UNIVERSITA DEGLI STUDI DI ROMA
“TOR VERGATA”

FACOLTA DI INGEGNERIA
DOTTORATO DI RICERCA IN

Ingegneria delle Telecomunicazioni e Microelettronica

CICLO DEL CORSO DI DOTTORATO: XXV

Improving Service Support in

Wireless Community Networks
by

Claudio Pisa

Supervisor Coordinators
prof. Giuseppe Bianchi prof. Andrea Detti

prof. Pierpaolo Loreti

A.A. 2012/2013

Abstract

Wireless Community Networks (WCNs) are an emerging phenomenon of grassroots
spontaneous network building. Inside a WCN networking devices are deployed,
owned and managed by different individuals or organizations, with minimal coordi-
nation, without a global planning or a common budget. The technical information
is openly published, allowing for any skilled individual to independently join the
network.

Wireless technologies are the natural choice for building these networks. IEEE
802.11 devices get progressively more popular, performing and cheap, and it is easy
to install them on rooftops, whithout the need for the expensive construction work
associated to copper or fiber optics deployments.

Moreover, WCNs are usually open to experimentation, which makes them rare,
if not unique, real-World laboratories, with the additional bonus of several skilled
users willing to try researcher’s solutions, especially if these are published as open
source software.

In this scenario, whose underlying technologies are depicted in Chapter 1, the

problems on which this thesis focuses are:

e Packet-droppers detection. In a WCN misconfigurations that create black-
holes in which user traffic gets dropped may easily occur. This problem is
tackled in Chapter 2;

e Distributed service discovery. Rather than in a single central location,
services are deployed around the WCN by its users. In Chapter 3 a mechanism

to announce services in a decentralized fashion is devised and implemented;
e Multicast multimedia streaming. There is no native support for efficient

II

multicast stream delivery in WCNs. A solution is proposed and implemented
in Chapter 4;

e Scalable video streaming in WLANs. Wireless technologies are used, in
WCNs, not only for the transport network but also on the access networks,
usually as open hot spots. In Chapter 5 a cross-layer mechanism is designed
and implemented, which exploits scalable video coding to gracefully adapt to

WLAN conditions and maximize the overall quality of video streaming;

e Flexible and modular MAC layer services. The cross-layer approach
depicted in Chapter 5 demands for services provided at the MAC layer in
order to be able to support complex and dynamic scenarios, which are common
in the real World. In Chapter 6 a flexible, virtualizable and modular wireless
MAUC is is devised, and how this can be exploited in a scalable video streaming

scenario.

Finally, the considerations in the Conclusions close this thesis, while the list of

publications derived from my work are summarized in Appendix A.

II1

Acknowledgements

I would like to thank all the people who made my Ph.D. possible: my girlfriend
Simona and all my family, for supporting me in my choices; my coordinators: pro-
fessors Giuseppe Bianchi, Andrea Detti and Pierpaolo Loreti; professors Douglas
Leith, David Malone, Cristina Cano, Paul Patras and all the people at the Hamil-
ton Institute, National University of Ireland, Maynooth, where I have been a visiting
student: the work done there is still in post-processing, so regretfully it didn’t make it
into this thesis; and my colleques at the netgroup lab, especially my paper co-authors:

Saverio, Michele, Riccardo.

v

Contents

Abstract
Acknowledgements

1 Introduction

1.1 Thesis Overview
1.2 Wireless Community Networks

1.3 Routing Protocols Employed in Wireless Community Networks

1.3.1 OLSR
1.3.2 B ATMAN.
1.3.3 Babel
Packet-droppers Detection in Wireless Community Networks
2.1 OVerview e
2.2 Design Requirements for Trusted Routing
2.3 Proposed OLSR-based Framework
2.4 Reputation-module
2.5 Trust-module
2.5.1 FEigentrust Framework
2.5.2 ITRM Framework
2.6 Weighting-module o
2.7 Hiding Probes
2.8 Performance Evaluation
2.9 Related Work
2.10 Chapter Conclusions,

VI

II

v

3 Multicast DNS and Service Discovery in Wireless Community Net-

works

3.1 Overview
3.2 The OLSR Protocol Extension for mDNS transport
3.3 Implementation of the OLSR mDNS Plugin
3.4 Chapter Conclusions

Multicast Multimedia Streaming in Wireless Mesh Networks

4.1 Overview
4.2 Related Worko
4.3 The OBAMP Protocol
4.4 Integrating OBAMP and OLSR,
4.5 Implementation Lo
4.6 Operation Description L.
4.7 Implementation Details 0oL
4.8 Plugin Configuration
4.9 Chapter Conclusions

Cross-Layer Scalable Video streaming in WLANSs

5.1 Overview e

5.2 H.264 Scalable Video Coding,

5.3 H.264 Scalable Video Streaming over WLANs
5.3.1 WLAN Scenario,
5.3.2 Virtual BottleNeck
5.3.3 Cross-Layer VBN Scheduling for H.264 SVC Traffic
5.3.4 Experimental Results

5.4 The SVEF Evaluation Framework
5.4.1 Video Encoding
5.4.2 The Streamer
5.4.3 The Middlebox
5.4.4 Receiver-side Tools
5.4.5 Performance Parameters
5.4.6 SVEF Experimental Flow

VII

36
36
39
40
41

43
44
45
45
46
47
47
49
49

5.5 H.264 Scalable Video Streaming over WLANSs in Presence of Uplink
Traffic
5.5.1 Scenario
5.5.2 Utility-Maximizing Cross-Layer Downlink Scheduling Problem
5.5.3 Practical scheduler
5.5.4 Performance Evaluation

5.6 Chapter Conclusions

6 Flexible, Modular and Virtualizable MAC Layer
6.1 Overview e
6.2 The mac80211++ Framework
6.2.1 Existing Framework
6.2.2 A New Framework: mac80211++
6.2.3 UseCases
6.3 Inter module Data Sharing for Flexible Wireless MAC
6.3.1 Section Overview
6.3.2 Information Management Architecture
6.3.3 CRUDoperations
6.3.4 Memory Management Model

6.3.5 Linux Kernel Implementation
6.3.6 Data Access Performance
6.3.7 Module Exploitation in the SVC video streaming scenario
6.4 Chapter Conclusions
Conclusions
Bibliography

Appendix A: Publications

VIII

73
76
81

96
96
97
98
99
104
107
108
110
113
114
115
118

. 120

121

123

125

135

List of Tables

5.1
5.2
5.3
6.1
6.2
6.3

Video test-sequence parameters 59
Performance Summary 64
Values of T,,,4 for N, greedy stations at 2 Mbps PHY rate 90
APIs for mime support (* =ieee80211.) 100
Implemented Data Gateway Operations 118
Stress test of the Data Gateway Module 120

X

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
2.1
2.2
2.3
2.4

2.5

2.6

2.7

2.8

Sketch of a Wireless Community Network 5
Pure flooding and MPR flooding 7
Basic OLSR Packet Format 9
MID Message Formato 10
HELLO Message Format 11
TC Message Format 12
HNA Message Format 13
Trust-based routing framework 20
Mustrative example of ITRM [30] 24
Simulation scenarioo 28
Time evolution of quantized trust values in case node 13 is a packet-

dropper 29
Number of packets to be forwarded by network nodes when nodes 12,
13 and 14 are packet-droppers, in cases of absence (upper plot) and
presence (lower plot) of trust-based-routing 30
Normalized reduction (E) of number of packets to be forwarded by
packet-droppers in case of trust-based-routing with respect to the case
of plain OLSR, versus the number of packet-droppers 31
Normalized reduction (E) of number of packets to be forwarded by
3 packet-droppers in case of trust-based-routing with respect to the
case of plain OLSR, versus the duration of the reset time-out and the
frequency of probe packets 32
We show that when there is no attacker in the network, the activation

of our framework does not increase packet loss because of lost probes 33

X

3.1
4.1
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
6.1

6.2
6.3

6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

mDNS OLSR message, 40

OBAMP alive OLSR message 46
Network scenario with video server, VBN, WLAN AP, etc. 56
Mapping of SVC substreams to priority queues 58
SVC (A) with/without scheduler and WLAN @ 11 Mbps 60
SVC (A) versus AVC with scheduler and WLAN @ 11 Mbps 61
SVC (A) with/without scheduler and WLAN @ 2 Mbps 62
SVC (A) and SVC (B) with scheduler and WLAN @ 11 Mbps 62
SVEF Software Chain, 66
NALU-trace entry 67
Layer-b header 68
The Middlebox 69
Evolution of time as sequence of rounds 79
Conceptual sketch of queue merging 83
PSNR versus bitrate of the encoded video used in the analysis 89
Cumulative PSNR versus the number of Uplink Stations 91
Aggregated throughput of uplink stations 92
Cumulative PSNR versus number of video downstreams 93

Overview of the existing (left-sided) and proposed (right-sided) frame-
WOTKS. . . . 99
Service Scheduler: Flow chart and work-queue. 102
Function Handler: Flow-chart describing the main operations per-

formed by the Function Handler and structure used to fulfill the man-

agement task. 103
Interfacing Rate Control with mac80211. 107
Simple and Stack Architecture Solutions 110
Gateway Architecture Solutions 111
Data Gateway Interactions 112
Read, write and update interactions 115
Multi Interface Repository 116
Access Time of the different architectures 119

Data Gateway exploitation in a scalable video over WLAN scenario . 121

XI

Chapter 1

Introduction

1.1 Thesis Overview

Wireless Community Networks (WCNs) are computer networks built by volunteers
and characterized by the absence of a central management and by a distributed
ownership of the infrastructure. The employed technologies are prevalently wireless,
as devices are easier and cheaper to deploy on user rooftops. All the technical infor-
mation is openly published on the Web, allowing for anybody to join independently,
with just minimal coordination with the rest of the network members, but this also
means that node updates are not easy, as many subjects have to agree and organize.
The unreliability of the wireless medium and the distributed and unplanned charac-
ter of WCNs pose new challenges to researchers. Some of these have been addressed
during my Ph.D. and summarized in this thesis. Section 1.2 will introduce to the
motivations and characteristics of this rising social phenomenon.

Sharing or reaching Internet access is the major driver to the building and growth
of WCNSs, but simultaneously users deploy services for other users inside their houses
or offices, scattered over the network topology. Having an up to date central services
directory is both difficult and artificial, because of the decentralized and chaotic
nature of these networks. Chapter 3 illustrates our solution for distributed service
discovery, which is now used in real WCNss.

Streaming of multimedia content is an increasingly popular service, which is

also very resource demanding. Supporting multicast on the network can be an

1 — Introduction

effective way to mitigate the impact of these services, but the technologies employed
in WCNs lack native support. In Chapter 4 we show how we can effectively build
overlay multicast distribution trees, without the need for an update of all the devices
of the network.

WCN members, which often come from a FLOSS background, have contributed
to the evolution of routing protocols by extending existing open source implemen-
tations with new features, or devising new algorithms from scratch (§ Section 1.3).
This makes the routing plane the natural choice for implementing network support
for distributed service discovery and multicast streaming.

Also, in a decentralized self-managed environment, as the number of users grow,
new problems may arise, such as misconfigurations or malicious behaviors. To foster
the growth of WCNs, detecting intentionally or unintentionally misbehaving nodes
and diverting user traffic to avoid them should also be supported by the routing
plane. Chapter 2 deals with this problem.

Furthermore, at the edge of the network, users deploy wireless hot spots to ease
access to the WCNs. If multicast support can save resources on the backbone,
video streaming at the access network can be optimized by using scalable video and
packet scheduling techniques. Chapter 5 tackles this problem. We show how we
can achieve an already good performance with a simple application-layer scheduling
approach and then how this can be improved through cross-layer packet scheduling.
Nevertheless, during this work we clashed with the limits of the current architecture
of Linux wireless drivers. Thus, in Chapter 6 we propose an alternative architecture,
which is modular, flexible and virtualizable, and we show how this can be exploited

in the video streaming scenario.

1.2 Wireless Community Networks

Wireless Community Networks are a new phenomenon, started around year 2000,
and enabled by the availability of widespread, cheap and inter-operable wireless
technologies, most notably IEEE 802.11 (Wi-Fi) [1]. Their initial socio-economic
motivation was simply the reduction of the Internet access cost. The sharing of

one person’s broadband connection across a group of persons was made possible by

1 — Introduction

allowing group members to reach the network gateway through eventually multiple
wireless relay links, typically implemented through the wireless bridging features
native in the 802.11 standard (Wireless Distribution Service). Early wireless com-
munities were hence collateral to the network, and with the explicitly stated goal of
free-riding on them.

The number of wireless communities that emerged in the last years is impres-
sive [2, 3, 4, 5, 6], and Europe seems to have taken the lead in such an expansion.
As of today, their drivers are changing, and there is an emerging awareness of the
high potentiality of the community network approach. Even if the motivation to
have free of charge broadband access still remains, this is now only one among many
others!. Wireless communities are in fact facing a much more constructive chal-
lenge: building bottom-up broadband wireless metropolitan area networks out of
the cooperation of individuals. The network is available to the community members
free of charge, and in addition to Internet access, it is devised to support services to
meet the specific interests and social needs for the community.

Wireless community technology has also dramatically evolved. At the very
beginning, wireless communities were built over standard protocol facilities (e.g.
IEEE 802.11 WDS), but nowadays copper and fiber optics links can be easily found.
To the extent that the word “wireless” is often omitted, and only “Community
Networks” is used, even if the prevailing technologies remain wireless. Community
members (typically practitioners in the areas of Packet Radio or Free Software)
then started to add “intelligence” and capabilities to their networks, by extending
and adapting operating systems (e.g. special Linux distributions such as Open-
WRT), devising open-software wireless card drivers (e.g. the Atheros card driver
MADWiF1i), and implementing brand new protocols and solutions (e.g. the routing
protocols OLSR or B.A.T.M.A.N., described in Section 1.3). The design and public
domain distribution of network tools, mainly based on software, to be used on wire-
less devices has become an important part of community life thanks to groups of
technically skilled volunteers. These software tools are typically customized to op-

erate on extremely low cost devices, supporting cheap and easy to manage wireless

L Additional drivers worth mentioning include the willingness to narrow the digital divide areas
that are poorly served by broadband, or bypassing the traditional ISPs for socio-political reasons,
such as avoiding censorship, logging and tracking.

1 — Introduction

technologies. The marginal per-node costs, and the fact that each node cost is up to
a single community member, has dramatically reduced the barriers for the wireless
communities emergence, whose deployment basically only depends on the ability to
find a suitable group of skilled people willing to start the community:.

In order to regulate data transit between nodes, some agreements, analogous to
FLOSS licenses, such as the Pico Peering [7], Freenetworks.org [8] and XOLN [9]
have been devised by community network members.

In parallel, and independent of the wireless community efforts, but rather stim-
ulated by the need of providers and the scientific efforts from the academy, signif-
icant improvements also occurred in the technical field of Wireless Mesh Networks
(WMN). Wireless Mesh are multi-hop networks where an all-wireless backbone in-
frastructure is deployed among (typically fixed and wire-powered) wireless inter-
connected nodes, frequently called Mesh Routers and/or Mesh Access Points, to
which ordinary clients connect as in a normal wireless access network. One or more
Gateways provide the connectivity to the backhaul, while the other Mesh nodes
extend the access coverage area by allowing remote nodes to connect to the gateway
by relaying through multiple mesh nodes. WMNs have received the attention of
standardization Task Groups in various technology work groups (e.g., 802.11s [10]).

The basic idea behind community networks is that the user itself becomes part
of the network, eventually providing the access infrastructure to other users. This
feature makes community networks highly scalable, both in terms of installation
costs, and in terms of numbers of supported users. To reach this ultimate goal,
the technology must be extremely simple and easily adaptable to changing network
conditions. Moreover, community networks shift away from the classical provider-
user paradigm, featuring a service provisioning model mainly based on cooperation.
Thus, complexity on context and unpredictability on service discovery, provision and
management are both expected concerns, which have to be resolved. To this end,
advanced service discovery and advertising techniques and methods enabling context
awareness have been designed and implemented in this Ph.D. thesis.

Multimedia group communications are among the most promising services for
wireless communities and multicast is the most suitable approach to network re-
sources optimization. Taking advantage of their broadcasting capability, WMNs are

inherently well-suited for multicasting. However, most of the proposed multicast

4

1 — Introduction

routing protocols for ad hoc networks do not really address network resources op-
timizations of ad hoc communication. They often use broadcast mechanisms and
build their own multicast trees, without taking into account MAC/PHY information
or topology. This has severe impact on network resources consumption. Therefore,
in this thesis a novel approach to multicast protocols is proposed, taking advantage
of an hybrid overlay cross-layer protocol, in order to introduce features missing to

current solutions such as fast adaptability to topology dynamics, and routing protocol

optimizations.

Wireless LiNkS asssssssss

Figure 1.1: Sketch of a Wireless Community Network

In wireless community networks users can communicate with each other directly
without accessing the public Internet. However, the typical use of these networks
is to provide Internet access, with a subset of users sharing their broadband con-
nectivity acting as gateways. Usually, community network members provide, along

with Internet access, local services, such as voice over IP, DNS, gaming, file sharing,

1 — Introduction

Web pages, weather stations, to other community members. These services not ex-
ploited by the majority of the users. We believe this happens because essential tools
like DNS and service discovery are hard to deploy in highly distributed and anarchic

networks.

1.3 Routing Protocols Employed in Wireless Com-

munity Networks

Being prevalently wireless, the routing protocols used in community networks are
tailored to this technology. These effectively take into account the unreliability
of the wireless medium and make use of radio-aware metrics and flooding tech-
niques. Among the most widespread routing protocols employed in Wireless Com-
munity Networks (WCNs) we can find the Optimized Link State Routing proto-
col (OLSR) [11], Babel [12] and Better Approach To Mobile Ad-hoc Networking
(B.A.T.M.A.N.) [13], in its variants B.A.T.M.A.N. Advanced [14] and B.A.T.M.A.N.
Experimental [15].

These protocols have been object of studies both by academics [16] [17] and
by community driven experts [18]. A brief summary of the key aspect of each
protocol follows, with emphasis on OLSR, as part of the work of this thesis focuses

on extending this protocol with new applications.

1.3.1 OLSR

The Optimized Link State Routing (OLSR) protocol [11], originally devised for
Mobile Ad-hoc Networks (MANETS), is arguably today the most widely used pro-
tocol in Wireless Community Networks. The reason behind its popularity can be
probably tracked to the fact that it was among the first protocols to be extended
with the Expected Transmission Count (ETX) metric [19], which aims at detecting
high-throughput paths in multi-hop wireless networks. The ETX of a path is the
expected total number of packet transmissions (including retransmissions) required
to successfully deliver a packet along that path. For practical networks, paths with

the minimum ETX have the highest throughput. The ETX metric incorporates the

6

1 — Introduction

effects of link loss ratios, asymmetry in the loss ratios between the two directions
of each link, and interference among the successive links of a path. Busy networks
that use the ETX route metric will also maximize total network throughput.

The OLSR protocol is an optimization of the classical link state algorithm tai-
lored to the requirements of a mobile wireless LAN. The key concept used in the
protocol is that of multipoint relays (MPRs). MPRs are selected nodes which for-
ward broadcast messages during the flooding process. This technique substantially
reduces the message overhead as compared to a classical flooding mechanism, where
every node retransmits each message when it receives the first copy of the message.
In OLSR, link state information is generated only by nodes elected as MPRs. Thus,
a second optimization is achieved by minimizing the number of control messages
flooded in the network. As a third optimization, an MPR node may chose to report
only links between itself and its MPR selectors. Hence, as contrary to the classic
link state algorithm, partial link state information is distributed in the network.
This information is then used for route calculation. OLSR provides optimal routes
(in terms of number of hops, if the ETX metric is not employed). The protocol is
particularly suitable for large and dense networks as the technique of MPRs works
well in this context.

Figure 1.2 shows the node in the center, with neighbors and 2-hop neighbors,
broadcasting a message. In (a) all nodes retransmit the broadcast, while in (b) only
the MPRs of the central node retransmit the broadcast.

fal il

Figure 1.2: Pure flooding and MPR flooding

1 — Introduction

OLSR packets (Figure 1.3) contain one or more OLSR messages. It is possible
to define new OLSR messages to add new features to the basic protocol, and this
has been indeed done by the author as illustrated in the following chapters of this
thesis.

To infer the network topology, OLSR sends over wireless links broadcast pack-
ets that any other node in radio proximity can receive. Two are the fundamental
message types of the OLSR protocol: HELLO, and TC. HELLO messages are used
for neighbor discovery and link sensing; these packets expire after one hop and are
never forwarded. TC messages are used for network topology information diffusion;
these packets are forwarded away from the originator to deliver topology information
encapsulated into new OLSR packets at each hop.

Wireless community mesh networks are characterized by fixed nodes mounted on
the roofs of buildings and houses. OLSR was originally devised for MANETS, with
mobile nodes, but in the case of wireless community networks most of the nodes have
fixed positions. These nodes act as OLSR routers, where one or more radio interfaces
are connected to the mesh backbone and send and receive OLSR protocol routing
packets. The other interfaces, typically wired, are attached to IP subnets announced
into the mesh networks with HNA (Host and Network Association) messages. The
end-user terminals do not have to run the routing daemon as their IP addresses are
advertised by the nearest OLSR node. It is common that end-users get their IP
address via DHCP from the nearest OLSR node.

The UniK OLSR? [20] is the implementation employed in practice by Wireless
Community Networks, and thus this thesis work focuses on it.

