

Abstract— To date, mobile services have
failed to match the explosive growth of the Web.
This, we argue, is because current mobile
services are difficult to find, to use, to trust, to
design and deploy. The IST SMS (Simple Mobile
Services) project takes up the challenge of
creating innovative tools addressing the specific
needs of mobile users and making it easier for
individuals and small businesses to become
providers of Simple Mobile Services. We hope
that, thanks to SMS, a large base of people can
create Simple Mobile Services, like it happened
for the Web, where creating a web page is within
the reach of non-expert users.

In this paper, we first focus on one of the
facets of SMS: service authoring tools. We
highlight the importance of powerful authoring
tools, to speed up and reduce the cost of service
development. Then we focus on the location
based services that are an important component
of SMS.

Index Terms— simple mobile services, service

creation, location based services

INTRODUCTION
The primary objective of the SMS project [1]is

producing tools that enable users with limited

technical expertise to build, deploy and offer

services based on mobile devices (mainly

smartphones and PDAs).

SMS does not aim to build a single portal or a

single service offered by a single organization,

rather SMS will propose a “concept” and a set

of tools/technologies. An “Open garden”

approach is considered, there will not be a

predominant or even exclusive role of an

operator, but different players will be able to

offer services based on SMS concepts and

technology.

As for the underlying connections, depending

on its capability the mobile terminal will be able

to exploit and combine the largest possible set

of wireless communication technology. The list

will include, but is not limited to: circuit

switched GSM /UMTS, cellular packet access

on GPRS/UMTS, wi-fi, Bluetooth, near field

communications (e.g. RFID).

As for the target end-user mobile devices, SMS

mainly focus on devices that will be wide

spread in a one to two years time frame.

Therefore mobile phones that are in the “high-

end” market today are OK, a typical example

can be a Java enabled phone with Bluetooth,

UMTS and a WLAN interface. Given this

requirements, also PDAs are likely able to run

SMS services.

It is important for SMS to integrate with existing

services. For this purpose, we can classify the

existing services in two classes: a) services

directly offered to a human user trough a web

interface; b) services that are offered to other

machines through a SOA (Service Oriented

Architecture) “web services” interface.

As for services directly offered to a human user

trough a web interface, SMS will support using

and augmenting existing services (e.g. all web

sites existing in the internet in this moment)

with easy accessibility from mobile devices and

context awareness features. As for Service

Oriented Architecture, we assume that the

SMS architecture can both exploit existing

“web services” and can offer SMS features as

“web services” to the external world.

Simple Mobile Services, a Service
Creation Architecture for Mobile Services

G. Bartolomeo, F. Martire, S. Salsano, N. Blefari-Melazzi

DIE, University of Rome “Tor Vergata”, Italy

This work was partially supported by the EU under the
project IST2006-034620 “Simple Mobile Services”

Page 2 (7)

SMS includes multimodal/multidevice and

pervasive services which are typically

implemented using various devices,

peripherals, sensors/actuators, ad-hoc and

unlicensed networks (bluetooth/zigbee). A

multimodal user interaction should be used

wherever convenient. For example a user

could receive a phone call when this is simpler

in order to confirm the booking of a ticket rather

then interacting with limited screen capability.

The context of use of SMS services (on the

move while engaged in some other task)

requires that each interaction is fast and short

lived, therefore each interaction is not sufficient

to complete more complex high level tasks

such as ‘shopping’, ‘wayfinding’, ‘travel’ etc.

Within SMS, context support can be used to

develop services with reduced interactional

complexity for the end-user.

Coming to the service authoring, in order to

support the “non expert” user that wants to

build a mobile service, an SMS “Service

Authoring Wizard” is being developed. The

‘Service Authoring Wizard’ offers a wizard-like

interface which the (non-expert) users use to

make the necessary parameterization of an

existing SMS template and thus finally deploy a

service based on it. On the other hand, an

“expert” user with programming skills makes

use of the SMS “Advanced Service Authoring

and Modeling Tool”. It offers a richer

functionality with which the advanced (expert)

user will be able to create complex SMS

services from existing service components

(that have been developed separately by

programmers). UML modeling approach will be

used at this level, by defining an SMS UML

profile. Existing UML/MDA tools are used to

the maximum possible extent, so that the SMS

“Advanced Service Authoring and Modeling

Tool” is build upon the composition of existing

UML/MDA tools with proper customization and

enhancements.

