMS); Stage 2 (Release 7) March

2008.

[9] The Open IMS Core Project: http://www.openimscore.org/

[10] M. Garcia-Martin, E. Henrikson, D. Mills January, RFC

3455 Private Header (P-Header) Extensions to the Session

Initiation Protocol (SIP) for the 3rd-Generation Partnership

Project (3GPP,) January 2003

[11] D. Willis, B. Hoeneisen, RFC 3608 Session Initiation

Protocol (SIP) Extension Header Field for Service Route

Discovery During Registration, October 2003