A more detailed presentation of the protocol described in the RFC follows.

1.3.1.1 RFC 3626

The Optimized Link State Routing protocol (OLSR), described in IETF RFC 3626
[11], is a popular networking protocol developed for mobile ad hoc networks. Tt is a
proactive protocol and, as the name suggests, is based on Link State routing. OLSR
does not rely on any central entity nor makes any assumption on the underlying link-

layer protocol, is aware of asymmetric links but does not exploit them, and uses an

2also known at olsrd or olsr.org implementation

1 — Introduction

optimization technique called Multipoint Relaying (MPR) to diffuse messages in the

network.

0 31
Packet Length Packet Sequence Number

Message Type ‘ Vtime Message Size
Originator Address
Time To Live ‘ Hop Count | Message Sequence Number

MESSAGE

Message Type ‘ Vtime | Message Size
Originator Address
Time To Live‘ Hop Count| Message Sequence Number

MESSAGE

Figure 1.3: Basic OLSR Packet Format

1.3.1.1.1 Basic Packet Format OLSR packets are contained in UDP data-
grams using TANA assigned port 698, and have the general format described in
figure 1.3, where:

e Packet Length expresses the length of the packet, in bytes;

e Packet Sequence Number is incremented by one for each transmitted

packet and is maintained separately for each OLSR interface?.

OLSR messages, which may be of various types, are contained in the rest of the

packet. All message types share a common header, with the following fields:

e Message Type specifies the type of the message;

e Vtime indicates the length of the validity time regarding the information

contained in the message;

e Message Size specifies the size of the message;

3An OLSR interface is a network interface participating in an OLSR MANET.

1 — Introduction

e Originator Address is the Main Address* of the node that generated the

message;

e Time To Live contains the maximum number of times that a message must

be forwarded over the network, and is decremented at every hop;
e Hop Count is incremented at every hop;

e Message Sequence Number is a number that is unique for each message

and is assigned by the originator node.

1.3.1.1.2 Multiple Interface Declaration (MID) Messages When a node
has multiple OLSR interfaces participating in an OLSR MANET, the association
between its Main Address and the addresses of all its OLSR interfaces must be
announced to the other nodes in the network. This is accomplished through Multiple

Interface Declaration (MID) messages, whose format is shown in figure 1.4.

0 31
MID_MESSAGE \ Vtime | Message Size
Originator Address
Time To Live ‘Hop Count |Message Sequence Number
OLSR Interface Address
OLSR Interface Address

Figure 1.4: MID Message Format

The OLSR Interface Address field contains the address of an OLSR interface
associated to the Main Address indicated in the Originator Address field.

1.3.1.1.3 Multipoint Relays (MPR) Classical flooding (i.e. forwarding of re-
ceived messages to all neighbors) is very expensive in terms of bandwidth. That’s
why OLSR uses Multipoint Relaying: an optimization obtained by avoiding redun-

dant retransmissions.

4The Main Address is an IP address that a node must choose as its node id among all the
available addresses on all OLSR interfaces.

10

1 — Introduction

To achieve this, each node selects among its symmetric 1-hop neighborhood?®,
considering their willingness®, some nodes as Multipoint Relays (MPRs), so that
each 2-hop neighbor” can be reached through an MPR. The set of MPRs selected
by node X is called the MPR set of X. Nodes that are in the MPR set of other

nodes have the responsibility of forwarding their messages.

1.3.1.1.4 HELLO Messages HFELLO messages are used for the purpose of link
sensing, neighborhood detection and MPR selection. Emitted at fixed time intervals,
contain information about the status of the node’s links and neighbors. Their format

is shown in figure 1.5.

0 31
HELLOMESSAGE | Vtime | Message Size
Originator Address
Time To Live ‘Hop Count | Message Sequence Number
Reserved Htime‘ Willingness
Link Code ‘ Reserved Link Message Size
Neighbor Interface Address
Neighbor Interface Address

Link Code Reserved Link Message Size
Neighbor Interface Address
Neighbor Interface Address

Figure 1.5: HELLO Message Format

e HTime specifies the size of the time interval between emissions of subsequent
HELLO messages;

5The symmetric 1-hop neighborhood of a node is the set of nodes which have at least one
symmetric link with the node itself.

SWillingness is explained at page 12.

"A 2-hop neighbor is a node heard by a neighbor.

11

1 — Introduction

e Willingness indicates, with a number between 0 (WILL_NEVER) and 7 (WILL_ALWAYS),

the willingness of the node to carry and forward traffic for other nodes;

e Link Code specifies information about the link (asymmetric, symmetric, lost,
..) and neighbor (symmetric neighbor, MPR, ...) whose interface is indi-
cated in the associated Neighbor Interface Address fields;

e Link Message Size is the distance, in bytes, measured between two subse-

quent Link Code fields (or the end of the message).

1.3.1.1.5 Topology Control (TC) Messages In Link State routing, each
node spreads information about its neighbors over the whole network. In OLSR
this task is achieved by Topology Control (TC) messages, whose format is shown in

figure 1.6.

0 31
TC_MESSAGE ‘ Vtime Message Size
Originator Address
Time To Live ‘Hop Count | Message Sequence Number
ANSN Reserved
Advertised Neighbor Main Address
Advertised Neighbor Main Address

Figure 1.6: TC Message Format

e Advertised Neighbor Sequence Number (ANSN) is incremented every

time the node’s neighbor set changes;

e Advertised Neighbor Main Address contains the main address of a neigh-

bor node.

If TC Redundancy (see subsection 1.3.1.1.8, page 13) is not used, TC messages
are emitted by MPR nodes only.

12

1 — Introduction

1.3.1.1.6 Host and Network Association (HNA) Messages When a node
has some network interfaces participating in an OLSR MANET and other interfaces
which do not, it may be desirable to inject routing information in OLSR. Host and
Network Association (HNA) messages serve for this task. Their format is displayed
in figure 1.7.

0 31
HNA MESSAGE | Vtime | Message Size
Originator Address
Time To Live ‘Hop Count |Message Sequence Number
Network Address
Netmask
Network Address
Netmask

Figure 1.7: HNA Message Format

The Network Address and Netmask pair of fields specify the non-OLSR
networks’ data to be injected inside an OLSR MANET.

1.3.1.1.7 Link Hysteresis To prevent unstable links (not rare over the wireless
medium) from having consequences on the stability of the information maintained
by OLSR nodes or even affect the routing process, the Link Hysteresis mechanism
may be applied.

It uses an upper and a lower threshold on the link quality. Asymmetric links may
be considered by the protocol as symmetric only when their link quality is greater
than the upper threshold, while symmetric links may be considered asymmetric
only when their link quality is less than the lower threshold. In this way a delay is

introduced in the link sensing process, but greater stability is achieved.

1.3.1.1.8 TC Redundancy By using the TC Redundancy mechanism, the
robustness of the network topology information is increased. When an OLSR node
parameter, called TC_REDUNDANCY:

e is 0, then the node includes in TC messages only the links with its MPR

13

1 — Introduction

selector set®;

e is 1, then the node includes in TC messages the links with its MPR selector
set and with its MPR set;

e is 2, then the node includes in TC messages all of its symmetric neighbors.

1.3.1.1.9 MPR Redundancy Optimization achieved by Multipoint Relaying
may be traded off with more robustness with respect to topology changes by in-
creasing the number of selected MPRs per node. This can be useful, for example,
in mobile environments, where may be desirable to have the reachability of a node
advertised by more nodes. A parameter called MPR_COVERAGE affects the MPR
selection process by specifying through how many MPRs every two-hop neighbor
should, if possible, be reached.

1.3.2 B.A. T.M.A.N.

To cope with problems arisen during the deployment of routing protocols in real
World networks, members of the Freifunk wireless community network [3] designed
and implemented the B.A.T.M.A.N (Better Approach To Mobile Ad-hoc Network-
ing) routing protocol [13].

The UniK OLSR implementation has undergone a number of community-driven
changes from its original specification in order to deal with the challenges imposed
by city-wide wireless mesh networks. While some of its components proved to be
unsuitable in practice (like MPR and Hysteresis) new mechanisms have been added
by community network developers (e.g. Fish-eye and ETX). However, due to the
constant growth of existing community mesh networks and because of the inherent
requirement of a link-state algorithm to recalculate the whole topology-graph (a
particularly challenging task for the limited capabilities of embedded router hard-
ware), the limits of this algorithm have become a challenge. Recalculating the whole
topology graph once in an actual mesh with 450 nodes takes several seconds on a
small embedded CPU.

8The MPR selector set of a node is constituted by the nodes that selected it as MPR.

14

1 — Introduction

The approach of the B.A. T.M.A.N. algorithm is to divide the knowledge about
the best end-to-end paths between nodes in the mesh to all participating nodes. Each
node perceives and maintains only the information about the best next hop towards
all other nodes. Thereby the need for a global knowledge about local topology
changes becomes unnecessary. Additionally, an event-based but timeless flooding
mechanism prevents the accruement of contradicting topology information (the usual
reason for the existence of routing loops) and limits the amount of topology messages
flooding the mesh (thus avoiding overly overhead of control-traffic). The algorithm
is designed to deal with networks that are based on unreliable links.

The original B.A.T.M.A.N. has evolved into other community-driven projects,
most notably B.A.T.M.A.N. Advanced [14], which is a layer 2 implementation and
extension of the original protocol, now included in the vanilla Linux kernel dis-
tribution, and BMX6, or B.A.'T.M.A.N. Experimental, which optimizes protocol
overhead by being IPv6 oriented and aware, and exploiting distinctions between

local and global addresses.

1.3.3 Babel

Babel [12] is a loop-avoiding distance-vector routing protocol that is robust and
efficient both in ordinary wired networks and in wireless mesh networks.

Babel is a proactive routing protocol based on the distance-vector algorithm.
It uses the Expected Transmission count (ETX) metric to select routes more in-
telligently than using a simple hop-count approach. BABEL has two distinctive
characteristics that optimize relay performance. First, it uses history-sensitive route
selection to minimize the impact of route flaps: the situation where a node contin-
uously changes its preferred route between source and destination pair and leads to
route instability. Thus, when there is more than one route of similar link quality,
the route selection favors the previously established path rather than alternating
between two routes. Second, BABEL executes a reactive update and forces a re-
quest for routing information when it detects a link failure from one of its preferred
neighbors. Given the link quality measurements were previously completed at ini-
tialization stage, BABEL claims to have almost immediate route convergence time

when triggering an explicit update.

15

1 — Introduction

Moreover Babel, in it’s “Babel-Z” variant, is channel-aware, which makes it
suitable for networks that include point-to-point links or networks that are built

using multi-radio devices.

16

Chapter 2

Packet-droppers Detection in

Wireless Community Networks

The focus of this chapter is the integration of trust in the routing plane of Wireless
Community Networks. A modular framework is proposed for the detection and

avoidance of misbehaving nodes.

Wireless community networks (§ Section 1.2) are prone to either unintentional
(e.g. misconfiguration) or intentional node misbehavior. We introduce a fully dis-
tributed trust-based routing framework, tightly integrated with OLSR. The frame-
work, designed to be modular for easy upgrade, relies on active probes, hidden
in the normal data traffic through adaptation of steganographic techniques. The
combination of path-wide measurements into a distributed trust framework, pre-
liminarily based upon the well known EigenTrust [21] mechanism, permit to infer
whether, and which, packet-droppers (i.e. nodes misbehaving at the data plane) af-
fect the network forwarding operation. The resulting per-node trust values are then
transformed into suitable “weights” provided as input to the OLSR protocol for
mitigation through re-routing. A simulation-based performance evaluation shows
that the proposed framework appears already effective in detecting and circumvent-
ing packet-droppers, despite the relative simplicity of the preliminarily considered

algorithms.

17

2 — Packet-droppers Detection in Wireless Community Networks

2.1 Overview

The distinguishing characteristic of a wireless community network is the impossi-
bility to rely on a centralized network management and monitoring framework, as
almost each node composing the mesh is owned by a distinct entity, frequently an
individual person.

Nowadays, there exist wireless community networks of more than 20 thousand
nodes [5]. Even if relatively small with respect to commercially operated networks,
these scales have become extremely challenging especially for management purposes.
As the responsibility of controlling each node is ultimately up to its owner, miscon-
figuration impairing the network behavior may frequently emerge. Now, if routing
problems are already non trivial to detect (e.g. taking advantage of the network-wise
state each node maintains using information broadcasted by the OLSR protocol),
data plane misbehavior is even more challenging, especially when it does not reflect
into a routing anomaly. This is for instance the case of a node firewall misconfigura-
tion: the node may still properly forward one-hop traffic, such as the OLSR control
traffic, but may prevent the forwarding of multi-hop data traffic. In this case the
routing is safe but the data delivery is unintentionally harmed.

On top of this, we should further consider that intentional node misbehavior
cannot be ruled out in a relatively large community network, where it has become
practically impossible for any participant to know (and trust) every other node.
Intentional attacks to the OLSR protocol have been extensively addressed in both
literature and in community deployments, and consensus has been reached on means
for securing the OLSR routing plane [22, 23, 24]. Conversely, a consensus solution
appears still lagging for what concerns disruption of data forwarding, where even in
the case of a safe routing plane, a misbehaving node might agree to forward data
packets but might fail to do so (we name such a node as “packet-dropper”).

In the rest of this chapter we are going to show the following:

e the proposal of a modular framework that interworks with the OLSR routing
protocol and ensures a reliable data delivery against the presence of packet-

droppers;
e the design of a mechanism that uses ordinary packets as “hidden” probes, and

18

2 — Packet-droppers Detection in Wireless Community Networks

enables nodes to evaluate the reputation of other nodes only by exploiting its
own data traffic and without the need of “overhearing” other node’s traffic
[25];

e the design of a link weighting function that integrates trust in the OLSR
metric and practically allows to enforce routing on the path with the best
path-trustworthiness, where path-trustworthiness is the trustworthiness of the

worst node of a path;

e the preliminary assessment of the performance of the proposed approaches
via NS2 simulation in the presence of UDP traffic (the extension to TCP
traffic requires to further address more targeted attacks such as malicious

SYN packets dropping, and is left to future work).

2.2 Design Requirements for Trusted Routing

We believe that approaches devised to detect and mitigate data delivery misbehav-
ior in wireless community networks should be designed with in mind the following
requirements.

First, the widespread adoption of OLSR calls for mechanisms that are readily
integrated in the OLSR operation, i.e. the level of node trustworthiness computed by
the trust-mechanism should drive the weighting of the links of the OLSR topology.
Since OLSR forwarding occurs hop-by-hop on the basis of the routing table that
each node has autonomously computed, it is necessary that all nodes practically
operate on the same weighted topology to avoid routing loops in the network. This
implies that the trust mechanism must provide a global vision of the level of nodes’
trustworthiness.

Second, since the IEEE 802.11 WLAN is the widespread radio technology used
in the deployment of wireless community networks, the trust mechanism must be
fully compliant with IEEE 802.11.

Third, in order to limit radio interference and improve the network throughput,
there is an increasing adoption of nodes with multiple radio cards and directional
antennas, therefore the trust mechanism must be compliant with multiple radio con-

figurations.

19

2 — Packet-droppers Detection in Wireless Community Networks

Fourth, the approaches should be the least invasive as possible and yield minimal

computational load to be easily supported by cheap devices.

2.3 Proposed OLSR-based Framework

The proposed framework (Fig. 2.1) is composed by OLSR and three modules,
named: reputation-module, trust-module and weighting-module. The reputation-
module and trust-module form the trust-mechanism that assesses the nodes’ trust-
worthiness, while the weighting module properly maps the level of nodes’ trustwor-
thiness to the weight of links of the OLSR topology.

The reputation-module of a node S computes the level of reputation that node S
has of all other nodes. A node S evaluates the reputation of a node D by monitoring
the correctness of data forwarding by node D. Reputation values computed by S are
collected in a reputation-vector that is flooded in the network and locally sent to
the trust-module.

The trust-module collects local and remote reputation-vectors and by combining
them it computes a trust-vector. The i-th element of the trust-vector represents the
level of trustworthiness of the i-th network node. The trust-vector is sent to the
weighting-module.

Finally, the weighting-module makes use of the values of the trust-vector elements

to derive and to enforce the weights of the links of the OLSR topology.

Local
reputation Trust
Reputation | _vector Trust vestor Weightin
— — ghting
module module module
A A

Remote reputation
vectors

Topology info Link weights

OLSR

Figure 2.1: Trust-based routing framework

20

2 — Packet-droppers Detection in Wireless Community Networks

2.4 Reputation-module

The reputation-module assesses the reputation that a node S has of other nodes.
A widespread solution to this issue consists in overhearing the traffic directed to
neighboring nodes in order to evaluate the correctness of their forwarding operation
25, 26, 27, 28, 29]. Although effective in several scenarios, overhearing may be
difficult in the presence of multiple directional antennas or when multi-rate trans-
missions are allowed, and these cases are common in a wireless community network
scenario.

To support cases when overhearing is difficult we devise a reputation-module by
adopting a path-wide probe-based approach that best fits connectionless UDP traffic.
The underlying idea is the following: a node S selects another node D and sends
to D probe packets. When the destination node D receives a probe packet it sends
back a probe response .

An important issue consists in how to deploy probe packets. We promote an
approach based on “implicit” probes, hidden in normal traffic, and whose details are
presented in Section 2.7. This prevents a malicious attacker to operate by correctly
forwarding probe packets, while dropping data packets without losing reputation.
Note that probe responses do not require protection (i.e., they can be made explicit)
as an attacker dropping responses would reduce its own reputation level. Moreover,
the use of normal traffic at the endpoints does not require overhearing and limits
computational complexity, since each node performs computation only on its own
data traffic rather than on all forwarded traffic. It is worth to observe that in the
presence of deployments where the goal is not to defend against malicious attackers,
but only monitor the emergence of unintentional forwarding misbehavior, explicit
probes may be further deployed to increase the number of paths controlled, and
hence the effectiveness of the reputation framework.

When the probe response is received, node S increases the reputation of all nodes
of the path S-to-D; otherwise, if the probe response is not received within a time-out
(e.g., 500ms), the reputation of all nodes of the path S-to-D is decreased®. Which

!'Note that in case overhearing was feasible, our path-wide probe-based implementation would
work with or would be replaced by an overhearing approach

2In case of non-symmetric paths (e.g., in presence of OLSR ETX extension) also the reputation
of the nodes of the reverse path has to be increased or decreased

21

2 — Packet-droppers Detection in Wireless Community Networks

are the nodes of the S-to-D path is inferred by the OLSR routing module .

In practice, the reputation r,; that a node S has of another node I is equal to the
probability to get a response for a probing packet sent by S and that is deemed to
pass through node I. We evaluate this probability through a moving average, based
for instance on the last 10 samples. If a probe succeeds, then the value of the sample
is 1; otherwise sample value is 0. In addition, a soft-state mechanism resets r; to
the default value, i.e. 1, if no probing (i.e., no traffic) interesting the node I has

been done since a valuable amount of time, for instance 60 seconds.

The reputation values ry are collected in a reputation-vector. This vector is
flooded into the OLSR network by using reputation-messages, a new type of OLSR
message defined by us, which contains the reputation-vector in its payload and is
signed by the originator S. Flooding is achieved by using the OLSR default forward-
ing algorithm [11].

We observe that it is fair to increase the reputation of all the nodes of the path
in case of a successful probing, because indeed all nodes succeed in data forwarding.
Conversely, it may be unfair to decrease the reputation of all the nodes of the path
in case of failure of the probing, because indeed only a single node may misbehave.
This means that some node may obtain a reputation that is worse that the deserved
one. Such an unfair decrease of reputation is clearly an adverse side effect of path-
wide probing. However, the reputation-worsening is limited by combining locally
and globally the results of different probes. Local mitigation occurs when node S
exchanges probes with different destinations; in doing so a “good” node obtains a
decrease of its reputation when the probe is on a path that includes both the good
and a misbehaving node, but the good node obtains an increase in its reputation
every time the misbehaving node does not belong to the probe path. Furthermore,
reputation-worsening is globally limited because, as we explain below, the trust-

module combines the reputation values estimated by other nodes.

22

2 — Packet-droppers Detection in Wireless Community Networks

2.5 Trust-module

The aim of the trust-module is to combine the reputation-vectors provided by the
local and remote reputation-modules in order to compute a global level of trustwor-
thiness for each network node. We tested in our implementation of the trust-module
two well known trust frameworks, the well-know EigenTrust framework [21] and the
ITRM [30] framework.

2.5.1 Eigentrust Framework

The EigenTrust framework fits well to our scenario, as departing from a formalization
of the (natural) concept of transitive trust, leads to values of node trustworthiness
that are global over the network, i.e. each network node computes the same values?®.

For sake of completeness we only report the formulas of the basic EigenTrust
algorithm we used. First of all normalized reputation values cg; are defined as

follows:

max(7g;,0)
Csi = —
>, max(rs;,0)

By defining t; as the trustworthiness of node i, t = [t;] as the trust-vector, € as

(2.1)

a vector representing uniform probability distribution over all nodes, C' = [c;;] as
the matrix containing all the normalized values of the reputation-vectors and 0 as
a small value (e.g., 0.001), then the EigenTrust algorithm computes ¢ through the

iteration reported in algorithm 1.

