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Abstract—In this paper we propose to integrate Software 
Defined Networking (SDN) principles in Wireless Mesh 
Networks (WMN) formed by OpenFlow switches. The use of a 
centralized network controller and the ability to setup arbitrary 
paths for data flows make SDN a handy tool to deploy fine-
grained traffic engineering algorithms in WMNs. However, 
centralized control may be harmful in multi-hop radio networks 
formed by commodity devices (e.g. Wireless Community 
Networks), in which node isolation and network fragmentation 
are not rare events. To exploit the pros and mitigate the cons, our 
framework uses the traditional OpenFlow centralized controller 
to engineer the routing of data traffic, while it uses a distributed 
controller based on OLSR to route: i) OpenFlow control traffic, 
ii) data traffic, in case of central controller failure. We 
implemented and tested our Wireless Mesh Software Defined 
Network (wmSDN) showing its applicability to a traffic 
engineering use-case, in which the controller logic balances 
outgoing traffic among the Internet gateways of the mesh. Albeit 
simple, this use case allows showing a possible usage of SDN that 
improves user performance with respect to the case of a 
traditional mesh with IP forwarding and OLSR routing. The 
wmSDN software toolkit is formed by Open vSwitch, POX 
controller, OLSR daemon and our own Bash and Python scripts. 
The tests have been carried out in an emulation environment 
based on Linux Containers, NS3 and CORE tools. 

Keywords— Software Defined Networking; Wireless Mesh 
Networks; Community Networks; Traffic engineering 

I.  INTRODUCTION 
A Wireless Mesh Network (WMN) is a multi-hop radio 

network, whose nodes are IP routers with one or multiple 
wireless interfaces, typically based on IEEE 802.11 WiFi. WiFi 
interfaces are usually configured in ad-hoc mode and use 
omnidirectional antennas. However, the increasing availability 
of wireless routers with multiple interfaces allows configuring 
the interfaces in the more reliable infrastructure mode, in which 
some hub routers are configured as Access Point (AP) and 
collect traffic from spoke routers that are configured as 
STAtion (STA). A hub router is interconnected to other parts 
of the network through another WiFi interface, which may also 
operate in the same frequency, in case of directional antennas. 

Nowadays the greatest mesh networks are the so called 
Wireless Community Networks (WCNs) (e.g. [1][2][3][4]). 
WCNs are used to share the cost of Internet access, but also to 
support the distribution of community information and 
services. Current wireless community networks may have more 
than 20.000 nodes [4]. 

Software Defined Networking and its OpenFlow 
implementation [5] have been recently proposed for application 
in Wireless Mesh Networks (WMNs). The work in [6] 
describes the definition and implementation of a solution for 
OpenFlow-based routing in WMNs and its applicability to the 
mobility management of mobile clients. The works in [7] and 
[8] provide an analysis of opportunities and research 
challenges arising from the application of SDN in wireless 
heterogeneous scenarios, including WMNs. 

Realizing a mesh of OpenFlow switches, rather than of IP 
routers, provides the flexibility of implementing packet 
processing functions, such as forwarding or filtering, which 
may operate on a multi-protocol base, up to the transport layer 
headers. This flexibility can foster innovation in mobility 
management, advanced routing and traffic engineering, and, 
more in general, in the optimization of the use of the scarce 
communication resources of WMNs. Moreover, an OpenFlow 
WMN simplifies network management, since the network 
control logic runs on a centralized server, which has the task of 
pushing matching criteria and processing actions to the 
OpenFlow switches of the network.  

In practical terms, switching from current WMNs based on 
IP routers to WMNs based on OpenFlow switches requires a 
software update only. Indeed, most WMN nodes are based on 
Linux OS (e.g. OpenWRT distribution) and OpenFlow tools 
like the OpenFlow Reference Implementation [11] or Open 
vSwitch [15] are available for Linux-based systems (including 
OpenWRT). 

To achieve the pros described above we must face some 
cons and the peculiar characteristics of the WMN environment, 
such as the unreliability of radio channels that may temporarily 
prevent the communications with the controller; or the 
unavailability of layer 2 routing mechanisms such as Spanning 
Tree or Auto Learning, which are instead commonly used in 
wired deployment to support communications between 
switches and controller. 