Architecture

As shown in Fig. 1, we have four main

elements in the SMS architecture: the SMS

Component Services, the “NON-SMS Service

Elements”, the SMS Service Execution

Platform, the SMS Service Authoring Platform.

An SMS component service is a portion of a

service or a whole service that can be used to

create more complex services or component

services. An SMS component service offers an

SMS interface so that it can be composed in a

more complex service or component services.

Example categories of component services are

location based services (which will be dealt

with later on in this paper), services related to

retrieving user profile information, services

relate to logging into services / authentication /

authorization, services related to payments.

NON-SMS Service Elements are for example

Web sites or server nodes providing Web

Services interfaces. The interfaces between

the NON-SMS Service Elements and the SMS

Service Execution Platform is denoted as

SMS Service

Execution Platform

(Server Side)

Component Service

Server Side

NON SMS
Service Element

Terminal Side

NON-SMS

Service Element

“Legacy”

Interfaces

SMS Service Execution

Platform

(Mobile device Side)

SMS Service
Execution
Platform

Component Service

Component Service

GUI

SMS Service
Authoring
Platform

SMS

Interface

SMS

Interface

Fig. 1 SMS Architectural elements.

Page 3 (7)

“Legacy Interface” in Fig. 1. This interface

should support as much as different ways to

interact with services as possible. One typical

example is the SoA interaction model, based

on Web Services: in this case the interfaces

will be described with WSDL and the execution

will be made using SOAP. Another example

will be “plain” http/html for classical Web sites

with human interaction.

The SMS Service Execution Platform is

the set of nodes where the SMS services are

executed. The Service Execution Platform can

be seen as distributed entity with several

entities that inter-work, both on server side and

on terminal side. As shown in Fig.1 both

terminal side and server side Service

Execution Platforms that can interact with

NON-SMS service element residing on

Terminal Side or Server Side.

Note that the SMS Service Execution

Platform is not meant as a given set of

hardware nodes that will be provided by the

SMS project. Rather, the SMS Service

Execution Platform represents the abstraction

of the set hardware nodes and software

components that execute SMS services. This

can include combination of applications and

components developed by SMS and existing

application/components/platforms. There can

also be separate instances of the SMS Service

Execution platform which are run by different

providers. From the technical stand point,

these separate instances should of course be

able to inter-operate. The level of

interoperation between different instances of

the SMS service execution platform will likely

be driven by business model issues.

Note that the notion of “Mobile device/Terminal

Side” and “Server Side” is not really related to

the client-server dichotomy in a classical client-

server paradigm. We do support a flat “peer-to-

peer” approach as much as possible. We want

to differentiate between the mobile devices that

typically have limited capacity and intermittent

communication and a fixed host in the Internet

(typically reachable with a public IP address)

which can play the server role. In particular,

both Terminal Side and Server Side can be

“provider” and “consumer” of information as

needed by the specific services.
The SMS Service Authoring Platform is

used to create SMS services starting from

Component Services. The SMS Service

Authoring Platform provides support both for a

“non-expert” service author and for an “expert”

developer.

We close this short presentation of SMS

architecture (please refer to [3] for a deeper

understanding) by introducing the notion of

Workflow. An SMS workflow represents the

execution logic of an SMS service or

component service, expressed as composition

of other component services. The workflow

may include conditions, loops and invocation of

remote components. A workflow can be

composed of different threads of control that

can interact. The threads of control can be run

on one or more different machines (i.e. mobile

SMS Service
Execution

Platform

UML
component

diagrams

Graphical
representation

(TBD)

High level
modeling

BPEL

Java

Python

SMS Service Authoring Platform

Execution

Platform TCL

Authoring
Wizard level

UML activity
diagram

Executable
representation

(programming language,
scripting language,

markup language)

SMS authoring

wizard tool

UML authoring
tools

“MDA”

SMS models

Non expert
service

developer

“Expert”
programmer

End-user

Fig. 2. Models, translations and tools for Service Authoring

Page 4 (7)

devices or fixed hosts).