2.5.2 ITRM Framework

We shortly describe the iterative method for trust and reputation management re-
ferred as [TRM. The algorithm can be applied to centralized schemes, in which
a central authority collects the reports and forms the reputations of the service
providers as well as report/rating trustworthiness of the (service) consumers. The

proposed iterative algorithm is inspired by the iterative decoding of low-density

31t is worth to observe that in [21] the authors specify also a reputation system to compute r;
that unfortunately does not fit well in case of packet-droppers

23

2 — Packet-droppers Detection in Wireless Community Networks

parity-check codes over bipartite graphs. The scheme is robust

in filtering out the

peers who provide unreliable ratings. To use ITRM in our decentralized scenario,

because every node collects all the reputation information collected by the other
nodes with the OLSR flooding feature. At that point every node is able to individ-
ually run the ITRM algorithm to determine the trust vector. We integrated ITRM

into our NS2 implementation, achieving better results than expected, as we show in

Section 2.8.
R R2 R3 R4 RS RE R?
1 1 1 1 1 1 i
W T N 2N =’l I 77
AND ISNVTOANS A
\ N/ RS OR S
v\ OINS VX INGS 1 f
RY ¥ X ZA X~/ X~} Jr,
LD WA N AT S iy
1774V 29N1i
{57 {87 L8
s 7)
s sz 3
=
I o .. T — T — —
H ilrerarion H !!‘.‘ H !!‘.z !".:
Ri R2 RS Ré RS RE A7 | ¢ a8 | 3 8
(! 1 | (| | | 4.8 &5 k)
L1 1 e | | | | = B 2 22 | ga2 | 2=
AN 1 N & - S0 ER- 2.3
N 1 ~ 'I AV)
\ \J NN 3 475 | 5 5
N ~ /S N
AN TN iterationicii c2ic3ic4icsi caicy
VNSNS N\
1 1 NS I m \ n - malanl gola ala asli a=d
\ I »' I \ \ A L.l 7L |. 1V [LIL 1.1 |1.OF[1.0f
AV Y A TN 1 laslaalagh 2deslaan
Ay N ~Ny ——t———
{53 {5) D 2 1431350771 85143
s1 s2 s3 3 |1z].38 63].12
(b) (c)

Figure 2.2: Illustrative example of ITRM [30]

2.6 Weighting-module

The weighting-module aims at weighting the links of the OLSR topology on the

basis of the values contained in the trust-vector £. We devise an implementation

of the weighting-module with the following goal: a longer path without malicious

24

2 — Packet-droppers Detection in Wireless Community Networks

Algorithm 1 Basic EigenTrust Algorithm
to=¢
repeat
t_;c+1 = CTt_;c
until abs(lyy1 — t < 6)
{: t_;€+1

nodes is always preferred to a shorter one with a malicious node. We point out that
such a goal requires a careful design of a trust-to-weight mapping function, since
the (OLSR) shortest-path algorithm evaluates the cost of a path by summing the
level of trustworthiness (i.e., link weights) of belonging nodes and we wish this cost
to resemble the level of trustworthiness of the worst nodes.

We propose a trust-to-weight mapping composed by two steps: in the first step
the trust values t; are quantized in three symbolic values of trustworthiness, named
Lhigh, tqmedium, tQow; in the second step link weights are derived by these symbolic
levels of trustworthiness.

The symbolic quantized value tq; of a trust value t; is reported hereafter:

Lqhigh if t; > +
tQZ - Zfqmedium if ﬁ <t < + (22)
thow if tl < s5x

where N is the total number of nodes in the network. The reason behind the
selection of the threshold values of eq. 2.2 is that if all the N nodes of the network
are well-behaving, then their normalized trust is % By increasing the number of
misbehaving nodes, the trust of good nodes increases beyond le and the trust of
misbehaving nodes tends to zero. We use three quantization levels to address the
case of partial packet droppers, that will fall in the t¢,,eqium level.

Now we insert the quantized values of node trustworthiness in the OLSR metric.
We define the quantized trustworthiness tqy; of a unidirectional link between node
S and node I as the lower quantized trustworthiness among tq, and tg;. The weight
wg; of the unidirectional link S-to-I is a function of tq,; and therefore we have three
possible numerical weights, named wWiow, Wmedium, Whigh, that are respectively as-
signed in case of tgs; is equal to tqiow, tqmedium OF tqnigh. The values of Wipw, Winedium,

Whign should ensure that, whatever is the path stretch in terms of network hops,

25

2 — Packet-droppers Detection in Wireless Community Networks

shortest-path routing selects the most trusted path, where the path-trustworthiness
is equal to the (quantized) trustworthiness of the worst node of the path. To achieve
this goal it is enough that the values wiow, Wmedium, Whigh comply with the following

two conditions:

{ ML - Whigh < Wmedium (2 3)

ML - Wmedium < Wiow

where ML is the maximum path length in the network. For instance, by choosing
M L=10 the possible values would be: w;4,=100, Wmedium=1, Whigh=0.01.

Finally, we observe that albeit we have considered only three levels of quantiza-
tion (low, medium, and high) the reasoning that we followed can be repeated for

more quantization levels.

2.7 Hiding Probes

To hide probe packets we leverage steganographic techniques for creating implicit
probes “hidden” within the plain data traffic. To achieve this task, it is required
that each sender and destination pair shares a dedicated secret. Secret sharing may
exploit an eventual PKI deployed for securing the routing plane [22] or may be done
through dedicated asymmetric cryptographic schemes®.

Let us assume that S sends UDP traffic to a destination D, and that S and D
share a dedicated secret kgp. When an UDP/IP packet P is sent from S to D, it is
recognized as probe by both source and destination nodes (and only by themselves,
because of the secrecy of ksp) if the condition HMACy,, (P) < threshold holds.
Here, HMAC is a keyed hash construction based on a secure one-way hash function,
keyed with the node pair secret, and threshold is a configuration value that permits
to configure the percentage of probes (1/32 in our specific case, by setting threshold
equal to 1/32 of the maximum HMAC value). Furthermore, we recall that the
HMAC must be applied to the content of the packet P which is not mutable during

its forwarding in the network (for instance, its TTL which must be hence excluded

4For instance, using Diffie-Hellmann (but the same holds for many other schemes, e.g. identity-
based cryptography, bilinear pairings, etc), each node can preliminary notify to all the remaining
nodes (e.g. through broadcast delivery) its public Diffie-Hellman parameter, so that each remaining
node can asynchronously compute a per-node-pair shared secret.

26

2 — Packet-droppers Detection in Wireless Community Networks

from the hash computation).

Since a malicious packet-dropper does not know kgp, it cannot compute the
HMAC and hence detect whether the packet is a probe or not. The only possible
weakness occurs when packets P which satisfy the condition of being probes happen
to appear duplicated in the data stream, as in this case a node keeping track of all
the delivered packets and recognizing them as probes based on the occurrence of a
probe response would be able to identify the ones subsequent to the first one. Note
that the first packet remains protected, as this is disclosed to be a probe only too late
from the point of view of a malicious node. This issue could be in principle avoided
by adding freshness to every packet payload - e.g. in the form of a random trailer.
However this would need to remove such extra data at destination and complicate the
implementation. In practice, we think that the presence of application layer headers
which contain changing information (such as sequence numbers and timestamps in
RTP/UDP streams) is sufficient to avoid this concern.

The probe response is a special packet constructed by the destination. It does
not need to be hidden, as the lack of probe response delivery to the source would
imply node misbehavior (and hence a node dropping probe responses would harm
its own reputation). Therefore, it is constructed as an explicit UDP message that
contains a (different) keyed message authentication code for the original packet P.
As such, the source is able to link the probe response to the packet P initially send,
whereas a malicious node is not able, missing the secret, to forge fake probes. Any

duplicated or invalid probe response is discarded by S.

Finally, we observe that an implicit probing mechanism does not fully address
the scenario of TCP traffic. Indeed, a malicious packet-dropper might immediately
discard packets that establish a connection thus preventing the exchange of traffic
and probes. Moreover, also considering initial TCP SYN packets as probes would
be ineffective because a malicious node could forward these packets but drop the
remaining traffic, thus blocking further probing. We argue that a possible approach
for devising a reputation-module for TCP traffic could be based on the analysis of

connection level phenomena such as TCP timeout.

27

2 — Packet-droppers Detection in Wireless Community Networks

2.8 Performance Evaluation

We test our algorithm in a mesh network formed by 25 fixed nodes disposed as in
figure 2.3. We use Network Simulator 2 (v2.34), enriched by the OLSR modules of
[31]. A node can directly communicate only with its horizontal or vertical neigh-
bors. MAC layer is IEEE 802.11 operating at 11 Mbps. A simulation lasts 300
sec; beginning at 20 sec and every 10 sec each node sets up a CBR/UDP session
with a random destination; UDP packets have a length of 1452 bytes and the UDP
bit-rate is 220 kbps. Regarding the probing performed by the reputation-module,
we consider a threshold equal to 1/32 of the HMAC maximum value, i.e. in average
a probe every 32 delivered packets. Therefore during an UDP session of 10 seconds
we have on average 6 probes; the reset of a local reputation value occurs after 60
seconds of probing inactivity. Regarding the model of the malicious node we assume

that it drops all UDP packets and advertises a bad reputation for all other nodes.
|

—@)-

~©-

ad

Figure 2.3: Simulation scenario

VOO0

00000
X

fofoNc¥oXol

Figure 2.4 reports the time evolution of the quantized trust value tq; of nodes
12, 13 and 14, in case node 13 drops all the UDP packets to be forwarded while the
other network nodes correctly forward packets. Since the beginning of UDP traffic,
i.e. 20 sec, the malicious node 13 gets a low level of trust, while neighbor nodes
12 and 14 get a high trust level. We also observe that good nodes 12 and 14 get

28

2 — Packet-droppers Detection in Wireless Community Networks

during a very small period of time a wrong reputation and this is an evidence of the
worsening effects coming out from the path-wide probing approach that we followed
(see section 2.4); conversely sometimes nodes 13 gets a high level of trust due to the

temporary reset of the soft-state mechanism.

Node n. 12 (good
high trust (good)
low trustt i i 9
0 50 100 150
Node n. 13 (bad)
high trust
low trustt ‘ ‘ 5
0 50 100 150
Node n. 14 (good)
high trust
low trustt i i 9
0 50 100 150

time (sec)

Figure 2.4: Time evolution of quantized trust values in case node 13 is a packet-
dropper

Figure 2.5 shows the number of packets delivered to every node for forwarding.
When trust-based-routing is disabled (upper plot) the three dropper nodes inter-
cept a significant number of packets and the total amount of forwarded packets in
the network is lower. Enabling trust-based-routing the droppers are identified and
skipped, leading to a higher number of forwarded packets for the other nodes of the
network.

Figure 2.6 shows the effectiveness of the trust-based-routing in coping with many

independent packet-droppers®. We measure the effectiveness E as the reduction

°The ids of the dropping nodes are: 1-dropper: {13}, 2-droppers: {12,14}, 3-droppers:

29

2 — Packet-droppers Detection in Wireless Community Networks

Droppers

Droppers

Number of packets to be forwarded

0 5 10 15 20 25
Node id

Figure 2.5: Number of packets to be forwarded by network nodes when nodes 12,
13 and 14 are packet-droppers, in cases of absence (upper plot) and presence (lower
plot) of trust-based-routing

of packets intercepted by droppers when the trust-based-routing is activated, in

formula:
Ptrust

E=1

plain
where P,s and Pp,q, are the number of packets intercepted by packet-droppers
in case of trust-based-routing and in case of plain OLSR routing respectively. In
case of a single packet-dropper, we observe a reduction of the number of intercepted
packets that is about 97%. We do not obtain a reduction of the 100% since the
reset timeout of reputation-modules allows traffic to be temporary intercepted by
the droppers. Obviously, by increasing the number of droppers we have a decrease

of E that however remains beyond 90% up to 4 packet-droppers.

{12,13,14}, 4-droppers: {7,9,17,19}, 5-droppers: {7,9,13,17,19}, 6-droppers: {7,8,9,17,18,19}, 7-
droppers: {3,7,8,9,17,18,19}

30

2 — Packet-droppers Detection in Wireless Community Networks

o o o o
© © ©o ©
N B O ®

o
©

o o
©® @
o ®
T T
| |

Normalized reduction of forwardings
requested to packet droppers (E)

—o— EigenTrust
—&— ITRM

o
®
>
T
|

o
0
N
T
|

| | | |
1 2 3 4 5 6 7
Number of packet droppers

o
®

Figure 2.6: Normalized reduction (E) of number of packets to be forwarded by
packet-droppers in case of trust-based-routing with respect to the case of plain
OLSR, versus the number of packet-droppers

Finally, figure 2.7 shows the impact of the reputation reset timeout and of the
number of probes per second in case of 3 packet-droppers. We observe that both
parameters have a marginal impact on system performance on the condition that
a too short timeout (e.g., lower than 20 sec) and too few probes per second (e.g.,
lower than 3 probes) are avoided.

The last fact we want to show, is that our mechanism does not introduce losses
when there is not any attacker or any faulty router. While it is clear that in case of an
attack the mechanism reduces packet loss because the network paths do not traverse
the attacker node anymore, it is not straightforward that the trust framework do
not introduce packet loss in case that no attack is in place. To demonstrate this we
simulated a congested network with a packet loss around 30% and no attackers in
place. When we turn on the framework, either with the EigenTrust or the ITRM
trust modules, we note that we have just a small increase of packet loss (see figure
2.8. This small increase of packet loss is due the loss of probes because of network

congestion. However the additional loss is so little that is possible to neglect it.

2.9 Related Work

This section surveys design aspects of relevant and recent work in literature aimed

at mitigating attacks on the data plane in wireless multi-hop networks.

31

2 — Packet-droppers Detection in Wireless Community Networks

0.9 1
7]
UJA
S wo.8 4
[
© < |
s 8_0.7[
2 506 .
“6 -c 0 5 1 1 1 1 1 1
5§20 20 30 40 50 60 70 nolimit
IR Reset timeout (sec)
=
©
9 8 T T T T T T T T
- O
B % 0.9 e & &
D i
g 3o08f |
o2
z 0.7f §
0.6 4
0.5 1 1 1 1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Probes per seconds

Figure 2.7: Normalized reduction (E) of number of packets to be forwarded by
3 packet-droppers in case of trust-based-routing with respect to the case of plain
OLSR, versus the duration of the reset time-out and the frequency of probe packets

In [25] the authors introduce the idea of two modules called watchdog to identify
misbehaving nodes, and pathrater to help the routing protocol (DSR), in choosing
routes that avoid these nodes. To identify misbehaviors, the watchdog “overhears”
neighbors, by putting its network interface in promiscuous mode, to check if data
packets are actually forwarded by them, and then this information is used by the
path rater as a metric to compute the best routes. In other works similar neighbor
monitoring mechanisms have been exploited, together with protocols devised to
spread reputation values over the network: CONFIDANT [26] makes use of alarm
messages, while CORE [27] propagates this information through a provider and
requestor scheme. Moreover, in (28], the monitoring is enhanced by using unkeyed
hashes in the DSR route discovery phase.

In [32] the proposed scheme copes with attackers that independently fail to for-

ward data packets or are not honest in propagating trustworthiness information to

32

2 — Packet-droppers Detection in Wireless Community Networks

100 %
95} -
9 -
851 -
80 -
751 -
70
65
60
55
50
45+
40+
35F
30
25}
201
15}
10}

%(Total Packets Arrived)/(Total Packets Sent)

without mechanism EIGEN ITRM

Mechanisms

Figure 2.8: We show that when there is no attacker in the network, the activation
of our framework does not increase packet loss because of lost probes

the other nodes. A hop by hop acknowledgment scheme, based on overhearing,
is used to gather first-hand trust information in the assumption that the underly-
ing routing protocol is based on source routing. When insufficient information is
available the node can query a set of recommender nodes to obtain second-hand
information. The amount of second-hand information used can be tuned to achieve
either the goal of accuracy or speed of detection.

The usage of the watchdog mechanism is instead limited, in [33], to the mon-
itoring of broadcast packets, while for unicast packets two-hop cryptographic ac-
knowledgments are employed. The proposed scenario is a DSR MANET, where a
PKI is assumed to be in place, and both attacks to the data and control planes are

considered. The gathered reputation information is then used as the basis for an

33

2 — Packet-droppers Detection in Wireless Community Networks

accusation-based collaborative node isolation mechanism.

In [34] authors introduce the concept of witnesses, i.e. nodes that do not belong
to the data forwarding path but that are able to monitor (by overhearing) nodes
belonging to it. Witnesses send reports to the packet source on the forwarding
behavior of the monitored nodes that belong to the data path. The authors provide
an analytical model and study its performance. In the special case of a network
topology that does not allow for witnesses, the mechanism falls back to the watchdog
approach.

In [35], the authors devise a reputation-based mechanism for AODV MANETSs
with very mobile and sparse nodes based on EigenTrust. Each node collects informa-
tion on other nodes checking, with a mechanism similar to the previously mentioned
watchdog, if data is actually forwarded. This reputation information, spread over
the network, together with information on the centrality of the nodes, i.e. how wide
is their view of the network, is then used to classify nodes into zones, after applying
a variant of the EigenTrust algorithm, to compute trust values.

The key difference between our work and the current state of the art, is that
the proposed framework enables nodes to evaluate the reputation of other nodes
without the need of overhearing, this makes possible to use the framework in case
of multiple directional antennas setups or when multi-rate transmissions are used.
Moreover, the proposed path-wide probe-based approach requires the use of a link

state routing protocol.

2.10 Chapter Conclusions

This chapter illustrated a modular trust-based routing framework for OLSR based
Wireless Community Networks. The proposed approach does not require overhear-
ing, and limits computational load since a node only performs packet-level trust
computation upon packets of its traffic. Such virtues are achieved by assessing the
nodes’ reputation (in terms of proper forwarding of data packets) via a path-wide
approach leveraging “hidden” active probes deployed into the normal data stream.
A preliminary performance evaluation shows that the proposed approach is effec-

tive, even if it is based on a very simple reputation algorithm (Section 2.4) and it

34

2 — Packet-droppers Detection in Wireless Community Networks

is targeted to detect “packet droppers”. As future work, we plan to improve the
extent and effectiveness of the framework in correctly and rapidly identify misbe-
having nodes, by devising more sophisticated inference algorithms capable to better
assess the forwarding operation of an intermediate network node using only end-to-
end measurements (e.g. using methodologies similar to those exploited by network
tomography research [36]).

The work illustrated in this chapter has been presented at the conference IEEE
ICC 2011 with an article entitled “A framework for Packet-Droppers Mitigation in
OLSR Wireless Community Networks”, co-authored by Francesco Saverio Proto,

Andrea Detti and Giuseppe Bianchi.

35

Chapter 3

Multicast DNS and Service
Discovery in Wireless Community
Networks

In this chapter we propose an extension to the OLSR protocol to support the delivery
of mDNS traffic. This protocol enhancement makes possible to perform distributed
name resolution and service discovery in community networks, using standard tools
already installed on most users’ computers. The designed protocol extension has
been implemented and released open source. The solution has been tested both on
standard PCs and on embedded devices running OpenWRT, and included in the
olsr.org standard distribution [37].

3.1 Overview

OLSR is one of the most widespread routing protocol in wireless community net-
works [3] [38] [6] [2]. These open infrastructures are ran by volunteers to offer
Internet connectivity to neighborhoods or villages. Even if the users are connected
directly one to each other on high speed wireless networks, few services other than
Internet connectivity are popular among the members of the communities. To the
best of our knowledge community services are not exploited, because wireless com-

munity networks (WCNs) usually lack reliable internal DNS servers and service

36

3 — Multicast DNS and Service Discovery in Wireless Community Networks

directories. WCNs are highly distributed and unstable, and this makes very hard
to deploy centralized services. A DNS or service directory server could be most of
the time unreachable to the majority of the users due to failures or network splits.
Moreover, the standard DNS protocol [39] requires a centralized server as source of
authority for the domain, but in the anarchic scenario of communities there is not
a single entity responsible for the network’s deployment, management and main-
tenance. In other words, WCNs are not distributed only in terms of topological
position of the nodes, but also in terms of administrative domains. Setting up a
DNS service for the domain of a WCN presupposes that an administrative domain
covers the whole network, but this is not necessarily true.

When a central server is not available, name service protocols installed today
on most users’ terminals [40] [41] send broadcast queries. However, in a network
running the OLSR routing protocol, the broadcast domain is limited to the 1-hop
neighborhood. This makes it impossible to use a name service protocol that requires
a broadcast medium.

The goal of the work described in this chapter is to provide distributed name
resolution and service discovery in WCNs running the OLSR protocol. We devise
a transport mechanism for mDNS [42] packets in a OLSR network, to perform
name resolution where it was not possible with limited broadcast-multicast domain.
Moreover, once the network is able to transport mDNS packets, it is possible to
exploit DNS based Service Discovery to run decentralized applications with other
users in the community network. The solution we present is completely distributed,
it is backward compatible with the already deployed nodes in the network and it
is transparent to the end-user. Standard user applications that are off-the-shelf in
recent operating systems, like browsers or chat clients, are already able to exploit
services announced via DNS based service discovery.

Multicast DNS (mDNS) [42] is a protocol that uses APIs that are similar to
the ones of the normal unicast Domain Name System, but implemented differently.
The details of the mDNS protocols can be found in [42]; in the following we give a
short explanation functional to understand our work. Each host on the multicast
domain stores its own list of DNS resource records (e.g. A, MX, SRV, etc) and acts
as a DNS server. When an mDNS client wants to resolve a name, it sends a DNS

query in multicast, and the host with the corresponding A record replies with its

37

3 — Multicast DNS and Service Discovery in Wireless Community Networks

IP address. There are no central hosts responsible for the functioning of the whole
system, and in case of failure or network split, the service still works between the
users connected. Because of the lack of a central repository, names are assigned on a
first-come basis. If a host discovers that its hostname is already taken from another
host in the network then it chooses a new hostname.