To exploit the pros and mitigate the cons, the contribution 
of this work is proposing and implementing a Wireless Mesh 
Software Defined Network (wmSDN) that uses OpenFlow to 
route data traffic, and exploits the OLSR routing protocol [12] 
to: i) route OpenFlow control traffic; ii) route data traffic in the 
emergency case of controller unreachability. The wmSDN 
software toolkit implementation is composed by Open vSwitch 
[15], the POX controller [14], OLSRd [13] and our own Bash 
and Python scripts. 



 

 

We test our wmSDN architecture in a concrete traffic 
engineering use-case, for which we devise and implement the 
logic for the POX controller [14]. The tests are carried out by 
using an emulation environment based on Linux Containers 
[16], NS3 and CORE tool [17]. All related software is released 
as open-source [18]. 

II. OPENFLOW BACKGROUND 
An OpenFlow based SDN is characterized by a 

standardized programming interface, namely the OpenFlow 
protocol, which separates forwarding and control 
functionalities. As shown in Figure 1, an OpenFlow network is 
formed by switches that forward data packets and communicate 
with one or more controllers using the OpenFlow protocol.  

A controller configures the forwarding behavior of the 
switches by setting rules in their flow tables. A rule is 
composed of match criteria and actions. The match criteria are 
multi-protocol classifiers that identify the set of packets that 
should be affected by the rule; the actions specify the packet 
processing to be applied by the switch (e.g. output forwarding 
port, header rewriting instructions, etc.).  

The controller can install rules in a proactive way, or it can 
react to events coming from the OpenFlow switches and be 
notified through the OpenFlow protocol. The typical example 
of the latter case is that of an OpenFlow switch unable to make 
a forwarding decision, since the incoming packet does not 
match any rules in the flow table. In this case the switch can be 
configured to encapsulate the packet in a OpenFlow control 
packet called packet-in, and send it to the controller. The 
controller may carry out different actions, depending on its 
software defined logic. For instance, the controller may 
compute the route for this packet, push the related packet 
forwarding rules down to the requesting switch and send back 
the encapsulated packet. In turn, the switch will apply the new 
forwarding rule to the returned packet, as well as to next 
packets that match the same rule.   

Note that in general an OpenFlow switch does not only 
operate at layer 2 like an Ethernet switch, but it can implement 
match criteria and actions at different protocol layers, up to the 
transport layer in the current 1.1.0 version of the OpenFlow 
specification [11]. This multi-protocol flexibility makes 
possible to customize an OpenFlow switch to realize traditional 
network appliances (e.g. an Ethernet switch, an IP router or a 
NAT/firewall, etc) or a hybrid of them. In our WMN use-case 
(Section IV), we use OpenFlow switches to carry out IP 
forwarding on a flow basis and for this reason, in what follows 
we remind the difference between the processing of an IP 
packet in a traditional router and in an OpenFlow switch.   

When a traditional router receives a packet, its routing table 
associates the packet destination IP address to the next hop IP 
address and to an outgoing interface. Assuming an Ethernet 
like interface, the router resolves the next hop IP address into a 
MAC address and forwards the packet by rewriting the MAC 
addresses as follows: the destination MAC address becomes 
the resolved next hop MAC address; and the source MAC 
address become the router outgoing interface MAC address.  
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Figure 1. OpenFlow network 

In an OpenFlow switch, the IP routing table is replaced by 
the flow table. For each rule of the table, the match will operate 
on the IP destination address and mask. The rule actions 
instruct the switch to forward a packet on the proper outgoing 
interface, and to rewrite the source and destination MAC 
addresses to behave as described above. We point out an 
important difference among the regular IP and the OpenFlow 
based approach: in the OpenFlow approach, the destination 
MAC address of the IP next hop must be known when setting 
the rule (and the IP next hop address is not even used in the 
rule). In the IP approach, the IP next hop address is indicated in 
the routing table, and the IP-to-MAC resolution can be 
performed at packet forwarding time using ARP.  

A fundamental requirement of an OpenFlow deployment is 
that IP connectivity needs to be assured for the communication 
between the OpenFlow switches and controller, which runs 
over TCP (or SSL). Using the OpenFlow terminology, this 
control can happen “in-band”, if the same network is used to 
transfer both data and OpenFlow control traffic, or “out-of-
band” if different networks are used.  