Modeling Services and Service
Composition in SMS

Modeling of services and service composition

in SMS can be performed at two different

levels:

• High-level modeling (for expert user)
• Authoring wizard level (for non-expert user)

In the high level modeling most of the

implementation and deployment details and of

the interactions needed to realize a service can

be hidden, making the development process of

mobile services more effective. UML language

is the chosen representation level here. UML

authoring tools should support the modeling of

SMS services, entities, component services

and workflows. One of the main objectives of

providing the high-level modeling

representation is to have automatic derivation

of executable components.

It will be possible to automatically derive a

“low-level” representation (i.e. with the greatest

level of detail) of SMS services and component

services. This corresponds to an “executable”

representation that can be run on a machine

(maybe interacting with other machines). In

principle, this “low-level” representation may

use programming or scripting language (JAVA,

python, tcl), or a business process languages

(for example a BPEL). The ongoing work of the

SMS project is focusing on JAVA programming

language (in particular J2ME CLDC for the

terminal side components that needs to be run

over the smart phones). As UML/MDA tools the

project is using the combination of MagigDraw

and AndroMDA.

As the high level workflow representation may

be still too complex for the target audience

(non expert service developers), we introduce

an additional level of abstraction in the form of

the authoring wizard.

Fig. 2 tries to provide a graphical

representation of the SMS modeling approach.

The core part is a UML representation of the

SML component services, which enable a

service authoring process based on UML

diagrams. Existing UML authoring tools should

be used to the maximum possible extent. The

“user” of this level is the “expert programmer”

or “expert service developer”.

The UML diagrams produced by the UML

authoring tools needs to be translated into

executable code with minimal “manual”

intervention. As much as possible the

translation process should be executed at “run”

time rather than at “service creation” time,

allowing for a context dependent translation.

Existing tools for code generation from UML

diagrams will be reused. The executable

representation languages that are represented

in Fig. 2 are only meant as possible examples.

The Authoring Wizard level is offered to the

“Non-expert service developer”. The

representation of services and of their

combination should be made in terms that

needs to be understood by users with no

expertise in software engineering nor in

programming. A graphical representation could

be defined and used to this purpose. Ideally it

should be possible from the UML high level

modeling level to interact with the Authoring

Wizard by extending the catalogue of

“component services” that can be glued

together by the Authoring wizard (this is

represented by the small upward arrow in Fig.

2). The Authoring Wizard could provide a

representation of the composed service in term

of UML modeling (this is represented by the

small downward arrow in Fig. 2). This is not

mandatory, other directions can be explored

like for example direct mapping from Authoring

wizard level to an executable representation.

In the down left side of Fig. 2 the SMS

execution platform is represented, which

includes terminal side and “server” side

computing elements. The services that are

developed using the SMS service authoring

platform will be deployed and run over the

execution platform. The “End-user” will be

using the provided services.

Methodology and scenarios

In order to derive the specification of the
architecture and the design of the SMS
system, the SMS project is following the
classical approach of starting from user
scenarios and user requirements. This process
is documented in [2]. Scenarios play a
fundamental role, they act as a source of
requirements for technology, applications, and
business cases.
Two types of scenarios are considered, one
type deals with the final end-user of mobile
services, another type deals with the developer
of mobile services.
Considering the end-user, the scenarios refer
to situations in which the user is on the move
and has an immediate need for relatively
simple information: e.g. how to reach a given
location, information on a flight, information on
a painting in an exhibition. In general, SMS

Page 5 (7)

infers the services best adapted to user needs
from users’ general characteristics (stored in
the user profile) and their current context
(location, time, activity etc.). A detailed
description of the User Scenarios can be found
in [2], we just list their names here to get an
impression of their content: Leaving for
London, Keeping the airport running, A Good
Restaurant, Looking for an ice-cream.
From the developer point of view, SMS makes
it possible to provide single services, or sets of
services to well-defined populations of mobile
users, engaged in specific kinds of activity, at a
given time in a given location. Examples
include sets of services offered by an airport,
or a shopping mall but also integrated sets of
services offered by smaller actors. Some
scenarios included in names of scenarios
included in [2] are: The Newspaper Shop
Owner, Managing Airport equipment, Setting
up a museum service.
The identified scenarios have been “de-
structured” to identify the key elements, such
that other scenarios could be created
combining basic building blocks that provide
simple functionalities into more complex
services. The further process of identification of
architectural components that will be reflected
in the system implementation is dealt with in
[3]. For example Table 1 shows the identified
location based component services and their
functionalities. This is a subset of the more
than 30 different component services (not
limited to location based) identified in [3].