DNS based Service Discovery (DNS-SD) is built on top of the Domain Name
System. It uses DNS SRV, TXT, and PTR records to advertise Service Instance
Names. The hosts offering the different services publish details of available services
like instance, service type, domain name and optional configuration parameters.
Service types are given informally on a first-come basis.

In figure 1.1 we can see a sketch of a typical wireless community deployment,
where the node G shares its Internet connectivity acting as a gateway for all the
other nodes. Obviously if the user attached to node A wants to communicate with
the user attached to node B, it is not necessary to pass through the public Internet.
However, if a user is offering a service on his host (e.g. a Web server) another user
willing to connect to this service must know a priori the IP address and the port
where the service is located. This is not feasible because i) the IP address may
change over time, ii) users may not know each other a priori and iii) most of them
are not skilled enough to go into the details of IP addresses and TCP/UDP ports.

To solve the problems listed above, we take advantage of the fact that most
users’ computers will generate mDNS traffic to announce the active network services.
Moreover, hardware produced in the past few years like network printers and network
attached storage boxes (NAS), generate mDNS traffic to announce their presence in
the network and the available network services.

The mDNS traffic scope is inside the subnet of the user, and will not pass beyond
the OLSR router. To extend the multicast domain for mDNS traffic, an OLSR node
equipped with our mDNS plugin can passively capture mDNS packets and forward
them into the mesh network as OLSR signaling (as we explain in detail in section
3.2). The captured traffic is then received by the other OLSR nodes that can
reproduce it on their attached subnets.

Network addressing configuration (or autoconfiguration) for the OLSR nodes and
their attached subnets is not in the goal of this work. We assume that the network

has a consistent addressing, and that all the nodes are configured correctly. Every

38

3 — Multicast DNS and Service Discovery in Wireless Community Networks

host must have a unique IP address and must be routable: IP unicast connectivity
between any pair of nodes must be possible. If the network is not fully routable,
unreachable services may be announced, as a route to reach the host running the
service may not exist. Because all the users must be able to offer services from their
hosts, NAT must be avoided. It is useless to announce a service on a host behind
a NAT: the service will not be available if does not exist a route to the IP address

where the service is announced.

3.2 The OLSR Protocol Extension for mDNS trans-
port

The OLSR protocol is extensible to provide additional functionality if desired. The

OLSR packet (Figure 1.3) is a transport container for different messages.

As illustrated in Section 1.3.1 there are two fundamental message types in the
OLSR protocol: HELLO, and TC. HELLO messages are used for neighbor discovery
and link sensing; these packets expire after one hop and are never forwarded. TC
messages are used for network topology information diffusion; these packets are
forwarded away from the originator to deliver topology information encapsulated

into new OLSR packets at each hop.
The protocol can be extended with other message types to support new OLSR

applications. A new OLSR application can deliver information to all the other
OLSR nodes minimizing the traffic, even if only a subset of nodes are equipped with
the new OLSR application. This is possible because unknown OLSR messages are
processed according to the default forwarding algorithm. For example an OLSR node
may want to advertise a subnet attached to one of its interfaces. The node floods
an HNA (Host and Network Association) message to all the other nodes. A node
capable of understanding the HNA application will add a route for the announced
network in its routing table, while a node not aware of the HNA application will

forward the HNA messages according to the default forwarding algorithm.

To extend the OLSR protocol we define the mDNS message type as in Figure
3.1.

39

3 — Multicast DNS and Service Discovery in Wireless Community Networks

0 31
Message Type \ Vtime | Message Size
Originator Address
Time To Live\ Hop Count |Message Sequence Number
Encapsulated IP Packet + Padding

Figure 3.1: mDNS OLSR message

The key idea is to capture the IP packets containing the mDNS traffic! and
encapsulate them in the payload of the mDNS OLSR messages. Because our payload
is limited by the MTU of the wireless interface, we introduced the smallest possible
overhead in the message header. We have 44 bytes and 76 bytes of total overhead
when working respectively in IPv4 and in IPv6. This means that with a typical
MTU of 1500 bytes our protocol can deliver IPv4 packets up to 1456 bytes and
IPv6 packets up to 1424 bytes. However, mDNS packets are typically smaller and
different mDNS OLSR messages may be aggregated in a single OLSR packet.

The transport protocol is defined as follows: when mDNS traffic is captured, it is
encapsulated into a mDNS OLSR message and flooded into the network according
to the default forwarding algorithm. The flooding is natively optimized by OLSR
to avoid useless retransmissions. An OLSR mDNS-aware node receiving a mDNS
OLSR message, decapsulates the IP packet and sends it on its non-OLSR attached

interfaces.

3.3 Implementation of the OLSR mDNS Plugin

The mDNS OLSR. extension is developed as a plugin for the UniK OLSR Imple-
mentation, also known as olsrd [20]. The source code is distributed under the BSD
License, and is freely available in the official olsrd distribution [37].

Implementing the extension as a plugin, that is loaded upon configuration, is a
natural choice, as it is not required for every node to support the mDNS application,
but only a subset. For example, backbone-only nodes, with no end users directly

connected, may avoid using the plug-in.

Tt is easy to filter mDNS traffic because it is sent over the well known UDP port 5353

40

3 — Multicast DNS and Service Discovery in Wireless Community Networks

To enable the mDNS plugin the following block must be added to the olsrd

configuration file:

LoadPlugin "olsrd_mdns.so.1.0.0"
{

PlParam "NonOlsrIf" "ethX"
}

Where one or more interfaces not participating in the OLSR network are speci-
fied.

The plugin has two main functions that are registered into the olsrd scheduler.
After creating raw socket descriptors to sniff IP packets on the desired interfaces,
these socket descriptors are passed under the control of the OLSR main scheduler.
When a mDNS packet is captured, a mDNS OLSR message is generated on all the
OLSR interfaces of the node.

The plugin also registers itself to the scheduler to receive incoming mDNS OLSR
messages: upon reception the encapsulated IP packet is sent over all the non OLSR
interfaces of the node, and the message is processed according to the default for-
warding algorithm.

The implementation is IPv6 ready. The olsrd daemon works with both IPv4 or
[Pv6 (but does not support the two protocols simultaneously). The mDNS plugin is
able to work with IPv4 or IPv6 packets depending on the current configuration. We
proved the functionality of our implementation testing it both in virtual environment
with Netkit [43] and in a real community network [2]. In future work we plan to

test the plugin on other community networks with a higher number of users.

3.4 Chapter Conclusions

In this chapter we presented an extension to the OLSR protocol to deliver Multicast
DNS traffic in a wireless mesh network. We make use of the optimized OLSR flooding
mechanism to solve the problem of the limited broadcast and multicast domain.
This new feature lets wireless community networks users take advantage of mDNS

based service discovery tools already installed on their computers and supports the

41

3 — Multicast DNS and Service Discovery in Wireless Community Networks

deployment of services in a decentralized fashion. The protocol extension has been
implemented and disseminated in the wireless network communities.

To reduce bandwidth consumption and for higher scalability, a future version
of the protocol will compress the payload of the mDNS OLSR messages. This is
mainly composed of ASCII text, therefore even with a lightweight compression it is
possible to significantly reduce its size.

The work illustrated in this chapter has been presented at the IEEE SECON
Workshops 2009 with an article entitled “The OLSR mDNS Extension for Service

Discovery”, co-authored by Francesco Saverio Proto.

42

Chapter 4

Multicast Multimedia Streaming
in Wireless Mesh Networks

In Wireless Community Networks users can access both the Internet and internal
network services. However the routers lack multicast support and users cannot ex-
ploit the high capacity of wireless links to stream and receive multimedia services.
We designed and implemented an extension to the OLSR protocol to support the
delivery of multicast traffic using the Overlay Boruvka-based Ad-hoc Multicast Pro-
tocol (OBAMP). This protocol enhancement makes possible to create a multicast
distribution tree among a subset of nodes, providing the mesh users with multicast

community services.

4.1 Overview

We described in Section 1.3 the state of the art of routing protocols that exists for
wireless mesh networks, focusing especially on OLSR, widely employed in Wireless
Community Networks.

We devise an hybrid approach where we mix an overlay protocol, to run the
multicast protocol only on the subset of nodes willing to participate to the creation
of the spanning tree, and the underlay protocol to share information about the
quality of the links and the underlay network topology. In this way we get the

benefit of the overlay approach without duplicating features as node discovery, link

43

4 — Multicast Multimedia Streaming in Wireless Mesh Networks

sensing and metric calculations.

The goal of the work described in this chapter is to provide a simple tool to
make possible for the users to run multicast streaming services over their WCN.
We integrated the OBAMP overlay protocol [44] for multicast delivery in the OLSR
routing protocol. The OLSR network is enhanced with the creation of an overlay
multicast distribution tree for delivery of multimedia streaming.

We opted for an overlay solution because in a real WCN is not feasible to install
a multicast protocol daemon on every router. WCNs are characterized by a highly
decentralized administration and, consequently, network nodes have very different
hardware capabilities. For this reason we choose to use an overlay protocol: to avoid
the installation of dedicated software on all the routers of the network.

The work we present in this chapter, is not only a proposed solution for multicast
support in mesh decentralized networks, but is also designed for use in real networks,
as it is backward compatible with the already deployed nodes in the network and it

is transparent to the end-users.

4.2 Related Work

Before our contribution the only way to have delivered broadcast or multicast traffic
on a OLSR network, was to use the Basic Multicast Forwarding (BMF) plugin.

The Basic Multicast Forwarding Plugin floods IP-multicast and IP-local-broadcast
traffic over an OLSRD network. It uses the Multi-Point Relays (MPRs) as identi-
fied by the OLSR protocol to optimize the flooding of multicast and local broadcast
packets to all the hosts in the network. To prevent broadcast storms, a history of
packets is kept; only packets that have not been seen in the past 3-6 seconds are
forwarded.

The plugin has two main drawbacks. The first is that to properly work all routers
on the network have to be upgraded to support the plugin. The second is that the
plugin makes use of UDP tunnels with tun/tap devices and it is coded with the
use of the libpthread library. This specific implementation details make the BMF
plugin not very stable with some versions of OpenWRT because libpthread has

known problems with the uclibs.

44

4 — Multicast Multimedia Streaming in Wireless Mesh Networks

4.3 The OBAMP Protocol

OBAMP is an overlay protocol: it runs only on the hosts willing to participate to a
multicast group. User data is distributed over a shared distribution tree formed by
a set of non-cyclic UDP tunnels.

The use of an overlay protocol makes possible to add new features without re-
deploying the routing software on all network nodes at once.

The characteristic of OBAMP is that the protocol first makes a mesh network
with overlay links (UDP tunnels) between all the OBAMP nodes, and then it creates
a distribution spanning tree over these mesh links. To limit signaling and improve
the system scalability, OBAMP nodes do not build a full mesh among them, but
create only the necessary links to keep the OBAMP overlay network connected.

Previous research [44] shows that the OBAMP protocol exhibits better scalability
performance in a many to many communications scenario than two state-of-the-
art protocols such as ALMA [45] and ODMRP [46]. In WCNs many to many
communication is the default scenario, because network traffic is generated by the

users.

4.4 Integrating OBAMP and OLSR

In this section we extend the OLSR routing protocol devising and implementing an
OBAMP extension. The OBAMP protocol has been already implemented [47] as a
standalone application. However, the integration with the underlay routing protocol
leads to optimization in terms of signaling and efficiency. Functions like neighbor
discovery and path-cost calculations are done at once for both the overlay and the
underlay protocol. This leads to greater accuracy and lower CPU consumption, that
is critical on embedded devices like wireless routers.

This version of the OBAMP protocol, implemented as an OLSR plugin, is sim-
plified for use in WCNSs, where we assume the nodes to be in fixed positions on
the roof of the houses. Thus all protocol features regarding mobility have not been
implemented.

A WCN is usually composed by an OLSR backbone and subnets, attached to
the OLSR routers, where the users are connected. Implementing OBAMP on the

45

4 — Multicast Multimedia Streaming in Wireless Mesh Networks

OLSR routers, and thus making the multicast delivery service transparent to the
user, avoids the deployment problems that would be introduced by the installation
of dedicated software on end user terminals.

To extend the OLSR protocol we define the OBAMP alive message as in Figure
4.1.

0 31
Message Type \ Vtime | Message Size
Originator Address
Time To Live\ Hop Count |Message Sequence Number
Core Address
MessagelID \ Status | Reserved

Figure 4.1: OBAMP alive OLSR message

OBAMP-enabled OLSR nodes (OBAMP nodes from now on) generate periodi-
cally OBAMP alive messages. These are forwarded in the whole network (also by
the nodes that are not OBAMP-enabled thanks to the OLSR default forwarding
algorithm). Because of the flooding mechanism every OBAMP node has a com-
plete list of all the other OBAMP nodes in the mesh network. The OBAMP nodes
discover each other exploiting the OLSR signaling, to later start their own unicast
signaling for the OBAMP protocol to create the overlay distribution tree.

The OBAMP network must have a node called Core, that starts the
TREE_CREATE procedure for the creation of the multicast tree. The node with
the smallest TP address is designated as the Core node. After the discovery phase
the rest of the signaling between OBAMP nodes happens in unicast, on a dedicated
signaling port without interfering with the OLSR protocol.

4.5 Implementation

The OBAMP OLSR extension is developed as a plugin for olsrd [20]. The source
code is distributed open source, and is freely available in the official olsrd distribution
[37].

The natural choice for the OBAMP OLSR extension was to implement it as a
plugin as it is not required for every node to support the overlay OBAMP protocol,

46

4 — Multicast Multimedia Streaming in Wireless Mesh Networks

but only a subset!.

4.6 Operation Description

Each OBAMP node should have at least one interface participating in the OLSR
network and at least one interface not participating in the OLSR network (non-
OLSR interface), to which user hosts are supposed to be attached.

The key idea is to capture the IP packets containing the multicast traffic and en-
capsulate them in UDP tunnels for delivery on the overlay distribution tree. These
messages, in order to avoid duplicate packets, are identified by a sequence num-
ber and by the IP address of the OBAMP source node where the traffic has been
generated and hence encapsulated.

More specifically, the transport protocol is defined as follows: when a multicast
packet is captured on a non-OLSR interface of an OBAMP node, it is encapsulated
in the payload of an OBAMP data message and forwarded into the overlay multicast
distribution tree. The other OBAMP nodes receiving the OBAMP data message will
forward the data on the non-cyclic overlay spanning tree and will also decapsulate
the contained IP packet and then send it through all their non-OLSR attached

interfaces.

4.7 Implementation Details

The plugin uses the olsrd scheduler to control the raw sockets descriptors to sniff
multicast IP packets on the non-OLSR interfaces.

The OLSR scheduler has a default polling rate that is too slow for OBAMP to
function correctly. However this is a tunable parameter (through the configuration
file), and we found an optimal setting at 1 ms, that leads to an acceptable CPU
consumption, even on embedded devices.

The plugin also registers itself to the scheduler to receive incoming OBAMP alive
OLSR messages to discover the other OBAMP nodes. The rest of the signaling is

IFor example, backbone-only nodes, with no end users directly connected, may avoid using the
plugin.

47

4 — Multicast Multimedia Streaming in Wireless Mesh Networks

received in unicast on the UDP port 6226.

The following timers are defined:

e OBAMP _alive_timer: every OBAMP node sends alive messages to advertise its
presence to the other OBAMP nodes in the network. In the alive message every
nodes states its IP address, and if it has already a tree link or not (we will see
later this information is important for the outer tree create procedure). Note
that if the list of known OBAMP nodes changes, the Core Election procedure
is called to check if the CoreNode has changed.

e mesh _create_timer: every OBAMP node every OBAMP _MESH CREATE_IVAL
seconds evaluates the distance from the other OBAMP nodes and selects a
subset of nodes to keep mesh links with. To select its overlay neighbors, an
OBAMP node first calculates the ETX distance from the nearest OBAMP
nodes, and then creates overlay mesh links with every node whose distance is
in the range (minETX ,minETX + 1). Note that to reduce signaling and to
increase scalability, the overlay mesh links are setup only with a subset of the
nearest OBAMP nodes.

e tree_create_timer: the Core node of the network every
OBAMP_TREE_CREATE_IVAL seconds sends a message called
TREE_CREATE on its mesh links. The creation of the spanning tree
is very similar to what happens in the spanning tree protocol [48]. When a
TREE_CREATE message is received, an OBAMP node enables a tree link
with its parent and forwards the TREE_CREATE message on the other mesh
links. TREE_CREATE messages are generated only by the Core and are
numbered, so TREE_CREATE messages received over loops can be discarded.

e outer_tree_create_timer: the mesh create algorithm may create a cluster of
OBAMP nodes within the network that are disconnected between each other
(see mesh_create_timer above). This happens if there are groups OBAMP
nodes that are far from each other. In this case only the cluster where the
Core is present will receive the TREE_CREATE and will receive traffic from
the distribution tree. To overcome this problem, if in a cluster there are not
TREE_CREATE messages in OBAMP_TREE_CREATE_IVAL seconds, the

48

4 — Multicast Multimedia Streaming in Wireless Mesh Networks

node with the smallest IP in the cluster will make a long mesh link with the
nearest node that has at least a tree link. All the necessary information to
perform this procedure is diffused in the OBAMP_ALIVE messages.

e purge nodes_timer: checks expire time of various variables, and deletes nodes

or tree links in a soft state fashion

4.8 Plugin Configuration

To enable the OBAMP plugin the following block must be added to the olsrd con-
figuration file:

LoadPlugin "olsrd_obamp.so.1.0.0"
{

PlParam "NonOlsrIf" "ethl"

b

The only parameter the user has to specify are the interfaces, not participating

to the OLSR network, where she wants to capture and decapsulate multicast traffic.

4.9 Chapter Conclusions

In this chapter we presented an extension to the OLSR protocol and its implemen-
tation, to deliver multicast traffic in Wireless Community Networks. We make use
of the OLSR flooding mechanism to integrate the underlay and the overlay proto-
cols. As a result we obtain improved efficiency and reduced signaling. We capture
the multicast traffic at the wireless routers to avoid the installation of dedicated
software on the end user terminals. The protocol extension has been implemented
and then tested and disseminated in the Wireless Community Networks.

The work illustrated in this chapter has been presented at IEEE WoWMoM
2010 with an article entitled “Implementation of the OBAMP overlay protocol for

49

4 — Multicast Multimedia Streaming in Wireless Mesh Networks

multicast delivery in OLSR wireless community networks”, co-authored by Francesco

Saverio Proto.

20

Chapter 5

Cross-Layer Scalable Video
streaming in WLANSs

Wireless Local Area Network (WLANSs), usually in the form of "hot spots” are
becoming increasingly common in public spaces around the World, and Wireless
Community Networks are no exception, as the access to end-users is usually provided
by means of wireless Access Points. Moreover, as video streaming services popularity
and availability increases, the need arises for resource optimization aimed at the
maximization of the delivered video quality. For this purpose, H.264 Scalable Video
Coding (SVC) emerges as a promising encoding technique that allows to adapt to

network conditions.

In this chapter we will outline the scalable video streaming over WLANSs sce-
nario, design a simple application-layer packet scheduler and present the related
results, achieved by using SVEF, a framework, developed and released by us, for
the evaluation of scalable video streams, on a real testbed. Then we will extend this
scenario to the presence of uplink non-video streams, devise an analytical model and
address the associated optimization problem, in order to build a practical cross-layer

packet scheduler.

o1

5 — Cross-Layer Scalable Video streaming in WLANs

5.1 Overview

Streaming high quality videos on a lossy wireless network is a challenging task.
Because network losses are arbitrary, the decoder should be resilient to data loss, to
produce a video output when some of the original information is missing.

In this scenario, the features and the design of H.264 Scalable Video Coding
(SVC) [49] make it especially appealing for the implementation of cross-layer and
application-aware access points. With attention to network schedulers, the key idea
is to implement QoS classifiers, able to easily inspect packet payloads and queues
(and eventually drop) packets using a policy that takes into account the properties
of the video stream, simplifying the work of concealing at the decoding stage.

An SVC stream is composed of multiple “layers” which carry incremental video
enhancement information. As such, it can be adapted to a capacity throttling or
fluctuation simply by dropping (in part or in full) one or more enhancement layers,
thus obviating the need for costly transcoding operations or the provision of multiple
streams at different quality levels. H.264 SVC provides a very smooth adaptation
process at a level of granularity down to individual dropping decisions for single
video layer protocol data units (also called Network Abstraction Layer Units or
NALUs in H.264 notation). An Overview of H.264 SVC can be found below, in
Section 5.2.

In Section 5.3, we perform an experimental assessment on the use of H.264 Scal-
able Video Coding with an application-aware packet scheduler. This assessment is
among one of the first works to document experimental results for application-aware
H.264 Scalable Video Coding (SVC) support over IEEE 802.11 Wireless LANs. This
is achieved by introducing a bandwidth throttling device, called Virtual BottleNeck
(VBN), before the WLAN Access Point. Throttling is set to a bandwidth slightly
smaller than the actual WLAN capacity (either known or estimated), so that all
packet /frame losses occur inside the VBN. Here, loss events are controlled by a
scheduling mechanism devised to operate with information taken from the H.264
Network Abstraction Layer Units (NALUs). Despite its relative simplicity, the im-
plemented scheduler exhibits effective video adaptation performance and close to
optimal bandwidth efficiency.