In a wired layer 2 network controlled with OpenFlow, out-
of-band signaling is mostly used. To deploy an out-of-band 
control a dedicated Virtual LAN (VLAN) may be used to 
transfer the data units of the OpenFlow protocol through 
traditional layer-2 switching mechanisms like Spanning Tree 
algorithm or auto learning of MAC addresses. In addition to 
the control network, another VLAN is used to create a data 
network for transferring data traffic, in which forwarding is 
carried out using OpenFlow mechanisms and routing policies 
are managed by the OpenFlow controller. 

In case of in-band control both data and control traffic are 
handled by OpenFlow mechanisms. Accordingly, locally 
configured control-rules specify the actions to forward control 
traffic, i.e. packets going to or coming from the controller. In 
this wired case, it is possible to use a forwarding action (aka 
OFPP_NORMAL) that merely enforces the use of traditional 
layer-2 switching mechanisms. This assumes that the switch is 
also able to operate with these traditional mechanisms and to 
support the co-existence of them with OpenFlow. The 
forwarding of data traffic takes place as previously described 
for the out-of-band case.  
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Figure 2. Wireless mesh network 

Overall, in wired layer 2 networks both in-band and out-of-
band control solutions usually demand of standard layer 2 
switching mechanisms to route OpenFlow control messages. 

III. WIRELESS MESH SOFTWARE DEFINED NETWORK  
The deployment of an OpenFlow based SDN in a WMN 

environment presents some novel issues, like the setup of a 
robust control framework that allows the switches both to 
communicate with the controller, and to face the emergency 
condition in which the controller is unavailable, e.g. due to a 
network partition or a controller failure. In fact, VLANs cannot 
be used to support out-of-band control strategy and the WMN 
routing mechanism is usually not based on layer 2 mechanisms 
(Spanning Tree algorithm / auto learning), but on layer 3 
routing protocols like OLSR.  

A solution to create an OpenFlow wireless mesh with out-
of-band control was proposed in [6], using different SSIDs for 
the control and data network. This work, which to our 
knowledge is the only that makes practical use of OpenFlow in 
a wireless mesh scenario, relies on the capability of the 
wireless driver to support multiple SSIDs. Differently, in this 
paper we propose an architecture which uses a single SSID, in-
band control strategy and also supports controller failures. We 
use the OpenFlow centralized controller to engineer the routing 
of data traffic and use OLSR to locally set up the control-rules 
used by OpenFlow control traffic.  Moreover, OLSR is also 
used to push emergency-rules in the switch. Such rules route 
data traffic in emergency conditions, during which the 
OpenFlow controller fails or is unreachable.  

The reference network scenario is shown in Figure 2. A 
WMN is composed of Wireless Mesh Routers (WMRs) which 
provide connectivity to a set of Access networks (either 
offering a wired or wireless interface to user terminals). A 
subset of the WMRs operate as Gateways and provide 
connectivity towards the Internet. This configuration is typical 
of the current Wireless Community Networks. In our SDN 
based approach, we add the OpenFlow controller, connected to 
a WMR through a wireless/wired connection.  

Control traffic and data traffic use different IP subnets. For 
instance, the subnet 10.0.0.0/16 is used for control traffic, 
while other subnets are used for data traffic.  
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Figure 3. OpenFlow and OLSR interaction 

The controller and the WMR wireless interfaces get an 
address of the control subnet, while other interfaces of the 
network get an IP address belonging to different subnets, e.g. 
192.168.x.0/24, each announced in OLSR as an HNA network. 

In-band control network 
As we want to deploy an in-band control, we need to locally 
set-up the control-rules to forward OpenFlow control packets, 
which are packets with destination IP address belonging to the 
control-subnet. To this aim we use the OLSR routing protocol 
to learn the topology of the control-subnet and then exploit this 
knowledge to setup the control-rules. Accordingly, an OLSR 
routing instance runs on each WMR node and the IP address of 
the controller is also advertised by OLSR using a Host and 
Network Association (HNA) messages with /32 mask.  

Figure 3 reports the main entities of a WMR involved in 
the interplay between OLSR and OpenFlow. The control-rules 
used by OpenFlow message are configured by the OLSR-to-
OpenFlow (O2O) entity, by inspecting an IP routing table 
handled by the OLSR daemon. This IP routing table configured 
is a “dummy” one, i.e. not actually used by the operating 
system when forwarding IP packets. In the Linux case this is a 
user defined routing table, different from the kernel main one, 
and never referenced in the Routing Policy Data Base.  