SMS and Location Based
Services
SMS services are targeted to specific
environments. In many cases this means that
services are associated with specific locations.
Any user with an interest in a given location will
be able to access services associated with the
location.
Location Based Services use information about
the user’s location to select the information
they provide. Most users who access a service
associated with a specific location will be
actually visiting the location. In this sense SMS

can integrate Location Based Services (LBS)
being able to answer three questions: Where
am I? What's around me? How do I get there?.
During service execution components in the
terminal will interact with localization
technologies, smart spaces elements and with
server side service elements to provide SMS
services to the user.

Definition of the SMS
Navigation/Localization
Architecture.
The user location system will be one of the
service building blocks in the SMS toolkit. The
options offered by the toolkit will depend on the
infrastructure available in the service delivery
environment (both terminal side and server
side). This means that the architecture should
be independent of any specific localization
technology. The service will be able to use the
same localization functions even when
underlying localization technologies are
different. The platform will automatically adapt
to the functionality available in target locations,
so that the specifics of the underlying
localization system can be hidden to the
service author.
Integrating different location systems as
service building blocks in the SMS toolkit will
require clear interfaces and adaptation layers
between specific implementations and the
other components of SMS.
The SMS navigation and localization
architecture has been defined in a modular
way, as shown in Fig. 3. The role of the SMS
Navigation/ Localization Component is to allow
a generic SMS Component to retrieve
information about the user position and to
provide guidance information to the terminal.
The SMS Nav./Loc. component is the interface
towards navigation and localization services
and it resides on the Mobile Terminal. It
implements the operation of the “Interact with
navigation/Localization SW” component
described in [3]. The SMS Navigation/
Localization Component exposes an API to the
“SMS Generic Components” tailored to build
location based applications. The main
functionality of this API are:

TABLE I – LOCATION BASED COMPONENTS

Component service Functionality

“I’m here” It updates user location information on a recipient (typically a server
side element)

“Where are you” It is used to query the user position to the user terminal itself.

“Where is he?/
Where is it”

It queries the position of an entity (a user or a place) to a server.

Position provider It provides the position of an entity on request. It may be the object
itself or a third entity that knows the position.

User presence trigger It detects the fact that a user has entered an area

Page 6 (7)

• Display User Current Position
• Display Generic Position
• Display Path
• Drive Me To Destination
• Bookmarks&Markers

The request and the display of maps can be
parameterized with different scales.
We can have different implementations of the
navigation and localization services on the
terminal, the SMS Navigation/Localization
Component should be able to adapt to these
different implementations. For example we
could have a commercial navigation application
(e.g. TomTom) which offers an API. In this
case the SMS Navigation/Localization
Component will drive the API of the
commercial application. As another option we
can use a navigation application explicitly
developed to play the role of SMS
Navigation/Localization component. Note that
there can be more than one navigation
application that needs to interoperate (e.g. one
outdoor navigation application and one indoor
navigation application).
In the rest of the document, we assume the
latter case and we will describe the J2ME
application that we have developed. We split
this application into a “SMS Nav./Loc.
Controller” sub-component and a “SMS
Nav./Loc. User Interface” sub-component. Our
application is capable to handle both outdoor
and indoor navigation.

1)SMS Navigation/Localization Controller:

The SMS Nav/Loc Controller is the heart of the
Nav/Loc component. It controls the overall
logic and interacts with the other SMS
components, with the SMS Nav/Loc User
Interface and with the “Location Provider”.
The communication with the with the Location
Provider hides the details of specific
localization technologies that can be used by
the terminal. At the moment we have three
different Localization Technologies (i.e. GPS,
Wi-Fi and Zigbee) managed with specific
Plugins but with this architecture allows to add
whatever technology we want. In order to show
the user his own position on a suitable map the
Controller has to sort it depending on the
currently active localization technology
(outdoor localization like GPS or Indoor
localization technologies such as Wi-Fi,
Zigbee). To accomplish this task, as a first
step, it needs to be aware if the user is
Outdoor or Indoor. This information can be
retrieved through the use of the API exposed
by the “Location Provider” component:

• EntityPosition: return the position of a
specific Entity

• GetTechInUse: information about the
technology currently in use

Currently we have three so called
“Localization PlugIn”: the GPS Plugin (for
Outdoor localization) whose task is to manage
the Bluetooth connection with a Bluetooth
GPS, a Wi-Fi Plugin (mainly for Indoor
localization) and a Zigbee PlugIn (for Indoor
localization). The Indoor modules need an

SMS Navigation/Localization
 Controller

SMS
Nav/Loc

 UI

Location

Provider

-

Zigbee

PlugIn

SMS Navigation Component interface

WI-FI

PlugIn

Outdoor Map

Servers

Map

Storage

Indoor Map

Servers

SMS Nav/Loc

Component

SMS Component X SMS Component Y

Zigbee Loc.
Coord. Server

WI-FI Loc.

Coord. Server
GPS

PlugIn

SMS Loc.
Server

GW

Fig. 3. Navigation and Localization Components for the trials.

Page 7 (7)

external “Nav/Loc Coordinator Server” which
cooperates with the plugin running in the
terminal to track the position of the user.
Thanks to the interaction between the local
Plugin and the external Loc/Nav Coordinator
Server, the SMS system is able to evaluate the
spatial information about an SMS user (e.g.
User A has a position described with x,y
coordinates on the .jpg Map whose ID is z).
The proposed architecture supports different
solutions for retrieving the maps. The maps
can be pre-stored on the Terminal itself (like it
typically happens with navigation software like
TomTom) or they can downloaded on demand
from suitable Map Servers (like it happen with
web based map services like Google Maps).
The implemented application relies for Outdoor
maps on the “mashup” of existing web based
map servers. It is able to is able to show
outdoor maps downloaded from the existing
web based map services. The mashup is
realized by an external element denoted SMS
“Location Server Gateway” in Fig. 3. The SMS
Nav./Loc. Controller interacts with the Location
Server Gateway using an SMS specific
dialogue, then the Location Server Gateway
issues http requests to a web based map
server according to its format.
For Indoor maps, the implemented navigation
application relies on a simple map server
implemented as a web server. This map server
provides the maps when requested from the
clients using http requests.
When SMS Nav./Loc. Controller has acquired
the localization information from whatever
localization technology, it can make this
information available to other SMS
components (always respecting the user
privacy policies). In particular there can be
servers that collect the user localization
information and make it available for services
like finding buddies in the neighbours, or to
associate advertising information to users’
current location.

2) SMS Navigation/Localization User Interface:

“SMS Nav./Loc. User Interface” can be used by
the user to “manually” browse a map, to find a
place in the map, to find a route to a
destination. The user can exploit all the
functionality of the API that the SMS Nav/Loc
component exposes to the other SMS
components, plus some additional functions
like the above mentioned finding functions.

The current list of features of our navigation
application is as follows:

– Choose the proper localization
technology(GPS outdoor/Wi-fi indoor)

– Display different maps from a map server
o a memory stick

– Display current position (gps position,
indoor position)

– Read gps data from BT Gps (raw NMEA
data)

– Uses NMEA sentences: (i.e. RMC, GGA)
– Download a map for a given position or an

area
– Bookmarks&Markers (edit, load, delete

bookmarks and markers) support.
– Search for a place and set the center of

the map to a search result.
– Search for a category of interest.
– Search for a route and display the path on

a map with the related textual description.
– Turn by turn Directions
– Navigate a Map
– Map Zoom In/Zoom out

Fig.4 shows some screenshots of the
developed applications, in particular related to
the indoor navigation.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the
contributions of their colleagues from the SMS
consortium.

REFERENCES

[1] The SMS project web site: http://www.ist-sms.org
[2] R.Walker (ed.) “User, developer and service provider

scenarios, human factors and business requirements
for SMS”, Deliverable D2.1 of IST SMS project
http://www.ist-sms.org/server/deliverables.php

[3] S. Salsano (ed.) “Initial system architecture
specification”, Deliverable D3.1 or IST SMS project
http://www.ist-sms.org/server/deliverables.php

Fig. 4. Screenshots of our J2ME Application