Setting up the trial was not trivial due to the lack of suitable publicly available

52

5 — Cross-Layer Scalable Video streaming in WLANs

tools. Section 5.4 illustrates the evaluation framework called SVEF (Scalable Video
Evaluation Framework) that we have developed for this purpose.

SVEF is the first open-source framework for experimental assessment of H.264
Scalable Video Coding (SVC) delivery over real networks. In this research area very
little experimental work has been performed due to the unavailability of real-time
H.264 SVC players, the limitations of existing decoding software libraries when chal-
lenged with network-impaired received SVC streams (e.g., affected by random loss
of NALUSs), and the lack of solutions for SVC streaming support. SVEF overcomes
these issues by developing missing components and by integrating them in a hybrid
online/offline experimental framework. With SVEF, SVC video traffic is delivered
over the chosen networks using a custom simplified RTP Streaming Server, and can
be further processed by local or in-network adaptation modules. Received video
traffic is buffered in raw form until the completion of the experiment, and then
post-processed offline through a set of custom software scripts. As main output,
they deliver the same uncompressed video that would have been displayed by an
online video player. The scripts include an offline Filter to check for NALU de-
coding dependencies and playout delay, a specially devised approach to extract and
decode the resulting video stream, and an offline Filler providing a basic form of
concealment of missing video frames.

Finally, Section 5.5 generalizes the application-aware approach to address the
issue of delivering scalable video over Wireless LANs in presence of uplink traffic. A
major contribution consists in the formalization of the problem, taking into account
the unique characteristics of the WLAN MAC operation.

5.2 H.264 Scalable Video Coding

Scalable Video Coding (SVC) is a very promising encoding technique that allows to
adapt to variable network conditions [50]. Its basic concepts have been investigated
by the research community for almost two decades, and its exploitation sped up by
the finalization, in 2007, of an SVC specification in the framework of the I'TU H.264
advanced video coding standards family [49].

An H.264 SVC stream is defined as a sequence of NALUs. A NALU is composed

23

5 — Cross-Layer Scalable Video streaming in WLANs

of a header and a payload carrying, partially or entirely, an encoded video frame.
The NALU header [49, 51| contains information about the type of data and its rele-
vance in the decoding process. From the information reported in the NALU header,
we are specifically interested in three parameters: dependency_id (DID), tempo-
ral_id (TID), and quality_id (QID). Each parameter determines a specific scalability
feature. DID allows Coarse Grain Scalability, TID allows Temporal Scalability, and
QID allows Medium Grain Scalability.

Coarse Grain Scalability (CGS) provides the ability to coarsely adapt video prop-
erties, e.g., the video’s spatial resolution from CIF to 4CIF. The video should be
encoded with a suitable set of coarse enhancement sub-streams, called dependency-
layers. The DID parameter identifies the dependency-layer to which a NALU be-
longs. The decoding of a NALU having did > 0 depends on NALUs belonging to
the dependency-layer did — 1, and having the same value for the TID and QID pa-
rameters. Following this dependency rule, we can coarsely reduce video quality by
removing NALUs with a DID greater than a specific value. For simplicity’s sake, we
do not consider Coarse Grain Scalability in the remainder of this work. However,
extending our work to CGS is straightforward.

Temporal Scalability allows to adapt the video frame-rate. The TID specifies the
temporal-layer of the NALU, i.e., the “frame-rate sub-stream”. A NALU belonging
to the temporal-layer tid > 0 and with gid = 0 depends on NALUs of temporal layer
tid — 1, with the same DID and QID parameters. Following this rule, a frame-rate
scaling may be accomplished by removing NALUs with a TID greater than a specific
value.

Medium Grain Scalability (also known as progressive refinement) allows the adap-
tation of video quality. The video should be encoded with a set of quality enhance-
ment sub-streams, called quality-layers. Adding a quality layer reduces the encoding
quantization error, and thus improves the PSNR. The QID parameter identifies the
quality layer to which a NALU belongs. A NALU belonging to quality layer qid > 0
depends on NALUs belonging to quality layer gid — 1, having the same DID and
TID parameters. Following this dependency rule, quality scaling may be achieved
by removing NALUs with a QID greater than a specific value.

For our purposes, it is essential to drop excess NALUs so that decoding de-

pendencies are respected. Restricting our attention to the temporal and medium

o4

5 — Cross-Layer Scalable Video streaming in WLANs

grain scalability only (for simplicity, in our experimental results we have not consid-
ered spatial scalability), the following decoding dependencies hold (the arrow means

“depends on”):

(tid >0, qid=0) — (tid—1, qid=0)
(tid > 0, qid >0) — (tid, qid — 1)

The first rule states that temporal dependencies are enforced only on the quality
layer 0, i.e., that a NALU belonging to the temporal-layer tid > 0 and with ¢id = 0
depends on NALUs of temporal-layer tid — 1, again with gid = 0. The second rule
states that quality improvements are progressively applied to a considered temporal
layer, i.e., a NALU belonging to the quality-layer gid > 0 depends on NALUs of
quality-layer qid — 1, with the same DID and TID. These rules are graphically
highlighted in the left drawing in Figure 5.2.

5.3 H.264 Scalable Video Streaming over WLANSs

Adaptation of the video stream to the available network capacity should be done
in an application-aware fashion. Dropping NALUs of a lower layer may make cor-
responding higher layer NALUs useless because of missing decoding dependencies.
Many SVC adaptation solutions have been proposed [51, 52, 53, 54, 55, 56]. These
are either implemented at the remote video server, or deployed within the network
(e.g. at middleboxes such as proxies or at wireless base stations/access points). The
adaptation mechanism requires feedback about the available capacity, which can
be provided with lower overhead and in a more timely manner, the closer to the
capacity bottleneck the adaptation occurs. For example, it is possible to leverage
locally available detailed channel state information for adaptation at base stations
or access points.

Wireless networks are usually characterized by a network capacity that may
significantly vary over time. Such bandwidth fluctuations may be caused by the
arrival and departure of traffic sessions competing for access to the shared medium,
as in the case of a Wireless LAN [57]. Moreover, channel quality variations may
trigger physical rate adaptation mechanisms [58, 59|, which cause frequent and step-

wise abrupt changes of the available capacity. Most importantly, random loss of

25

5 — Cross-Layer Scalable Video streaming in WLANs

packets is frequently due to network congestion and wireless channel impairments
[60], and further affects the available rate.

Despite the large interest in H.264 SVC adaptation and numerous proposed
approaches, at the time of this work little experimental work had been carried out
on real network testbeds, especially when random NALU losses may be encountered.
We believe the reasons for this are twofold.

The first relates to the fact that JSVM [61], the existing reference open source
software for H.264 SVC coding/decoding released and maintained by the MPEG /ITU
Joint Video Team, in the version available at the time of this work, i.e. version (9.15)
is not able to decode video streams affected by out of order, corrupted, or missing
NALUs. However, these issues frequently occur when transmitting SVC streams
over unreliable wireless channels.

The second reason is the lack of freely available H.264 SVC streaming servers as
well as clients (solutions such as those provided in [62] are restricted). For the case
of servers, it is worth to remark that, at the time of this work, the support of H.264
SVC over the widely used Real-time Transmission Protocol (RTP) was still work in
progress [63]. This may be a reason why, to the best of our knowledge, no public

domain software appears available.

5.3.1 WLAN Scenario

The approach proposed for cross-layer support of H.264 SVC delivery over WLANS
is sketched in Figure 5.1. In this testbed we restrict our investigation to the case of
“downlink video streaming”. This is representative of a video-on-demand scenario,
where end users connected to a WLAN hot-spot independently access one or more

video servers placed in the wired network.

5.3.2 Virtual BottleNeck

The idea behind the Virtual BottleNeck (VBN) illustrated in Figure 5.1 is very
simple, but practical and effective. It emerges from the observation that MAC-
layer frame losses only rarely occur in a Wireless LAN because of channel quality

impairments. In fact, starting from Auto Rate Fallback [58], several rate adaptation

26

5 — Cross-Layer Scalable Video streaming in WLANs

¢ bw estimate
[TTTT %]mr;

SvC RTP Virtual Bottleneck
Video Streaming NALU Scheduling
Source Server Bandwidth throttling

Figure 5.1: Network scenario with video server, VBN, WLAN AP, etc.

mechanisms [64, 65, 59] have been proposed to improve frame delivery, by estimating
the channel quality and/or measuring the experienced frame loss ratio, and then
switching to a suitable modulation scheme. The 802.11 MAC function retransmits
MAC frames corrupted because of channel errors or channel access collisions. As
a result, a MAC frame is lost completely only if it reaches a maximum number of
retransmissions. In the 802.11 standard, this is a relatively large value (the default
settings being 4 — Short Retry Limit — and 7 — Long Retry Limit — retransmissions,
depending on the length of the MAC frame [57]). Therefore, in normal conditions,
the MAC frame loss ratio seen by higher layers is typically low. It only becomes
significant if severe channel degradation occurs, so harshly that even rate adaptation
to the minimal available transmission rate is not sufficient.

We can thus assume that the majority of all MAC frame losses occur at the AP
buffer. Loss events clearly occur when the load offered to the AP is greater than
the maximum throughput available at the AP. In general, the time-varying capacity
Cup(t) depends on i) the number of stations competing with the AP for channel
access and ii) the individual transmission rates of all competing stations [66].

The Virtual BottleNeck is a traffic control box placed in the wired network before
the AP. It intercepts all the traffic offered to the AP itself. Its goal is to enforce
a traffic throttling function devised to prevent the traffic offered to the AP from
overflowing the available capacity Cyp(t). Provided that the throttling function is
able to follow the variations in time of the AP capacity, and provided that a sufficient
AP buffering capability is available and a sufficient bandwidth margin is deployed
between the traffic offered by the VBN and the actual AP capacity, the ultimate

result is that the AP buffer will never saturate, and hence no frame loss will occur

57

5 — Cross-Layer Scalable Video streaming in WLANs

at the AP itself. Rather, all the losses will occur inside the VBN box.

Several mechanisms exist for the run-time estimation of the available AP capacity
and the consequent dynamic control of the throttling function, e.g., [67, 68, 69, 70].
However, the details of this estimation are outside the scope of this thesis. Here, we
are interested in taking full advantage of the VBN in cross-layer scheduling traffic;
i.e., exploiting application layer information.

We remark that since the VBN is a separate control entity, it can easily be
deployed in any pre-existing WLAN infrastructure with legacy Access Points. If
the WLAN supports 802.11e Quality of Service enhancements (as is the case in our
experimental set-up), these can be exploited by configuring the VBN to set the IP
Type Of Service (TOS) field to the value 160 (for WMM - Wireless Multimedia -
compliant APs) so that MAC frame transmission occurs with EDCA wvideo access

category.

5.3.3 Cross-Layer VBN Scheduling for H.264 SVC Traffic

The proposed cross-layer scheduling algorithm operates at the network layer. Its
service policy is based on the control information contained in the header of the
H.264 SVC Network Abstraction Layer Units (NALUSs).

The design target of our proposed cross-layer scheduler is to exploit the control

information contained in the NALUs to

1. accomplish an efficient usage of the wireless resource by avoiding to transfer
NALUSs that will not be decoded by the receiver because of missing dependen-

cies;

2. provide a smooth adaptation of the video quality versus changes in the avail-
able capacity Cap(t) or the offered load of the video traffic.

These two goals can be accomplished through a priority queuing discipline, ded-
icating a separate queue to each possible TID-QID combination. Considering that
the default range for TID values is from 0 to 4, and considering two additional
enhancement quality-layers (i.e., QID values in the range from 0 to 2), we deploy
5 x 3 = 15 limited-size queues, with queue #0 having the highest priority and queue
#14 having the lowest one, as shown in Figure 5.2. An incoming NALU is delivered

o8

5 — Cross-Layer Scalable Video streaming in WLANs

to a queue #n according to the following classification rule, schematized also in the
figure:
n = bqid + tid

This ensures that a NALU z will have a lower service priority than the NALUs z
depends upon (first goal). Anyway, it may exceptionally happen that at the receiver
side, a delivered NALU lacks other NALUs it depends on, since the dropping decision
is taken locally at each queue. For instance, a NALU with a given tid and qid = x
may be dropped from its queue due to a peak load fluctuation, while the lower
priority queue associated to the same tid but gid = x + 1 may not experience the

same fluctuation.

l = NALU dependency

. prix = priority queue associated to NALU (TID,QID) Lowest priority
QID — Y =~
pri 14
2||pri10| | |pri11| | |pri12| | |pri 13| | |pri 14
| I I I I
¥ ¥ ¥ ¥ ¥
11| pri5 pri 6 pri 7 pri 8 pri 9
{ { i { | pri 1
O || pri0 = pri1 [«= pri 2 (= pri 3 [«= pri 4 pri 0
0 1 2 3 4 TID Highest priority
NALU mapping on queues Queue priority

Figure 5.2: Mapping of SVC substreams to priority queues

Finally, we observe that in the presence of congestion, the NALUSs of the higher
quality layers will be discarded first, and only later the NALUs of the base layer

(second goal).

5.3.4 Experimental Results

To cope with the unavailability of essential software components, we make use of
an hybrid online/offline testbed that makes use of the SVEF framework. While
the NALUs are delivered in real-time, several pre-processing and post-processing
mechanisms can only be applied off-line. The result is a testbed, which is function-

ally equivalent to a purely online video delivery process. The SVEF Framework is

29

5 — Cross-Layer Scalable Video streaming in WLANs

illustrated in detail in Section 5.4

Results are provided for the following setup. We use a 10 second clip of a publicly
available 4CIF YUV video (soccer game) at 30 fps. A 50 second video sequence is
generated by concatenating 5 repetitions of the video. Through JSVM, we encode
the 50 seconds video with three different approaches that are detailed in Table 5.1.
The SVC (A) and SVC (B) are encoded with Medium Grain Scalability and have
three quality-layers (base-layer BL and two enhancement layers MG1 and MG2).
SVC (B) has a larger base layer than (A), and the enhancement layers reduce in
bitrate as the QID increases. The opposite behavior is chosen for (A). Finally, the
AVC video only uses a base layer. All the encoded videos have approximately the
same average bitrate, similar bitrate fluctuations (about + 30%) and the same client-
side playout buffer of 5 seconds. For the experiments, we assume that a first user
starts retrieving the video stream at time 0. A new user arrives every 8 seconds (240
frames) and begins the downloading of the same video stream. Video performances

are measured for the first user.

BL |MGI |MG2 |Ful |PSNR
(kbps) | (kbps) | (kbps) | (kbps) | (dB)
SVC(A) | 648 | 907.3 | 1304.7 | 2860 | 36.64
SVC(B) | 1295 |815 | 637 | 2748 | 36.50
AVC [2693 |- - 2693 | 36.49

Table 5.1: Video test-sequence parameters

The experiments are based on an indoor WLAN deployment with 5 stations
associated to an AP. All stations experience good average channel conditions (the
distance to the AP is less than 2 meters in LOS conditions) and support the max-
imum 11 Mbps 802.11b physical layer rate with no losses. The VBN has been
throttled to 6.0 Mbps, a value just below the measured MAC throughput at the AP
of about 6.3 Mbps. This guarantees, as we confirmed in subsequent measurements,
that no MAC frames are lost at the AP buffer. Moreover, we also perform tests
with the WLAN physical layer rate reduced to 2 Mbps; in this cases the VBN is
throttled to 1.5 Mbps.

For the evaluation, results are reported in terms of a video quality metric (PSNR)

60

5 — Cross-Layer Scalable Video streaming in WLANs

as well as a delivery efficiency metric. The video streams (note: 600 MB per video

sequence) are also made available for download?.

1V 2V 3V 4v 5V 5V

50 ‘ ~ ~
''''' without VBN
— with VBN @ 6 Mbps
40} ————. ~all layers
)
S
o 30[
Pz
n
(2l
S 20}

=
o

0 8 16 24 32 40 48
Time (sec.)

Figure 5.3: SVC (A) with/without scheduler and WLAN @ 11 Mbps

5.3.4.0.10 Impact of the VBN Figure 5.3 shows the Y-PSNR (luminance)
over time, measured for the video stream SVC (A) delivered to the first user with
and without VBN scheduling, with respect to the original, pre-encoding raw video.
The PSNR is compared to two reference curves: i) the ideal PSNR (top curve labeled
“all layers”) of the stream for the case of no NALU loss, where the resulting PSNR
depends only on the degradation due to the encoding process, and ii) the PSNR
provided by the base layer only (labeled “base layer”), assuming that all base layer
NALUs are received and all NALUs of other layers are dropped.

Figure 5.3 confirms that the delivery performance of H.264 SVC is poor without
cross-layer scheduling enforced by the VBN, i.e., when MAC frames, and as a con-
sequence NALUs, are dropped randomly. A sudden severe PSNR degradation occurs
under overload conditions. The resulting video frequently “freezes” (meaning that

several video frames were lost), and the overall video quality is unacceptable. With

'URL: http://netgroup.uniroma2.it/iwcld09

61

5 — Cross-Layer Scalable Video streaming in WLANs

1V 2V 3V 4V 5V sV

50

— SVC with VBN @6 Mbps
= = = AVC with VBN @6 Mbps

40}

ad ‘ 1
§ 30 - : iy
1) ‘ ‘ ‘
| [£
> 'l“" AL 'l
20} SRR 'y e WL AR "c‘ nh . n
| ‘ ‘\“ I e
L\ I |
|
10t .

0 8 16 24 32 40 48
Time (sec.)
Figure 5.4: SVC (A) versus AVC with scheduler and WLAN @ 11 Mbps

an average total video rate of 2.86 Mbps, this happens when three streams are de-
livered. The PSNR does not degrade further when additional streams are admitted.
This is due to the fact that the PSNR given by the comparison of two random frames
from the same test sequence is around 15 dB, as confirmed by further experiments
(not shown here). Thus, this is the lowest PSNR value we can expect.

Conversely, the cross-layer scheduler allows for a smooth degradation of the H.264
SVC stream. When all 5 users share the channel, they achieve an average rate of
700 kbps per user. The PSNR approaches that of the base layer alone, which is the

expected behavior, given that the base layer uses on average 650 kbps.

5.3.4.0.11 H.264 SVC versus AVC Figure 5.4 shows the performance ad-
vantages of SVC (A) compared to AVC. In both cases, frame losses are controlled
through the VBN scheduling. Again, the results confirm that SVC' is a much more
suitable coding mechanism in a scenario where large variations in the available ca-
pacity occur. When three or more stations compete and an overload emerges, SVC
reduces the quality of the video, which results in a significantly smoother PSNR
degradation compared to AVC’s temporal scalability adaptation.

62

5 — Cross-Layer Scalable Video streaming in WLANs

1V 2V 3V 4V 5V 5V

50 ‘ ‘ ‘ ‘ :
— with VBN @ 1.5 Mbps|
= = =without VBN

40+ ‘ ‘ - “all layers

)

=

o 300

Z

n

(ol

5 20}
10¢

0 8 16 24 32 40 48
Time (sec.)
Figure 5.5: SVC (A) with/without scheduler and WLAN @ 2 Mbps

1V 2V 3V 4V 5V 5V
40

— I
8 30 ! :l Ay !
x| e l'||l|||:‘ !
Z I :|‘Illll:|llll|': :i

| 1
R
|I . ‘|
20 — SVC(A) y !
= = =SVC (B) ;
1
15 : ' ' ' ' -
0 8 16 24 32 40 48
Time (sec.)

Figure 5.6: SVC (A) and SVC (B) with scheduler and WLAN @ 11 Mbps

While somewhat obvious, this consideration has important practical implica-
tions on how to encode H.264 SVC streams when they are delivered over a WLAN.

63

5 — Cross-Layer Scalable Video streaming in WLANs

Recalling that the H.264 SVC base layer is AVC encoded, we expect that under
severe overload conditions where it is impossible to transmit the base layer without
NALU losses, the quality degradation will become significant. This can be seen
from Figure 5.5. The setup is the same as that of Figure 5.3, with the fundamental
difference that the WLAN is configured to provide only a 2 Mbps PHY rate and the
VBN rate is set to 1.5 Mbps. The key difference between Figure 5.5 and Figure 5.3
is that video stream scaling occurs immediately. The available bandwidth is lower
than the total bandwidth requirement for all the layers and, much more importantly,
when three or more streams compete, adaptation is required also for the base layer.
As a consequence, performance drops as in the AVC case (although not nearly as
dramatically as in the case of no cross-layer scheduling).

This insight is especially significant for the following reason. In Figure 5.6, we
run the experiments for two different encoding choices: SVC (A) and SVC (B). The
figure clearly highlights that it is preferable to reduce the size of the base-layer,
especially if this produces only a marginal degradation of the overall video encoding
efficiency (as in our experiments). While for SVC (A), degradation affects only the
enhancement layer NALUs, SVC (B) experiences base-layer NALU losses and the

resulting AVC temporal scalability reduces PSNR much more severely.

5.3.4.0.12 Scheduler Impact and Performance In Table 5.2, we provide
some summarizing results on delivery efficiency for the previous experiments. In
addition, the last row shows the performance experienced by an AVC stream for the
scenario of Figure 5.5 with the VBN throttled to 1.5 Mbps.