An entry of the dummy routing table has the form <control-
subnet IP address/32, next-hop, output interface>; the O2O 
module converts it in a rule of the OpenFlow table whose 
match is “IP destination == control-subnet IP address” and 
whose action is “change source MAC address with the MAC 
address of outgoing interface and the destination MAC address 
with the MAC address of the next-hop”. Therefore the O2O 
module needs to know the MAC addresses of the WMRs; this 
IP-to-MAC translation can be provided offline (as in our 
current preliminary implementation) or can be distributed by a 
novel OLSR plug-in, so that each WMR can learn the MAC 
addresses of all other WMRs1. To follow topology change, the 
O2O sets a timeout (e.g. 60s) to the inserted control-rules and at 
the timeout expiration the dummy IP table is dumped again on 
the OpenFlow Table. 

                                                        
1 Note that while an ARP or ARP-like mechanism could be viable to 

learn the MAC addresses of one-hop nodes, the central controller 
however needs to know all the associations between IP addresses 
and MAC addresses of all network nodes. 
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Figure 4. WMR architecture 

In addition to the control-rules used to route OpenFlow 
traffic, the flow tables are also filled with other control-rules 
needed to support the OLSR operations. These rules are used to 
forward the incoming OLSR packets to the OLSR daemon in 
the WMR node and to let the outgoing OLSR packets exit from 
the proper interfaces.  

Data network 
Let us now consider how to handle the traffic for IP 

destinations outside the control-subnet, i.e. either to the access 
networks or to the Internet. Assume that a packet is generated 
in a host of the access network and destined to an Internet 
address outside the wireless mesh network (but the same will 
also apply to packets destined to a host of the access network 
as this occurs when packets come back from the Internet or for 
mesh internal communications).  

The packet will be received by the WMR on its access 
network interface. Then a match is searched in the flow table. 
In case a match is found, the related action is carried out. 
Otherwise, the IP packet is embedded in a OpenFlow packet-
in, which is transferred to the controller using the in-band 
control network. When the controller receives the packet-in, it 
applies the programmed routing logic, e.g. the one we describe 
in section IV. 

To support controller operations, the IP subnets of the 
Access Networks are advertised by WMRs and gateway 
WMRs by using OLSR Host and Network Association (HNA) 
messages. Moreover, gateway WMRs also advertise the default 
route 0.0.0.0/0. In doing so, each WMR node knows the full 
network topology and the controller can inquiry the connected 
WMR to learn this information, which is fundamental to 
implement traffic engineering logic for data traffic.  

Emergency conditions 
Using standard OpenFlow means, the O2O module 

periodically controls the liveliness of the controller. In case of 
controller failure (e.g. due to hardware or communication 
issue) the O2O enters in an emergency status during which it 
removes all the rules inserted by the controller from the flow 
table and dumps all the OLSR routing table, i.e. including the 
routes outside the control-subnet and the default route 
advertised by the gateways.  
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Figure 5. Use-case scenario 

In doing so the routing of the mesh becomes substantially 
controlled by OLSR, while the forwarding is always carried 
out through OpenFlow mechanisms. When the controller 
becomes reachable, the O2O leaves the emergency status and 
removes from the flow table the rules associated to routes 
outside the control-subnet, thus forcing ongoing data flows to 
send packet-in data units to the controller, which will decide 
how to re-route them. 

WMR architecture 
The architecture of a WMR node in our scenario is shown 

in Figure 4. It includes: one wireless interface belonging to the 
Wireless Mesh Network (wlan0); an optional wired interface 
towards client Access Networks (eth0); an optional wired 
interface used as a gateway to the Internet (eth1); a virtual 
interface br0, which is a software bridge using OpenFlow 
switching logic, e.g. Open vSwitch [15]. A generic “real” 
WMR node may have additional wireless or wired interfaces 
towards client Access Network and additional wireless 
interfaces can be bridged to br0 if a multi-channel WMR is 
used. 

The br0 interface has an IP address belonging to the 
control-subnet, wlan0 does not have an IP address, eth0 has an 
address of the Access Networks subnet and eth1 of the subnet 
connected to the Internet. OLSR is connected to br0, and br0 is 
used as destination for any packets generated by the node and 
directed towards the WMR. To this aim we use the trick of 
inserting in the main routing table of Linux a fake IP address 
(e.g. 10.0.254.254) as gateway of all the routes whose outgoing 
interface is br0 (i.e. of the routes directed toward the WMN). 
To avoid ARP generation, we also statically insert in the ARP 
table a fake MAC address for the fake IP address. 

It is noteworthy that in this architecture we have two 
different levels of controllers setting up OpenFlow rules: a 
local distributed controller taking care of control-rules that is 
the couple O2O and OLSR, and a remote centralized controller 
taking care of rules for data traffic. 



 

 

IV. USE-CASE: GATEWAY BALANCING   
In this section we propose an application of the wmSDN 

architecture in which OpenFlow switching is used to balance 
traffic among the gateways of a Wireless Mesh Network. The 
gateway balancing logic is implemented in the controller and 
we show that external clients can fetch data from public servers 
inside the wmSDN at a higher throughput, with respect to the 
one they achieve using a WMN with only plain OLSR routing 
and IP forwarding.  

We consider the case of a WMN that is an Autonomous 
System and uses its public address space to address internal 
public servers (e.g. mail, web, video) The WMN also uses a 
private address space to address private hosts, such as user 
laptops or desktops. The WMN is connected to the Internet 
through a set of WMRs acting as gateways, which also have a 
BGP peering relation with the related access ISPs; i.e. the 
WMN has a multi-homing configuration. This configuration is 
rather common in Wireless Community Networks, like 
Ninux.org in Italy or Guifi.net in Catalonia. 

Figure 5 reports an example of such a configuration, in 
which the WMN is formed by 6 WMRs, two of which are BGP 
gateways and provide Internet access through an ADSL 
connection with an uplink bandwidth of 1 Mbit/s. A public 
server is connected to WMR 1 over Ethernet and clients 
located on the Internet fetch data from this server.   

In such scenarios, using plain OLSR IP routing in the 
WMN implies that all the traffic sent from a server towards 
Internet clients flows through the BGP gateway closest to the 
server. Indeed, each gateway announces through OLSR the 
default route (0.0.0.0/0) and OLSR inserts this default route in 
the IP routing tables of WMRs by using a shortest path strategy 
(or using Expected Transmission Count [13]). For instance, in 
case of  Figure 5 all the traffic between the public server and 
the Internet clients flows through GW1, which is the gateway 
closest to the server. 

Using a wmSDN in these scenarios makes it possible to 
carry out forwarding operations on a flow-basis and to route 
different flows on different gateways in order to better exploit 
the uplink capacity provided by all the mesh gateways. As a 
proof of concept, we implemented a simple round robin 
Gateway Selection Algorithm (GSA) for the OpenFlow 
controller. The GSA pushes rules in the flow table of WMRs, 
aimed at routing single data flows towards the selected GW. A 
rule identifies a flow through a match criterion based on the 
couple IP source and IP destination. The rule action is twofold: 
i) to change the source MAC address with the MAC address on 
the WMR node and the destination MAC address with the one 
of the next-hop WMR in the path toward the selected GW; ii) 
to forward the packet on the wireless interface toward the next 
WMR of the path. The next-hop WMR computation is carried 
out using the network topology, periodically learned by the 
controller by contacting the OLSR JSONinfo plugin [13] of the 
connected WMR (the WMR n.3 in case of  Figure 5). 

At the start of a new data flow the controller receives 
OpenFlow packet-in messages from the WMRs, since they do 
not know how to route a new flow. The controller assigns the 
least recently assigned gateway to this flow, in a round robin 

fashion. Then the controller pushes a rule in the flow table of 
the requesting WMR.  

 
Figure 6. Goodput of a TCP stream from the public server versus time, while 
changing the total number of stream generated by the server: one new stream 

at 20,40,60,80,100 s 

For instance in case of Figure 5 when the public server with 
IP address IP_S sends out the first packet P towards an Internet 
client with IP address IP_A,  WMR 1 does not know how to 
forward this packet and sends P within an OpenFlow packet-in 
message to the controller. The GSA algorithm selects GW1, 
and pushes an entry in the flow table of  WMR 1, whose match 
condition is IP source address == IP_S and IP destination 
address == IP_A, and whose action is to switch the source 
MAC address with the one of WMR 1 and the destination 
MAC address with the one of WMR 2 (which is the next-hop 
WMR toward GW1) and then to send out the packets through 
the wireless interface. The packet P is sent back from the 
controller to WMR n.1, which uses the new rule to properly 
forward it. The same procedure is repeated in all WMRs during 
the travel of this packet towards GW1.  

After the initial flow setup phase, all the remaining packets 
of the data flow do not require any other interaction with the 
controller. When the data flow ends, after a brief timeout an 
OpenFlow switch automatically removes the related rule to 
free flow tables from unused entries.  