The table reports three performance metrics: transmission efficiency, defined
as the percentage of NALUs received by the client which can be used for decoding
(i.e., for which encoding dependencies and playout delay conditions are satisfied),
the total number of video frames that could not be decoded (out of the 1490 frames
transmitted), and the average PSNR over the whole 50 seconds of the experiments.

The most interesting result provided in the table is the transmission efficiency of
the considered scheduler. Though the scheduler does not guarantee that all NALU
dependencies will ultimately be satisfied, the performance for both AVC and SVC
cases with VBN is close to 100% efficiency. Without the scheduler, transfer efficiency

is always very poor.

64

5 — Cross-Layer Scalable Video streaming in WLANs

Video Scenario X # Missing | Average
Type (VBN, WLAN rate) Efficiency | Frames PSNR
SVC (A) | 6Mbps, 11Mbps 100.00 % | 0 34.67
SVC (A) | no VBN, 11Mbps 54.64 % | 94l 92.52
AVC 6Mbps, 11Mbps 99.92 % | 845 25.25
SVC (B) | 6Mbps, 11Mbps 0839 % | 121 32.75
SVC (A) | L5Mbps, 2Mbps 100.00 % | 799 24.02
SVC (A) | no VBN, 2Mbps 21.33 % | 1424 13.51
AVC 1.5Mbps, 2Mbps 99.39 % | 1391 16.37
(not shown in the fig.)

Table 5.2: Performance Summary

The column reporting the number of missing video frames gives an impression
of the perceived quality of the final video stream (again, please refer to the web
site at http://netgroup.uniroma?.it/iwcld09 for visual comparison of the actual
streams). In the 6 Mbps scenario, SVC yields 0 missing frames, compared to the 845
misses of the AVC. In the low rate 1.5 Mbps scenario, almost all frames are missing
for AVC and SVC without scheduler, while a reasonable quality is achieved in the
SVC case with scheduler. Looking at the actual video stream, we see that frames
are missing periodically and the SVC has scaled to operate at about the half of the

frame rate.

5.4 The SVEF Evaluation Framework

The shortcomings encountered during the work described in Section 5.3 encouraged
us to develop, and publicly release an open-source software framework SVEF, de-
scribed in this section, aimed at the performance evaluation of H.264 scalable video
streaming. SVEF uses JSVM [61] for H.264 SVC coding/decoding, but includes
additional software to i) support H.264 SVC video streaming over IP, through en-
capsulation of NALUs in a simplified RTP structure, and ii) support receiver side
decoding and reproduction of an SVC stream affected by arbitrary NALU losses and
playout delay constraints.

The latter is done in an offline fashion, over a raw NALU trace received at the

65

5 — Cross-Layer Scalable Video streaming in WLANs

client. The same uncompressed video that would have been displayed by a real
video player client at the user side is, in SVEF, obtained through post-processing of
the raw NALU trace, and subsequent application of i) a Filter for NALU decoding
dependency and playout delay checking, ii) a custom method to extract and decode
the resulting video stream, and iii) an offline Filler devised to provide a simple form
of error concealment.

SVEF is meant to reproduce a distribution chain formed by three actors: stream-
ing server, middlebox and receiver. All actors are connected by an IP network.

Figure 5.7 shows the structure of SVEF with interactions between single tools
and data flows depicted as arrows. The software modules inherited from the JSVM
package [61] are represented in gray. The whole process, from the encoding of the
original video source to the evaluation after the streaming over a network can be

summarized in four steps, better detailed in the following sub-sections:

1. A YUV (video is encoded in H.264 SVC format through the JSVM Encoder.

The encoded video and its NALU-trace are transferred to the Streamer.

2. The encoded video is transmitted over the IP network by the Streamer, at a

fixed frame-rate.

3. In presence of a middlebox, the video NALUs first enter a cross-layer scheduler
and then the NALUs are forwarded to the receiver (for example through a

wireless link).

4. The Receiver generates in real time a trace of the received NALUs. At the
end of the streaming process, the received NALU trace is processed to pro-
duce a YUV file (filtered-YUV video) characterized by missing frames due
to transmission losses, unsatisfied decoding dependencies or excessive delay.
The filtered-YUV video is processed to achieve a simple error concealment,
obtaining a final-YUV video with the same number of frames as the original

video.

SVEF has been published as open source software at:

http://svef.netgroup.uniroma2.it.

66

5 — Cross-Layer Scalable Video streaming in WLANs

JSVM Encoder

Original
H.264
Video

JSVM
BitStreamExtractor

F-N Stamp

Original
NALU
Trace

STREAMER

MiddleBOX

RAW RECEIVER
Received
NALU Trace

NALU
FILTER

Filtered
NALU Trace

JSVM
BitStreamExtractor

Filtered
H.264 Video

JSVM Decoder

Filtered YUV
Video

FRAME
FILLER <

Final YUV
Video

Figure 5.7: SVEF Software Chain

67

5 — Cross-Layer Scalable Video streaming in WLANs

5.4.1 Video Encoding

We use raw video files stored in the standard YUV format. Video sources are
encoded in the H.264 SVC format through the JSVM Encoder. Currently, the
framework supports SVC with a single dependency layer and an arbitrary number of
quality enhancement layers. From the resulting H.264 encoded video file, we generate
an original NALU trace file through the JSVM BitStreamExtractor tool. This trace
contains for each NALU the entry shown in Figure 5.8, where mem-offset represents
the memory offset from the beginning of the encoded video file up to the current
NALU, NALU-size represents the length of the current NALU and Frame-Number is
the number of the video frame to which the NALU belongs. This latter parameter
is not provided by JSVM BitStreamExtractor. For this purpose we developed the
F-N Stamp module.

| mem-offset | NALU-size | DID | TID | QID | Frame-Number |

Figure 5.8: NALU-trace entry

5.4.2 The Streamer

The Streamer transfers the NALUs over an IP network by parsing the NALU trace
and loading data from the H.264 file. For each entry in the NALU trace file, the
streamer seeks and loads the corresponding NALU from the H.264 file. This NALU
constitutes the payload of a custom layer-5 packet, whose header (see Figure 5.9) re-
sembles the RTP [63] header, as both have the same size (including payload header).
Hence the Streamer feeds the network with packets that have the same length as if a
real RTP stack was used. Moreover, with respect to RTP, the custom layer-5 header
does not add information that may improve the cross-layer scheduling process, but
simply exploits the DID, TID, and QID parameters that are also contained in the
RTP payload header. We choose to use a custom header, because we make use
of the mem-offset information in the generation of the “filtered H.264 video file”
described in section 5.4.4.

A layer-5 packet is entirely encapsulated in a UDP packet, which in turn is

encapsulated in a set of IP packets. For the Streamer design, we had to choose where

68

5 — Cross-Layer Scalable Video streaming in WLANs

0 31
DID | TID | QID | flags
mem-offset

NALU-size | Frame-num

Figure 5.9: Layer-5 header

to fragment large NALUs to fit into network packets. During the video encoding
process frames may be split in slices. Working with slices yields smaller NALUs
and reduces the problem of fragmentation. However, we discarded this application-
layer solution, since we want our evaluation framework to be independent of codec
parameters.

The two remaining options were fragmentation at the IP layer or at the RTP
layer. Fragmentation of IP or RTP packets is similar, with the additional limitation
that UDP imposes a maximum payload size of 64 kbytes. Moreover, the NALU
SVC header is considered as RTP payload and is thus carried only by the first
IP fragment. This means that to perform a cross-layer NALU-based scheduling,
a complete reconstruction of the NALU is necessary, both in case of IP or RTP
fragmentation.

To limit the programming effort, we choose to fragment at the IP layer, as
IP fragmentation/reassembly is a native feature of the Linux kernel. Thus, the
Streamer cannot transfer NALUs with a length exceeding 64 kbytes. When some
NALUs exceed this threshold, it becomes necessary to re-encode the video enabling
the generation of two or more slices per frame.

Finally, we observe that the streamer transmits only NALUs of type “SliceData”,
while the H.264 “ParameterSet” and “StreamHeader” NALUs are provided to the

receiver off-line.

5.4.3 The Middlebox

The SVEF Middlebox is deployed upon a Linux system to perform cross-layer
scheduling. Figure 5.10 shows the middlebox architecture that we have designed.
When the IP fragments reach the ingress interface, they are reassembled into

whole IP packets. For this purpose, the IP_conntrack module of the Linux Kernel is

69

5 — Cross-Layer Scalable Video streaming in WLANs

Ingress
Interface

T .) Pre-routing Chain
(IP_Conntrack)

IP
Fragments
IPROUTE?2)
» MQ | scuepuLER @ c(ty [P] Routing
IP Packets
(NALU)

Egress

Post-routing Chain phsssssss
Interface

IP
Fragments

Figure 5.10: The Middlebox

used. When an IP packet (i.e., a NALU) is fully reconstructed, it is transferred to
an Intermediate Queue device (IMQ) by means of an Iptables jump. On the IMQ
egress we can enforce a custom scheduling policy, taking care that the overall output
bandwidth C'is equal (or smaller) to the one available on the following network path.
Obviously, if this capacity varies over time, the scheduler has to be timely informed
by an additional module. The scheduler can operate in a “cross-layer” fashion, since
it is able to classify traffic according to the (DID, TID, QID) information contained
in the RTP payload header, or in the custom layer-5 header. After exiting the
scheduler, the IP packets return to the routing decision module and are fragmented

again.

5.4.4 Receiver-side Tools

This section describes the tools used at the client side to reproduce a YUV video
equivalent to the one that would have been displayed by an H.264 SVC video player.
We expect the client to receive the NALUs and dejitter and order them in a play-
out buffer, which synchronously provides NALUs to the decoder. The decoder is
expected to appropriately discard the NALUs with unsatisfied dependencies (see

70

5 — Cross-Layer Scalable Video streaming in WLANs

section 5.2) and also to conceal missing frames. We now describe how our frame-
work reproduces such a chain of client-side operations based on three tools: NALU-
Receiver, NALU-Filter and Frame-Filler.

The NALU-Receiver represents the network end-point. It decodes and writes
in real time the layer-5 headers of the received packets, thus building a client-side
(received) NALU trace file. Moreover, the NALU reception times are recorded
through time-stamps.

The NALU trace file is then passed to the NALU-Filter tool that: i) reorders the
NALUs according to the sending order, ii) removes NALUs received after the play-
out buffer deadline and, iii) removes NALUs with unfulfilled decoding dependencies.
The latter cannot be decoded and, moreover, are not handled properly by the current
version (v 9.15) of the JSVM Decoder.

The NALU reordering is performed by the NALU Filter on the mem-offset
field’s basis.

To discard NALUs because of excessive delay, the NALU Filter computes a
NALU’s expected reception time from first NALU’s reception time ty and frame-
rate f as follows: ty + fxframe-number. When the difference between the reception
time and the expected time exceeds a specific play-out delay, the NALU is deleted
from the NALU trace file.

After the removal of NALUs with excessive delay, the NALU Filter discards
those NALUs for which the decoding dependencies described in section 5.2 are not
satisfied (i.e., if a NALU y depends on NALU z and NALU =z is not available in the
NALU trace-file, then NALU y is deleted).

The resulting (filtered) NALU trace-file is used as a “map” pointing out which
NALUEs of the original H.264 video file are effectively decoded at the receiving side.
We use this map and the original H.264 video file as input to the JSVM Bit-
StreamExtractor tool to obtain a (filtered) H.264 video file. In essence, this is a
NALU-subsampled version of the original video file, corresponding to what a hy-
pothetical H.264 SVC client would have decoded and displayed in real time. Then
this filtered H.264 video is handed to the JSVM Decoder, which generates a video
in uncompressed YUV format.

The filtered YUV video has, in general, fewer frames than the original YUV

video because of missing base-layer NALUs. In order to properly compute the

71

5 — Cross-Layer Scalable Video streaming in WLANs

PSNR, the Frame-Filler has to conceal the missing frames by copying the previous
frame. Missing frames are identified through the frame-number field of the filtered
NALU trace.

5.4.5 Performance Parameters

Currently, SVEF measures the following performance parameters:

1. number of lost frames,
2. frame-by-frame PSNR, and

3. transmission-efficiency.

The number of lost frames is computed by the Frame-Filler, and the frame-by-
frame PSNR is obtained using the JSVM PSNR tool, fed with the original YUV
video and the error-concealed YUV video. We report below the definition of PSNR

for frame number n:

V;)eak
NCD NTDT_U N . . .
\/Ncol}\frow Zi:ol 7=0 [YS (n77’7j) - YD (n,Z,j)]2

If k is the number of bits per pixel (considering only the luminance component) we

PSNR(n)as = 20logg

have Vpear = 28 — 1. The part under the fraction line is the mean square error
(MSE) computed from the luminance components Ys and Y of the source image S
and of the destination image D.

The transmission efficiency (TE) is defined as the ratio of the number of NALUs
received by the client which can be usefully decoded (N ALysefu) to the total number
of received NALUS (N ALy eceived)-

NALyseful

NALreceived
This measure represents the efficiency of the overall streaming process in exploiting

TE =

the communication resources. A low transmission efficiency means that most of
the received NALUs are useless, and thus their transmission only wasted commu-
nication resources. Without a scheduler, NALUs are lost at random and this leads
to a considerable number of unsatisfied dependencies at the receiving side and a
low transmission efficiency. Conversely, a well-devised cross-layer scheduler should

substantially improve the transmission efficiency.

72

5 — Cross-Layer Scalable Video streaming in WLANs

5.4.6 SVEF Experimental Flow

The typical SVEF experiment goes through the following steps:

1.

2.

We first encode a raw YUV video file into SVC using the JSVM H26/4Encoder.

From the resulting H.264 encoded video file we generate a packet trace file
with the JSVM BitStreamFEztractor tool. This file is used as an hint track by

the video streamer (described below) for timing and packetization purposes.

We feed the H.264 video and the packet trace to a custom wvideo streamer
module, which constructs a simplified RTP header for each NALU. We map
one NALU to each RTP unit and send RTP packets according to the video
frame-rate. Large NALUs are thus split through IP layer fragmentation.?

IP fragments received at the VBN are reassembled using the standard
IP_conntrack Linux Kernel facility. Then entire IP packets (i.e., NALUS)
are sent to an internal virtual interface (an Intermediate Queuing Module
of Linux) where we implement the cross-layer scheduling using the IPROUTE
2 tools. At the exit of this virtual-interface, IP packets are again fragmented

and transferred to the output interface.

IP fragments are received by the WLAN AP, which transmits them to the end
devices. At the receiver side, all the received NALUs are collected in an H.264
JSVM compatible trace file. We post-process the trace with a custom software
module (NALU-Filter) devised to i) discard NALUs received after a pre-set
maximum playout delay (5 seconds in our experiments) and ii) check NALU

dependencies and discard the NALUs for which dependencies are missing.?
Besides the filtered H.264 trace file, the NALU-Filter also returns the number

2The alternative would have been to use RTP fragmentation. This allows to deal with NALU
sizes greater than 64 kbytes (the upper limit for UDP datagrams), but would require to i) implement
RTP fragmentation/reassembly from scratch, and ii) to reassemble NALUs at the VBN before their
scheduling. Unlike AVC, the RTP header field does not contain SVC information and the tuple
(DID,TID,QID) is carried as RTP payload. Hence, it is available only on the first RTP fragment.
In our experiments, the 64 kbytes upper limit for the NALU size was never reached with SVC,
while for AVC we solved this issue by dividing each video frame in two slices.

3This latter check is strictly necessary since the JSVM H264Decoder (v9.15) hangs if a NALU
dependency fails.

73

5 — Cross-Layer Scalable Video streaming in WLANs

of received NALUs and the number of filtered NALUs. These are two basic
metrics to evaluate if wireless resources are used efficiently. If no NALUs are

filtered, no resources are wasted.

6. The filtered H.264 trace file is used to reconstruct an H.264 video, which is in
turn decoded with the JSVM H264Decoder, thus obtaining an uncompressed
YUV file.

7. This YUV file may contain missing frames, since relevant NALUs may have
been lost. To maintain the original temporal sequence and to simplify PSNR
measurements, we develop a simple Frame-Filler tool. It outputs a final YUV
video that has the same number of frames as the original one. When a frame
is missing, the Frame-Filler inserts the last available received frame instead,

which is a very basic form of error concealment.

8. Finally, the resulting YUV file and the original one are compared with the
JSVM PSNR evaluation tool to assess overall video quality.

5.5 H.264 Scalable Video Streaming over WLANSs
in Presence of Uplink Traffic

In this section we provide a theoretical formulation of a QoE utility-optimal cross-
layer scheduling problem for H.264 SVC downlink delivery over WLANs. We show
that, because of the unique characteristics of the WLAN MAC operation, this prob-
lem significantly differs from related approaches proposed for scheduled wireless
technologies, especially when the WLAN carries background traffic in the uplink
direction. From these theoretical insights, we derive, design, implement and experi-
mentally assess a simple practical scheduling algorithm, whose performance is very

close to the optimum.

5.5.1 Scenario

Wireless Local Area Networks [57] are characterized by capacity constraints which

vary over time. Arrival and departure of traffic sessions competing for access to the

74

5 — Cross-Layer Scalable Video streaming in WLANs

shared medium may cause huge fluctuations in the capacity available to the access
point or to stations. Channel condition changes may trigger physical (PHY) rate
adaptation mechanisms [58, 59] which yield frequent and abrupt step-wise changes of
the available rate. Furthermore, because of the well known “performance anomaly”
of the WLAN Medium Access Control operation [66], the actual throughput achieved
by a station experiencing a good channel quality is severely affected by the PHY
rate changes due to variations in the channel quality experienced by other stations.

In this section we extend our previous work to the case of the presence of back-
ground uplink traffic.

We address the problem of scheduling downlink video traffic in Wireless LAN
hotspots in order to maximize the utility provided to the customers in terms of QoE.
The section provides two main contributions:

1) to the best of our knowledge, ours appears to be the first work which recognizes
that such a problem requires a novel formulation in the context of WLAN systems.
2) from the theoretical insights gained from the formulation of the model, we design,
analyze, implement in a Linux Access Point, and experimentally assess, a practical
(sub-optimal) scheduler whose performance is marginally lower than the optimal

solution.

5.5.1.1 Problem Statement

An issue largely addressed in literature concerns the allocation of wireless channel
resources so that the video quality is optimized with respect to some chosen per-
formance metric. For adaptive video streams, the common approach is to rely on
(Quality of Experience, QoE) utility curves, expressing the user-perceived quality
which model the application utility (e.g. expressed in terms of Mean Opinion Score
(MOS), or Peak Signal to Noise Ratio (PSNR)) versus the network resources com-
mitted to that stream. When considering a fixed capacity network, the resulting
optimization problem becomes straightforward. It suffices to distribute a known
and constant pool of resources, namely the overall capacity, to the different streams
so that the resulting overall utility is, for instance, maximized. Many papers have
generalized this problem to the multi-rate case, most notably in the context of sched-
uled technologies such as 802.16, 3G/LTE, etc. In this case, there is no notion of

16}

5 — Cross-Layer Scalable Video streaming in WLANs

“total” wireless network capacity, as the PHY rate of the wireless terminals depends
on the channel conditions and the specific modulation and coding techniques em-
ployed. However, the optimization problem can be reduced to that of allocating a
known and constant pool of resources, by considering the available channel time, or
equivalently the PHY symbol rate, instead of capacity.

At a first glance, the WLAN hot-spot scenario comprising downlink video stream-
ing appears very similar. In fact, the problem of allocating resources to the different
video streams becomes a centralized scheduling problem, as the AP may take appro-
priate decisions on how to allocate its transmission capacity to the connected users.
A closer look reveals, however, that the case differs substantially from the previous
ones, especially when the AP is not the only active station in the network. When
two or more stations are accessing the network, channel resources are managed in
terms of transmission opportunities, rather than in terms of capacity or channel
time. Thus the utility optimization problem cannot be expressed as the sharing of
a given amount of capacity. Instead, it is necessary to take into account that, in
a multi-rate scenario, the channel time dedicated to the video streams transmitted
by the AP depends upon the scheduling decisions taken by the AP itself. Although
the consequences of the MAC layer’s sharing of transmission opportunities rather
than time is well known and understood, to the best of our knowledge no prior work

appears to relate these insights to the utility optimization problem discussed above.

5.5.1.2 Related Work

A substantial amount of prior work applies SVC coding to video transmission over
wireless networks. An high level framework and the general challenges of adap-
tive (scalable) video streaming in a wireless context are presented in [71]. Three
techniques for video content delivery in such scenarios are identified: scalable video
representation, an end-system capable of performing network aware adaptation (end-
to-end approach), and adaptive QoS support from the network.

The representation of scalable video concerns the encoding of the video into dif-
ferent substreams with different quality levels as discussed in the standard H.264/SVC
codec [72]. The network aware adaptation of end systems is often used to avoid con-

gestion in the network, e.g., in conjunction with a transport protocol like TFRC

76

5 — Cross-Layer Scalable Video streaming in WLANs

[73]. A framework that uses TFRC for efficient congestion aware SVC video deliv-
ery has been proposed in [74]. Rate smoothness and real-time requirements for video
streaming are addressed in [75]. Further proposals provide QoS support from the
network, for example through layer-based in-network packet dropping [76], use of
priority queuing taking into account the layers’ importance [77], and rate distortion
models for link adaptation [78].