When a second flow towards a client with address IP_B 
starts, the same flow setup procedure occurs, but the controller 
assigns the gateway GW2 to the flow, maximizing the use of 
the overall Internet uplink bandwidth of the mesh. Obviously, 
in case of gateways with different uplink bandwidth the round 
robin approach should be properly weighted.  

To follow topology changes e.g. due to gateway or WMR 
failures, every time that a topology change is detected by GSA 
(through the JSONinfo plugin of OLSR), the controller forces 
the removal of all the rules it has pushed in the WMRs flow 
tables. In doing so, all the ongoing data flows will restart the 
flow setup phase, which will now take into account the 
changed topology. For example in the scenario of  Figure 5, 
assuming two active flows, one outgoing from GW1 and one 
outgoing from GW2, in case of GW2 failure, the flow setup 



 

 

procedures are restarted and both flows will be routed out 
through GW1. 

It is noteworthy that the described procedures are meant 
neither to be optimal, nor to outperform other similar 
approaches, like IP source routing or multipath transport 
protocols. Indeed, the goal of this section is limited to show a 
simple application of the wmSDN that improves performance 
compared to a “plain” OLSR+IP WMN. Nonetheless, we argue 
that even the more complex load balancing algorithm proposed 
in the literature (e.g. [19][20]) can be implemented in a 
wmSDN by a proper programming of the controller logic and 
we leave this for further study. 

Moreover, the rough approach of shutting down and setting 
up again all the rules when a topology change occurs may 
generate an excessive packet-in traffic or temporary lags in 
packet delivery. Also this optimization aspect is left for further 
study. 

V. PERFORMANCE EVALUATION 
We implemented the deployment framework and the 

gateway balancing logic through Bash and Python scripts, 
supported by Open vSwitch [15] and the POX controller [14]. 
We tested the related performance using an emulated 
environment built with NS3, Linux containers and Core tools 
[16][17], representing the network of Figure 5. The details of 
the emulation environment are described in [18]. With respect 
to Figure 5, in our emulated testbed we simply consider for the 
Internet side one node with the two “ADSL” links toward 
GW1 and GW2 and direct Ethernet links to a number (up to 6) 
of Internet Clients. We do not run BGP and assume that all 
packets generated by Internet clients access the mesh through 
GW1. These packets are routed within the mesh on the shortest 
path towards the server by rules pushed by the OpenFlow 
controller during the flow setup phase. Packets generated by 
the mesh public server are routed by the OpenFlow controller 
on the shortest path towards the gateway selected by the 
balancing logic. 

Gateway Balancing Logic Performance 
The first experiment we carried out is aimed to show the 

performance of the gateway balancing logic, which is also a 
functional proof of the proposed deployment framework. We 
consider six Internet clients that receive data through (long-
lived) TCP connections, whose source is the public server 
shown in Figure 5. The first client starts to fetch data at time 0, 
while the other clients start at 20, 40, 60, 80, 100s respectively.  

Figure 6 reports the goodput (useful data rate without 
TCP/IP header) achieved by the first client if the WMN uses 
OpenFlow and if the WMN uses plain IP forwarding and 
OLSR routing. In the 0-20 s time interval the first client is 
alone. In case of OpenFlow, the controller assigns the client 
TCP flow to GW1, and thus the achieved goodput is close to 
the GW1 uplink rate (1Mbit/s) minus the TCP/IP overhead. In 
case of IP forwarding, OLSR routes this flow, as well as all the 
other next ones, towards the gateway closest to the server 
(shortest path strategy), which happens to be GW1 as well. 
Therefore, in this single-flow case using OpenFlow or IP 
forwarding does not change the achieved goodput. 

During the 20-40s interval there are two flows. In case of 
OpenFlow, the first flow is kept on GW1, while the second 
flow is assigned to GW2 by the controller2. Consequently, the 
presence of this second flow does not affect the goodput of the 
first flow, being the network bottlenecks the gateway uplinks 
rather than the wireless links. In case of plain IP forwarding 
both flows are routed to GW1, thus the first flow halves its 
goodput, since the uplink of GW1 is now shared by two flows. 

During the 40-60 s interval there are three flows. In case of 
OpenFlow, the first and the second flow are kept to GW1 and 
GW2 respectively, and the third flow is assigned to GW1 by 
the controller. Consequently, the first and the third flow now 
share the uplink of GW1 and goodput of GW1 is close to the 
half of the GW1 uplink. In case of IP forwarding, all flows are 
routed on GW1, thus goodput of first flow is reduced to about a 
third of GW1 uplink capacity.  

Generalizing the analysis we see that in case of OpenFlow 
we are able to exploit all the gateways, thus the goodput of the 
first flow decreases when two new flows are added, being the 
two gateways assigned to flows in a round robin fashion. 
Conversely, the plain OLSR+IP solution uses a single gateway 
and so the goodput of the first flow decreases at the start of 
each new flow. Moreover, in cases of more than one flow, the 
overall traffic sent out by the server using SDN is about 2 
Mbit/s, while using OLSR+IP it is only 1 Mbps. 

Gateway Fault Handling 
In the second reported experiment we verify the 

effectiveness of the gateway balancing logic to handle gateway 
faults. We consider two TCP flows directed to two Internet 
clients and whose source is the public server in the WMN. The 
flows start at time t=0 s, and during the interval 180-360s the 
gateway GW2 is faulty (WiFi interface off).  

Figure 7 reports the goodput of the two flows during the 
experiment. When flows start, the controller assigns flow n.1 to 
GW1 and flow n.2 to GW2. Therefore the goodput of the two 
flows is close to the ADSL uplink rate, i.e. 1 Mbit/s. At 180s, 
GW2 fails and the flow n.2 has a brief interruption up to the 
time when the controller detects the topology change using 
OLSR; in our OLSR configuration this latency is about 10 
seconds. After the detection of the topology change, the 
controller removes all rules injected in the flow tables of the 
WMRs, forcing a new flow setup phase that ends up in re-
routing all flows to GW1. From now on, both flows share the 
same gateway GW1 and hence the goodput halves. At time t = 
360s the GW2 failure ends, after about 10 seconds the 
controller detects a topology change and finally re-routes flows 
on two separate gateways. The goodput of the flows become 
again close to 1 Mbit/s.  

Controller Failure Handling 
The third experiment we carried out aims to show the 

effectiveness of O2O module in handling controller failures. 
We consider two TCP flows directed to two Internet clients 
and whose source is the public server. The flows start at time 0, 

                                                        
2 TCP ACK sent by clients however enters the mesh from GW1. In 

fact this gateway is chosen by BGP. 



 

 

and during the period 40-80s the controller has an outage that 
we simulate by shutting down the related POX process. 

 
Figure 7. Goodput of two TCP streams vs. time. During the interval 180-360s 

the gateway GW2 has an outage. 

 
Figure 8. Goodput of two TCP streams generated by a public server of the 

WMN vs. time. In the interval 40-80s the controller has an outage. 

Figure 8 reports the goodput of the two flows. In the 
interval 0-40 the controller is up, one flow is assigned to GW1 
and the other flow is assigned to GW2. During the controller 
outage period, the O2O module removes the rules set by 
controller and dumps the whole set of OLSR routes (including 
the default 0.0.0.0/0) in the flow table. Thus both flows are sent 
out through GW1 and the related goodputs halve. It is 
noteworthy that the delay between the controller failure instant 
and the actual reaction of O2O module is about 10 s and this is 
due to the timeout we configure to check the controller, i.e. 15 
s. At t = 80s, the controller outage period ends, after about 10s 
the O2O module detects the presence of the controller and then 
removes from the flow tables the previously inserted OLSR 
routes that do not concern the control subnet. Consequently a 
flow setup phase occurs, in which the GSA algorithm in the 
controller assigns a flow to a gateway and another flow to the 

another gateway, and performances become again equal to the 
ones achieved at the start of the test.  

VI. CONCLUSIONS 
Wireless Mesh Networks may benefit from the flexibility 

and the simple management provided by the Software Defined 
Networking paradigm, implemented by OpenFlow. The use of 
wireless resources can be optimized by a central server, which 
can reason and perform processing actions on multiple levels 
of the protocol stack.  

We proposed a solution to integrate SDN functionality in a 
Wireless Mesh, trying to face the reliability concerns related to 
this environment. The proposed wmSDN approach integrates 
“ready-to-market” technologies. Indeed it exploits OLSR, 
Linux based OpenFlow tools and our scripts that could be 
easily deployed in Linux-based wireless IP routers, typically 
operating in actual Wireless Mesh (Community) Networks. 
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