None of the aforementioned solutions for SVC transmission over wireless net-
works consider multiple video streams, where the rate distortion properties of the
videos depend on the specific video content of the individual streams. The fairness-
throughput trade off when streaming multiple videos to different users has been
analyzed in [79] based on a gradient-based scheduling, and in [80] based on remain-
ing video playback time for each client. In [81], Ji et al. extend the gradient-based
scheduling to optimize the resource allocation so as to meet delay constraints.

At the time of this work, most of the existing research is based on simulation
and theoretical analysis, and few experimental results for SVC in WLANSs are avail-
able [82]. Moreover, to the best of our knowledge, existing work does not consider
the dependency of the MAC layer operation, even if in a centralized downstream set-
ting, on the allocation of capacity to video transmissions. Furthermore, the impact
of other applications as well as uplink traffic on the downlink scheduling problem

has not been pointed out.

5.5.2 Utility-Maximizing Cross-Layer Downlink Scheduling
Problem

In this section we formalize the problem of maximizing the utility of cross-layer
scheduling for downlink video streaming over a WLAN network. The following is
not restricted to video traffic, but addresses the general problem of maximizing the
utility of generic downlink flows whose utility curve is known.

We consider an 802.11e WLAN formed by one AP delivering video streams to
M associated stations. The video delivery occurs through the AP EDCA video
access category. In addition, we consider further traffic (in a separate EDCA Access
Category) generated at the stations and destined to the AP, that we call “non-video

downstream” (nvd) traffic.

7

5 — Cross-Layer Scalable Video streaming in WLANs

5.5.2.1 Assumptions and Notation

For simplicity, we use the following assumptions.

Assumption A1l: the non-video-traffic is generated by a constant number of
stations in saturation conditions [83], i.e., they always have a frame available for
transmission.

Assumption A2: 802.11 frame transmissions are error-free, and collision of the
video traffic generated by the AP with non video traffic generated by other stations
is assumed negligible.

Assumption A3: the quality of each video stream i is described by a utility
curve U;(b;), where b; is the average bit-rate assigned to stream ¢. The utility curves
are assumed to be known at the AP for each considered stream.

Of these assumptions, A1 appears necessary to prevent the background traffic to
further depend on the AP operation. A2 is realistic in the presence of a relatively
small number of competing stations and considering the higher priority of the video
access category. It is an assumption, which permits to neglect the complications
that an analysis devised to further take into account channel collisions would raise.
As such, it permits us to focus our contribution on the core aspects of the problem
tackled in this work. Finally, A3 restricts our treatment to utility curves based
on average values. We have specifically used average Peak Signal to Noise Ratio
(PSNR) versus average application layer bit rate as utility metric, but any other
utility metric based on average rates would fit our framework.

We use the following notation. Station ¢ is the station which receives video stream
1 and we use index ¢ to either refer to the receiving station or the delivered stream
unless ambiguity occurs. We consider a multi-rate scenario where each station is
connected to the AP using a specific PHY rate. Let C; be the mazimum application-
layer delivery rate that is available to stream ¢, in the assumption that the AP might
continuously transmit MAC frames to station ¢ without any backoff time between
consecutive frames. Clearly, C; will be lower than the actual PHY rate assigned
to the station, because of overhead, and is higher than the maximum throughput
achievable by the stream. Simple computation allows to derive the value C; from
the PHY rates for a specific 802.11 PHY layer. For instance, for a station exploiting
an 11 Mbps PHY rate, C; = 7.21 Mbps, whereas C; = 1.76 Mbps in the 2 Mbps

78

5 — Cross-Layer Scalable Video streaming in WLANs

case.

5.5.2.2 Problem Formulation

Our ultimate goal consists in determining and enforcing the combination of application-
layer bit rates by,..,by; that the AP should grant to the M video streams so that the
total utility Zf\il U;(b;) is maximized under the constraint that the WLAN provides
sufficient “channel resources” to deliver the resulting MAC layer traffic.

To formalize the problem we introduce variables x; defined as the percentage of
the whole WLAN channel time assigned to video stream i. The average application-
layer bit rate b; assigned to the i-th stream is b; = z;C;. We conveniently classify

the channel time into two categories:

e 1,,: percentage of time assigned to the AP for the transmission of MAC frames

carrying video traffic;
e 1,,4: the remaining percentage of channel time.

The latter includes the time spent by the AP for independently delivering non video
traffic through other EDCA AC queues, the time spent by background stations for
their non video transmission, and the supplementary channel time wasted by the
MAC protocol operation (specifically, unused channel time - empty channel slots -
because of backoff counters count-down).

If x,q were a known constant, the utility-maximizing allocation would be the

solution of the straightforward constrained maximization problem:

M

{z1,-2Mm} 4
=1

M
s.t. E T; = Tod
i=1

We now proceed by deriving x,4. Let a round be defined as the time interval
between two consecutive AP transmissions of video packets. Figure 5.11 depicts the
WLAN channel time as a sequence of consecutive rounds. The average duration of
round 7, can be expressed as the sum of i) the average time 7,4 consumed by the AP

on the wireless interface to transfer a MAC frame containing video traffic, and ii) an

79

5 — Cross-Layer Scalable Video streaming in WLANs

T vd T, nvd
AP video not-video downstream AP video not-video downstream time (sec)
packet packets packet packets

<71 —

round #n round #n+1

Figure 5.11: Evolution of time as sequence of rounds

average remaining time 7,,,4 which includes both the channel time wasted because of
the WLAN MAC operation, as well as the time consumed for transmitting uplink
or downlink non-video MAC frames. The percentage of time assigned to the AP for

video traflic transmissions is then

Tvd
Tpg = ——224 5.2
¢ Tvd + Tnvd ()

Now, two fundamental observations hold:

1. Under the saturation assumption Al, T,,q is a constant independent of the

AP scheduling decision;

2. Conversely, the average time T,, is directly affected by the specific scheduling

decision, namely the choice of the tuple {x1,..x)}.

As a consequence, x,q is not constant but depends on the scheduling strategy. As
an example, consider a single non-video station and let us assume that this station
uses the same contention window of the AP’s video access category. Given the same
MAC parameters, in average a non-video transmission will occur for each frame
transmitted by the AP (due to the long term fairness property of the 802.11 Dis-
tributed Coordination Function). Since i) the time to transmit the non-video frame
depends only on the PHY rate of the non-video station, and since ii) the average
number of channel slots that elapses between two consecutive channel transmissions
is a constant which depends only on the MAC layer parameters (C'Wy,/4, if we
neglect collisions), also the average time T, is constant and independent of the

AP operation. In contrast, in a multi-rate scenario T4 significantly depends on the

80

5 — Cross-Layer Scalable Video streaming in WLANs

choices made by the AP. If the AP transmits all frames to a station with a large
PHY rate, this time will be shorter than in the case where the AP sends frames to
a low PHY rate station.

Going back to the general case, let us redefine the scheduling rule as follows. Let
a; be the fraction of frames transmitted by the AP to station ¢ with respect to the

total number of frames transmitted by the AP, with the obvious constraint

d =1 (5.3)

Then, the average time spent by the AP to transmit a video frame is computed as

the weighted average
M
Tvd = Z aiTa:,i (54)
i=1

where T, ; is the average time needed to transmit a frame to station 4, depending
on the rate of station i. Substituting equation (5.4) into (5.2),
Tya Zf\il aiTx,i

o — _ 5.5
I Toa + Thva Zgj\il Oéjng,j + Thva ()

where we recognize that each addendum of this sum is indeed x;, i.e.,

e _ (5.6)
> i1 €T+ Thva

The above considerations permit us to provide two equivalent formulations of
the utility maximization problem in WLANS.
1) Formulation based on percentage of transmission opportunities a; provided

to MAC frames addressed to station i:

M

max U;(z;C; 5.7
> UC) (5.)
OéiTx,i

3001 T + Thua

M
s.t. Zai =1
i=1

€T; =

81

5 — Cross-Layer Scalable Video streaming in WLANs

2) Formulation based on the percentage of channel time z; allocated to the video

stream :

max Y Uj(x:Cy) (5.8)

{z1,. xpm} %
=1

M M T
s.t. Z:Ej_'—Tm}dZT
j=1 i=1

)
T,

=1

where the constraint yields from straightforward algebra. For an intuitive expla-
nation of the latter constraint, consider a time interval of one second. Within a
one second time period, z; can be alternatively interpreted as the amount of time
dedicated to stream 7. Hence, Zf‘il x; is the time consumed to transmit video down-
stream traffic. The remaining time is spent by the MAC backoff operation and by
the transmission of non-video stations. This accounts, in average, to one time in-
terval T),,q per each frame transmitted by the AP. Since, in a second, the number
of MAC frames delivered to station ¢ is given by the ratio x;/T,;, and hence the
total part of the one second spent for MAC backoff operation and transmission of
non-video frames is Zf\il x;/T,; multiplied by T,,,q4.

From the utility maximization problem (equation 5.8), we can identify the cross-
layer information required to optimally schedule video traffic. The MAC layer infor-
mation includes i) C; for each i = 1,..M ii) the transmission time of each MAC frame
T.;, and iii) T},q. The required application layer information is U;(b;) = U;(z;C;)

for every delivered stream 1.

5.5.3 Practical scheduler

In this section we design a practical scheduler, tailored to H.264 SVC, which lever-
ages the insights emerged during the problem formalization, and conveniently ex-
ploits them in a form suitable for fast practical operation.

We remark that the optimal solution to the constrained maximization problem
can be obtained for example using linear programming techniques. However, the
problem solution requires the run-time estimation of 7},,4 (that can be also compli-
cated) and the consequent change of scheduler policies. To overcome this problem

we propose in this section a practical scheduler, that is 7;,,4 independent, but that

82

5 — Cross-Layer Scalable Video streaming in WLANs

can lead the performance close to the optimum.

5.5.3.1 Practical Scheduler Overview

The practical scheduler that we propose runs above the MAC layer, and it is devised
to properly arrange the order of NALUs delivered to the MAC layer. This permits
to retain a fully standard and application-layer unaware MAC operation. As dis-
cussed below, the priority order depends on cross-layer information, and specifically
it depends on both utility information provided by the application layer, as well as
per-station channel rate information provided by the MAC layer (gathered by the
NIC driver). A fundamental feature of our proposed approach is that, unlike the
optimal approach presented in the previous section, it does not require the explicit
run-time knowledge of the T,,4 time, indeed an information not easily gathered from
the NIC driver. As a result, the proposed approach is seamlessly adaptive to any
available AP delivery capacity and related fluctuations. Of course, this simplicity
is paid with a sub-optimal operation; however, numerical results will later on prove
that, with average PSNR versus rate utility curves, the performance degradation is
almost negligible.

A convenient way to order NALUs as well as drop excess ones is to rely on a bank
of small-size (we used 10 NALUs each) priority queues . The assignment of NALUs
to queues, as well as priority values to queues, must take into account both i) the
requirement that NALU decoding dependencies must be respected in the delivery
order, as well as ii) the goal of maximizing the utility brought by the delivered

NALUs. As illustrated in Figure 5.12, we propose to accomplish this goal by:

1. deploying a number of dedicated queues per each video stream, so that each
queue carries the stream NALUs belonging to a specific video layer for that

stream, and arrange them in an intra-stream priority order (Section 5.5.3.2);

2. sorting the deployed queues on the basis of cross-layer information (utility
and rate per each video stream), so that they are arranged in an inter-stream

priority order (Section 5.5.3.3);

3. deploying a flat service priority discipline for orderly draining NALUs from

the sorted bank of queues.

83

5 — Cross-Layer Scalable Video streaming in WLANs

Video 1 Video 2

114 912 913 Y14 21 Y22 Y23 Y24 Y25

intra intra
priority priority

y -~ /47 (i=1,2)
sorting algorithm “U(b) (i=1,2)

Q4,1 92,1 922 912 Y23 Y24 G925 913 Y14

HHMHMM

inter priority

Figure 5.12: Conceptual sketch of queue merging

5.5.3.2 Intra-stream Priority

The traffic generated by a same video stream is conveyed to a bank of queues,
where each queue accommodates NALUs belonging to a given scalability layer, i.e.
a (TID,QID) pair. Considering that the default range for TID values is from 0 to 4,
and considering two additional enhancement quality-layers (i.e., QID values in the
range from 0 to 2), we deploy 5 x 3 = 15 limited-size queues, numbered from 0 to
14.

Intra-stream queues are sorted by setting a priority order among the video layers.
As discussed in Section 5.3, a natural approach is to use the video-layer-to-priority
mapping illustrated in Figure 5.2, which gives higher priority (0 being the highest
priority) to the temporal scalability layers (in their TID order), and then decreasing
priority to the corresponding quality enhancement. In formulae, a NALU with

QID = g and TID =t is delivered to the queue with priority index s = 5q + t.

We remark that this intra-stream priority assignment does respect the decoding
dependencies enforced by H.264 SVC and permits to reach a transfer efficiency (one
minus the percentage of NALUs received at the destination, but discarded because

of missing dependencies) very close to 100% [82].

84

5 — Cross-Layer Scalable Video streaming in WLANs

5.5.3.3 Inter-stream Priority

Let us denote with ¢; s the queue of the video stream 7 that handles NALUs for the
video substream s = 5q 4+t € (0,14). Let b; s be the average application-layer bit
rate rate needed to deliver all the i-th video substreams until level s. Let {U;(b;5)}
be a vector of utility values computed in correspondence of the rates b; 5, i.e. the
utility brought by the transmission of all the video layers until level s.

The inter-stream queue sorting is based on a greedy algorithm. Rather than
optimizing the scheduling for a given 7,4 value, the algorithm scans a set of pre-
established quantized T),,q values (or decision points). In our algorithm, 7,,,4 values
are scanned in decreasing order, since a lower T,,,4 value yields an higher AP capacity
for delivering video traffic. For each T,,,4 value, we determine the next queue to be
served, namely the one which provides the best possible utility improvement. The
sub-optimal nature of the proposed algorithm stems from the fact that the queue
ordering committed for a prior T},4 value cannot be changed, but only extended
with the selection of a new queue to be served.

The following three parameters (step, Ngieps, U) are used to perform the greedy

algorithm:

e step. This is the time step according to which the T),,4 values are quantized.
We used a small step (1 ms, roughly equivalent to the transmission time of
a MAC frame at the maximum 802.11b PHY rate), so that at each step, at

most one new queue is accommodated in the sorted list;

® Nyteps- A large value (we used 200), so that the starting value T),,4 = Nteps -

step does not permit to accommodate any stream;

e U,. A minimum utility increment in order to take a commit decision (we used
0.5 dB for PSNR utility curves).

In brief, at each decision point, the greedy algorithm works as follows:

1. At the decision point h, we compute the total application-layer bit rate b;(h)
that the i-th video would receive if all the queues already inserted in the
inter-stream priority list were completely served. From b;(h) we derive the

corresponding time percentage x;(h) = b;(h)/C;.

85

5 — Cross-Layer Scalable Video streaming in WLANs

2. We then check whether the next decision point h—1, corresponding to a smaller
Twa value, would permit to accommodate a new queue. This is accomplished
by computing the stability constraint condition in the formalization (5.8) as:

M

M xl(h)
i=1

i=1 4

If the value sc(h—1) is lower than 1, extra space is available for accommodating

an additional queue.

3. Provided that this is the case, we compute, for each stream, the utility im-
provement that can be achieved by picking the next queue to be served among
the ones that have not yet been inserted in the list, respecting the inter-stream
priority order illustrated in Figure 5.12. This is provided by computing, for
all streams ¢, the quantities

2 (R) Ty pa(h—1
1- (Z;‘iLj;ﬁi Tj (h) + Z;‘iLj;ﬁi MTJLA))
1+ Tnvd(h — 1)/T$i
I(h —1]i) = Us(&i(h — 1)C5) — Ui (x:(h)C5) (5.10)

Zi(h—1) =

where Z;(h — 1) is the percentage of time assigned to stream ¢ if all the new
capacity available is provided to such stream, and I(h — 1]7) is the utility im-
provement, with respect to the overall utility achieved in the previous iteration,

that we would obtain if all the extra-time were given to the i-th stream.

4. Finally, we select, as the next queue to be inserted in the list, the one which
yields the maximum utility improvement [(h — 1]i), provided that such an

improvement is greater than a predetermined threshold Uy,.

The procedure of the algorithm is elaborated in Algorithm 2.

5.5.3.4 Analytical Utility Performance of the Proposed Algorithm

Given a T,,,q value, is possible to analytically compute the utility performance pro-
vided by the proposed algorithm. It suffices to compute the rate b; granted by the
scheduling algorithm’s operation to each ¢-th video stream and sum the correspond-
ing utilities.

For this purpose, let us enumerate the queues according to their assigned priority
order, from 1 (higher priority queue) to W. For a given T,,4 value, the priority

scheduler will serve the set of queues 1..lsq, where [sq < W is the index of the last

86

5 — Cross-Layer Scalable Video streaming in WLANs

Algorithm 2 inter-stream queue sorting

Input: Utility function U, number of video M, increase of step size step, minimum expected
utility change Uyp,, number of decision points Ngiep.
Output: Optimal sequence of priority queues Gopt;
Initialization: index of last queue of the video i-th inserted: last; = 0, index of decision point:
h = Niep, Iteration index, I = 0.
while there are queues not yet inserted do
Tnva(h —1) = (h — 1) * step
for i =1to M do
b;(h) = cumulative bitrate of the i-th video up to substream last;
end for
sc(h —1) = see eq. 5.9
if sc > 1 then
continue while loop
end if
maz_index = 0
max_value = 0
for i =1to M do

if last; == number of i-th video substreams then
continue for
end if

Zi(h—1) = ... see eq. 5.10
I(h—1Ji) = ... see eq. 5.10
if I(h — 1|i) > maz_value then
max_value = I(h — 1]7)
maz_inder = 1
end if
end for
if max_value > Uy, then
1 = maz_index
k =last; +1
last; = last; + 1
flaty < g; 1, #insert the new queue related to video i-th and substream k-th
end if
h=h-1
end while

output: gop¢

87

5 — Cross-Layer Scalable Video streaming in WLANs

queue served by the scheduler. The bitrate b; granted by the scheduler to the i-th
video is the cumulative bitrate of the streams of the i-th video that feed the 1..lsq
queues. This latter evaluation of b; is straightforward, since the association queue-
stream is known. Thus, the only remaining problem is the determination of /sq for a
given T},,4 value. The iterative approach detailed in algorithm 3 is designed for this
purpose. We start considering the first priority queue and iteratively add a queue,
following the priority order. At each iteration, we evaluate the cumulative bitrate b;
associated to each video, given that all the considered queues are fully drained. From
b; we evaluate the time percentage x; and verify the stability constraint. Whenever
the stability constraint first exceeds one, it means that the last added queue is
precisely the [sq one. The bit rate assigned to the [st queue is finally determined by
computing, through the stability constraint, the percentage of time x;,, assigned to

this queue and consequently derive by,,.

Algorithm 3 Calculate Upt—sup

for j=1to W do
for i =1to M do
b; = cumulative bitrate of the i-th video feeding the queues 1..j
end for
s¢ = Ezj\il i + (Zz]\il %) Tn'ud

if sc > 1 then

lsg=
lsv = index of video associated with [sq break the FOR
end if
end for
1*(_?il,j;éi T +Z;’M:1,j¢l,dv wjg:jvd)
Lisv = 14+Thva/Txisv

M
blsv = xlsvclsv and Utot—sub = Zj:l U’Lbj

5.5.3.5 Linux Implementation

We conclude the section by briefly discussing the implementation of the practical
scheduler in Linux. We employed an AP equipped with an Atheros card. We
modified the MadWiFi driver in order to run-time retrieve both the number of
empty spaces available in the EDCA AC video queue, and the actual PHY rates
employed by the AP to transmit MAC frames to each station i. The scheduler

88

5 — Cross-Layer Scalable Video streaming in WLANs

has been implemented in the Linux OS through the Linux traffic control tool at
the IP layer. To prevent from losses emerging because of NIC buffer overflow,
we have developed a simple flow control mechanism for delivering frames from the
scheduler to the driver. It is implemented by periodically (250 ms) sampling the NIC
buffer availability, and setting the IP queues draining rate for the next period to the
maximum rate which guarantees that no MAC buffer overflow will occur even if the
AP will not transmit at all in the next period. With the same periodicity, we query
the driver for retrieving information about changes in the PHY rate of the connected
stations. If this occurs, we rerun the algorithm and change the inter-stream queue

priorities accordingly.

5.5.4 Performance Evaluation

We have evaluated the performance of the practical scheduler over an 802.11e WLAN
test-bed. The experimental assessment of H.264 SVC in-network adaptation ap-
proaches is not straightforward, and it was made possible only by employing the
tools and the methodology introduced by our SVEF evaluation framework (§ Sec-
tion 5.4).

5.5.4.1 Experimental Scenario and Utility Function Evaluation

We used the soccer video with 4CIF resolution and 30 frames/s as a reference. We
encoded it as H.264 SVC stream using the Joint Scalable Video Model reference soft-
ware (JSVM, [61]). The resulting encoded video comprises a base layer, including 5
temporal scalability layers, plus two Medium Grained Scalability (quality enhance-
ment) layers per each temporal layer, for a total of 15 video substreams. For the
encoded video, we off-line computed an utility curve described in terms of average
PSNR versus average bit rate. The computation of the PSNR versus rate curve
was performed by stripping out the layers, measuring the average bit rate, decoding
the resulting video, and computing the average PSNR. The resulting PSNR curve
is reported in Figure 5.13.

The considered network scenario comprises of a number of downlink video streams
addressed to different stations, and generated from the same video sequence trans-

lated in time. In addition to the video downstreams, we generate non video traffic

89

5 — Cross-Layer Scalable Video streaming in WLANs

40

1 MGS Iayer (T|D 0.5 QlD—l)

A

2 MGS Iayer (T|D 0..5 Q|D

2)

PSNR

Base Iayer (TiD=0. 5Q|D 0)

..

15
0

0.5 1 1.5 2 25 3
video bitrate (Mbit/sec)

Figure 5.13: PSNR versus bitrate of the encoded video used in the analysis

from a variable (from 0 to 5) number of stations transmitting at 2 Mbit/sec, which
uploads UDP greedy traffic (saturation conditions) generated through iperf. The
remaining stations are Linux laptops with Ralink WiFi chipsets. The uplink traffic
is best effort, thus the Ralink driver is set with CWmin=31 and AIFS=2. On the
contrary, the video traffic accesses the channel with CWmin=15 and AIFS=1.

5.5.4.2 Experimental and Theoretical Performance versus the Number
of Uplink Stations

In these experiments we consider two video streams delivered by the AP to two
different stations, one connected with an 11 Mbps PHY rate, and the other with a
driver-enforced 2 Mbps PHY rate. To prove the practical scheduler effectiveness, we
introduced in the wireless network other N, greedy stations that transmit packets
at 2Mbps in the uplink direction. Changing the number N,, we induced in the
wireless network different values for 7,,,;. The downlink video traffic is delivered
using the WME/EDCA video queue and the uplink traffic transmitted by the other

90

5 — Cross-Layer Scalable Video streaming in WLANs

stations uses the best-effort queue.

Performances are measured in terms of cumulative utility (PSNR) delivered to
the two video receivers and are plotted versus the number of uplink greedy stations,
N, that is varied from 0 to 5. Note that the actual value of T}, for each experiment
is independent on the scheduler and is only a function of the PHY bit rate and of
the number of greedy stations, /V,,. Thus the optimal solution has to be computed
for each N,, value. On the contrary, the practical scheduler works independently of

the T,,,q value.

A fundamental problem we needed to face is the need to derive the average
Thwq value that resulted for each specific value of N, to compare the measured
results with the analytical. We were not able to derive such an average value from
driver-level information. Moreover, the analytical derivation of such a parameter, in
principle relatively easy (e.g., using EDCA extensions of the model [83]) from the
knowledge of the MAC layer parameters employed by the competing stations, was
discouraged by the fact that, as shown in [84], the operation of the two considered
cards slightly, but noticeably for our specific purposes, differs from the theoretically

expected performance.

Therefore, we resorted to an hybrid experimental /analytic off-line estimation of
the T),,4 parameter. At first, we experimentally derived the actual AP throughput
pap achieved when competing with k£ background best-effort Ralink stations using
the 2 Mbps PHY rate (as in our scenario); All stations were loaded with saturated
UDP traffic with 1500 bytes IP packets. Then, we derived T,,,4 by recognizing that
Trvd = 1;’2—013'8 — T, ap, being T, 4p the computed transmission time for a 1500 bytes
MAC frame by the AP. Using this approach, the obtained values of T,,,4 for the

different values of N,,, are reported in Table 5.3.
Figure 5.14 reports the cumulative PSNR as resulting from i) the solution of the
optimal scheduling rule determined by solving equation 5.8 (marked as “optimum”);

ii) the analytical results obtained by analytically computing, through the procedure

N, 1 2 3 1 5

Thva | 0.004439 | 0.005874 | 0.007725 | 0.0102 | 0.0116

Table 5.3: Values of T),,4 for N, greedy stations at 2 Mbps PHY rate

91

5 — Cross-Layer Scalable Video streaming in WLANs

70
——optimum
65 * flat-prio—analityc|
- 4 flat—prio meas.
60k -l app-layer meas.
6 55F
'_
a4
=
2 50F o S
,,,,,,,,,,,,,,,,, A
45; 5 B
‘o
,,,,,,, n
40F . 7
35 | | | | T
5

N
up

Figure 5.14: Cumulative PSNR versus the number of Uplink Stations

3, the utility achieved by the proposed sub-optimal flat priority scheme detailed in
alg. 2 (marked as “flat prio analytic”); iii) the experimental results obtained by run-
ning the Linux AP implementation of the proposed flat priority approach (marked as
“flat prio meas.”); iv) the measurements obtained implementing a scheduler which
does not rely on the knowledge of the PHY rate at which stations are connected,
but uses only application layer information (marked as “meas. app. layer sched”).
This scheduler deploys 15 queues, one per each video layer. However, with no sup-
plementary insights on the available PHY rate at which streams are connected, and
in the considered scenario where video layers bring the same utility for different
streams (we recall that we used the same video sequence for all streams), its best
strategy is simply to share the queues among the different video streams and drain
traffic from the queues according to their intra-stream priority order. We have also
measured the performance without any scheduler. The results have not been shown
because the maximum of the curves was 29.13dB of PSNR, corresponding to the
case without uplink traffic (V,, = 0), and thus the readability of the figure would

have been compromised.

92

5 — Cross-Layer Scalable Video streaming in WLANs

From Figure 5.14, we see that the performance advantage of the optimal sched-
uler is negligible with respect to the analytical solution of the practical scheduler,
and it is marginal also when compared with the actual experimental results.

It could be argued that the suboptimality of the practical scheduler may depend
on the considered utility curve, and that it is possible to find cases where the perfor-
mance difference becomes notable. An in depth analysis of the impact of different
utility shapes over the performance is left to further work. However, we believe that
major performance differences are deemed to emerge only with very particular, and
unrealistic, utility shapes. As expected, comparison with the application-aware-only
scheduler shows that the usage of cross-layer information yields a significant perfor-
mance improvement, especially in the case of significant capacity restriction (large

values of Tq)-

1200 l
@ flat-promeas. | e
1100+ - app-layer meas. ’]
W without scheduler
‘2 1000} |
o)
2 o00f * |
S | e e Wl ;
§ \g'::"l:i:::j,‘ﬁ.‘fififfv‘”" """ W m
£ 800f ¥]
700f |
600‘ - | .
1 2 3 N 4 5
up

Figure 5.15: Aggregated throughput of uplink stations

Finally, in Figure 5.15 we report the aggregated non-video throughput for the
greedy N, uplink stations. A positive side effect of our proposed approach is that
not only it does not penalize uplink stations, but it may even improve the uplink

traffic throughput, as comparison with the application-layer-only scheduler and the

93

5 — Cross-Layer Scalable Video streaming in WLANs

absence of scheduler shows. This apparently counter-intuitive fact can be explained
by considering that, in order to maximize the Utility, the cross-layer scheduler tends
to select packets directed to the 11 Mbps stations, hence increasing the overall
network throughput of the wireless network (in other words, the scheduler tends to

limit the WLAN performance anomaly).

5.5.4.3 Experimental and Theoretical Performance versus Number of

Video Downstreams

140
K ‘ - flat-prio analytic
120f | M flat-prio meas. : ‘ :
% app-layer meas *
100} LeLm X
'6 \“‘\‘\‘\\‘\\\“\ \\\\\\\\\
o et X
% 80 . \\\\\\\\\ A
) Lt e
Q L e
601 : \\\\\ 1
40F o 1
*\
20 : : ;
1 2 3 4 5

Number of video downstreams

Figure 5.16: Cumulative PSNR versus number of video downstreams

A second set of measurements was performed to determine the scheduler oper-
ation for a varying number of video streams. Figure 5.16 shows results obtained
in a scenario characterized by one background best-effort station transmitting at 2
Mbps, and a varying number of video streams, of which one is delivered at 2 Mbps,
and the remaining at 11 Mbps.

The figure compares the experimental and analytic results obtained by the “flat

prio” scheduler, with that of the application-layer-only approach. The results for the

94

5 — Cross-Layer Scalable Video streaming in WLANs

optimal scheduler are perfectly coincident, for such scenario, with that of the pro-
posed practical " flat prio” approach. As expected, the figure confirms the superiority
of the cross-layer approach with respect to an application-aware-only approach.
The growth of the total utility with an increased number of video streams may
not be considered intuitive (indeed, a comparable shared capacity is provided by
the AP), but it is readily explained by considering that, as shown in Figure 5.13,
the relative utility gain is large at low bit rates, and gets progressively smoother
as more bit rate is provided to a given stream (as in the case of a small number of

video streams).

5.6 Chapter Conclusions

In this chapter we have presented experimental results dealing with application-
aware H.264 Scalable Video Coding (SVC) delivery over Wireless LANs. To the best
of our knowledge, these results are among the first that are based on experimentation
involving H.264 SVC in a real wireless testbed. To accomplish this goal, we had to
develop several software components, presented in Section 5.4, to provide functions
such as streaming, NALU dependency filtering, concealment of missing frames, etc.,
which are not readily supported by off-the-shelf publicly available H.264 SVC-related
software.

Our preliminary results, illustrated in Section 5.3, prove the viability of the
Virtual BottleNeck (VBN) mechanism and the application-aware scheduling. The
VBN performs bandwidth throttling before the traffic is delivered to the WLAN
Access Point, so that all packet loss occurs inside the VBN. The scheduler prioritizes
the packets according to their importance for the video quality and also takes the
dependency of the packets into account. This allows to discard packets at the VBN
in a manner that has the least negative impact on the overall video quality. The
scheduler maintains separate queues for the different priority levels.

Some conclusions can be drawn from this preliminary results. First, significant
performance improvements can be achieved even with very simple scheduling ap-
proaches (we developed an approach “just” based on priority queuing). Second,

results show that SVC should be encoded with a base layer that is as small as it can

95

5 — Cross-Layer Scalable Video streaming in WLANs

be without significantly affecting overall encoding efficiency. This allows to cope well
with the specific bandwidth characteristics and fluctuations expected in a WLAN.
We believe that such a WLAN-aware SVC encoding should be further explored to
better understand to what extent a base layer reduction is possible without impair-
ing SVC encoding efficiency, and to understand the impact of different encoding
choices for the remaining enhancement layers.

In Section 5.5 we extended the WLAN downlink video streaming scenario to the
case of the presence of uplink background traffic. The analysis of this scenario and
considerations on the operation of IEEE 802.11 networks produced a formalization of
the problem. Although we are able to find the optimal analytical solution, estimating
the time used by non-video traffic (i.e. the T,,,4 parameter) is non trivial in the real
World. For this reason we have devised and implemented a practical sub-optimal
scheduler, that is able to achieve a performance close to the optimum. Section 6.3
in the next chapter will deal with the issue of non-video time estimation and how
this can fit in an in-driver cross-layer scheduler architecture.

The work illustrated in this chapter has been presented in international con-
ferences. Partially, at the IEEE TWCLD 2009 conference, with an article entitled
“Application-aware H.264 Scalable Video Coding delivery over Wireless LAN: Ex-
perimental assessment”, coauthored by Giuseppe Bianchi, Andrea Detti, Pierpaolo
Loreti, Francesco Saverio Proto, Wolfgang Kellerer, Srisakul Thakolsri and Joerg
Widmer. Partially, at IEEE ISCC 2009, with an article entitled “SVEF: an Open-
Source Experimental Evaluation Framework for H.264 Scalable Video Streaming”,
coauthored by Andrea Detti, Giuseppe Bianchi, Francesco Saverio Proto, Pierpaolo
Loreti, Wolfgang Kellerer, Srisakul Thakolsri and Joerg Widmer. And partially at
IEEE WoWMoM 2010 with an article entitled “Cross-layer H.264 Scalable Video
Downstream Delivery Over WLANs”, coauthored by Giuseppe Bianchi, Andrea
Detti, Pierpaolo Loreti, Srisakul Thakolsri, Wolfgang Kellerer and Joerg Widmer.

96

Chapter 6

Flexible, Modular and
Virtualizable MAC Layer

In the previous chapter we have seen that scalable video streaming techniques can be
very effective in WLAN hotspots, but to deploy it in real World dynamic scenarios,
a support at the lower layers is needed, in order to monitor the status of low-level
queues and estimate the non-video time 7,,,4, i.e. the missing parameter that we
need to be able to find the optimal solution to the problem stated in section 5.5.1.1.

But MAC layer flexibility has implications that go beyond the video delivery
scenario. In this chapter we devise a general flexible MAC framework, show its wide

range of applications, and finally use it to devise a dynamic scalable video scheduler.

6.1 Overview

Wireless networks are extensively deployed due to their low cost and configuration
easiness. However, they are not adapted to the new services and applications that
are increasingly demanded by users. Current implementation of the IEEE 802.11
specification is supported in hardware devices and software developments, but they
do not provide the adaptability that would enhance user experience in next genera-
tion networks. In this work, we present a new wireless framework, based on the one

currently supported by the Linux stack: mac80211. This new framework, named

97

6 — Flexible, Modular and Virtualizable MAC Layer

mac80211++, has been tailored to improve MAC features in terms of: (i) mod-
ularity, by defining different 802.11 MAC services; (iz) flexibility, by enabling
dynamic configurability of the 802.11 MAC; (¢i7) virtualization, by managing par-
allel independent 802.11 MACs accessing the same system resources.

Many effective approaches are proposed for adapting the wireless devices’ op-
eration to specific contexts and services, but only a few of them can be really im-
plemented in the actual wireless interfaces. The road to accommodate necessary
and advocated improvement of wireless technologies goes through the rethinking
of the current protocol stacks, pushing the programmability of the system towards
the physical interface. New architectures proposed for wireless interfaces provide
great flexibility obtained through the rationalization and modularization of exist-
ing solutions. However the effective exploitation of this flexibility is closely related
with the implementation of a suitable infrastructure able to support the dynamic

composition of elementary functions.

6.2 The mac80211++ Framework

Wireless networks are a popular technology for Internet access. The evolution of new
services and applications require WLANSs to rapidly adapt to these modifications.
However, such evolution require new amendments in IEEE 802.11 standard [1] with
the consequently increase of time to approve them. In addition, these new changes
must be adopted by manufacturers by exploiting a new set of devices. Consequently,
this process is slow and time-consuming, making standardization much slower than
real user demands.

Most of WLAN card manufacturers follow the SoftMAC approach, much more
flexible compared to the old Full MAC' solution. FullMAC leaves all the control of
the MAC layer functions to the card hardware/firmware, whereas SoftMAC imple-
ments a new set of control MAC primitives at the software level. The framework
mac80211 [85], which is part of the Linux 802.11 stack and depicted in Fig. 6.1a,
provides SoftMAC capabilities. Nevertheless, the mac80211 lacks of modularity
and flexibility since it is a monolithic block composed of many sub-modules highly

interconnected. Following the FLAVIA [86] paradigm, we propose and develop a

98

6 — Flexible, Modular and Virtualizable MAC Layer

preliminary implementation of a new framework, namely mac80211++, aimed to
specify a solution whose advantages are three-fold: modularity, flexibility and vir-
tualization.

Then, the goals of mac80211++ are to leverage on the current implementation
mac80211, widely adopted in 802.11 networks, and to reduce the complexity and
shorten the time when introducing changes to the standard. This will boost the
implementation of new improved services and reduce the amount of time for these
modifications to be commercialized. To this aim, we design a service scheduler
and split the mac80211 framework components. The service scheduler adds and
loads new services, flexibilizing the implementation of new modules compared to the
standard procedure. Untangling the highly interdependent relations of the mac80211
components, we pursue to reduce the complexity of the current framework and to

foster its modularization, by allowing sub-components being loaded independently.

6.2.1 Existing Framework

Fig. 6.1a depicts an overview of the existing Linux 802.11 stack. This stack spec-
ifies the framework mac80211 that enables SoftMAC-capable device drivers used
for operating with 802.11 hardware. While some of the MAC functionalities are im-
plemented at the hardware level, mac80211 implements features such as handling
several higher-layer components of the MAC, including support for HW/SW cryp-
tography, power saving, .11n style aggregation or LED management. The mac80211
module plays two key roles: (i) Wrap the packet incoming from the upper layers and
translate them into the 802.11 frame format; (i7) Control management operations
related to the IEEE 802.11 standard.

A standard wireless driver with Linux wireless capabilities includes some kernel
modules and provides interfaces used by user level tools to configure the device
behavior, as depicted in Fig. 6.1a. The main modules defined in the framework are
the mac80211 and the cfg80211; these modules are loaded and used by the drivers
(e.g., athbk, ath9k, b43) that are implemented in separate Linux kernel modules.

Bidirectional interfaces are defined among modules as represented in Fig. 6.1a
by the arrows. The exported functions provide a direct interface shown with the

solid arrows. The usage of an exported function introduces a dependency in the

99

6 — Flexible, Modular and Virtualizable MAC Layer

userspace userspace

cfg80211 cfg0211

fg80211_ cfg80211_ops
v

—

o

FLAVIAn

mn
mac80211
mime

rate_control_ops

Service Scheduler

ieee ieee_ops
2

iwlwifi ba3 athisk athak iwlwifi ba3 athsk ath9k

(a) Overview of the mac80211 framework (b) Overview of the proposed mac80211++

Figure 6.1: Overview of the existing (left-sided) and proposed (right-sided) frame-
works.

direction of the arrow (e.g., the driver depends on mac80211). The interface in the
other direction is implemented through the registration of callbacks (i.e., function
pointers). In Fig. 6.1a this dependency is represented by dashed arrows and the
labels represent the structure containing the function pointers.

The rigidness of the mac80211 is a caveat for developing new services. This
framework is a rigid block formed by a set of sub-modules highly interconnected,
e.g.: the MAC layer management entity (mime), the high throughput (ht) or the
MPDU aggregation (agqg), as specified in the IEEE 802.11n standard [87]. These
parts are defined in dedicated files but not implemented as separated modules, thus

preventing any kind of modularization.

6.2.2 A New Framework: mac80211++

Motivated by the rigidness of the mac80211 framework, we develop a new solution,
named mac80211++, which aims to overcome it. Fig. 6.1b depicts the new frame-
work, mac80211++, showing the new blocks introduced with respect to the existing
framework depicted in Fig. 6.1a. First, we provide a proof of concept of the mod-
ularity of mac80211++. Second, we develop and implement a Function Handler
and a Service Scheduler that manage the loading and creation of new functions and
services respectively, proving flexibility. Third, we describe as well the virtualization

support, by adding an overlay layer, FLAVIAn, between the device drivers and the

100

6 — Flexible, Modular and Virtualizable MAC Layer

mac80211++ framework.

6.2.2.1 Modularity

The development of mac80211++ can be considered as a first and relevant step to-
wards the modularization of the wireless component inside the Linux kernel. Some
mac80211 functionalities might be conveniently separated in order to provide the
developers with a novel degree of flexibility. Thus, we propose to “break” the mono-
lithic mac80211 framework and evolve to a new extended and more modular frame-
work. The basic idea is to rely on the definition of well-defined interfaces for those
functionalities. To this aim, we follow the rate control module approach replicating
its interaction modality. This module depends on mac80211, but can be built as an
independent module, within the framework or at the driver level, being able to load

it at run-time.

Basic mgmt operations | Event handling functions | Power mgmt and saving

*mgmt_assoc
*mgmt_auth
*mgmt_deauth
*mgmt_disassoc

*sta_rx_queued_mgmt
*mlme_notify_scan_complete
*sta_rx_notify

*sta_tx_notify

*dynamic_ps_disable_work
*dynamic_ps_enable_work
*dynamic_ps_timer
*send_pspoll

*sta_setup_sdata
*sta_work

*recalc_ps

*sta_to_sleep
*send_nullfunc
*sta_reset_beacon_monitor
*sta_reset_conn_monitor
*sta_restart

Table 6.1: APIs for mime support (* = ieee80211.)

Then, by using the same rationale we separate the management (mlme) algo-
rithm (STA operation) as well as the support for high throughput (ht) from the
rest of mac80211 modules. We describe the interfaces for the mime module that
we have added through a mac80211_ops structure to the ieee80211 local structure.
Table 6.1 illustrates the three main categories: (i) the specific management part and
its setup, (i) the event handling part that includes several notifications, timers and
management frames reception coming from the wireless network and (4i7) functions
related to power saving and power management. Fig. 6.1b illustrates the extensions

carried out in the mac80211 framework, turning it into a more modular framework.

101

6 — Flexible, Modular and Virtualizable MAC Layer

6.2.2.2 Flexibility

The flexibility provided by mac80211++ fosters the extension of the basic function-
alities defined by the IEEE 802.11 protocol. In particular, our framework permits
to implement innovative services and enhanced functions, providing a general yet
flexible mechanism to extend the mac80211 framework. To this end, we design and
develop two auxiliary kernel modules, namely the Service Scheduler and the Func-
tion Handler, which are liable, respectively, for managing the scheduling of a new
service and the registration of the enhanced functions, which are executed at the
occurrence of specific events handled by mac80211++ (e.g., packet reception, packet

transmission or channel switching).

Service Scheduler. The Service Scheduler has been designed to provide a
simple and standardized mechanism to schedule new services. Through this system,
developers can focus only on the implementation of the main service functions, using
the Service Scheduler as a mean to schedule periodically its execution. The Service
Scheduler will run the functions registered by the service during its initialization
phase. In addition, to simplify the implementation of a new service, the Service
Scheduler architecture improves its maintenance, since the implementation of its
internal functions can be improved to support enhanced services, as long as its
APIs are not modified. Indeed, it can be easily updated with more sophisticated

functionalities to meet the requirements of real-time systems.

Fig. 6.2(a) illustrates the main steps to register and execute a new service. When
a new service is registered, the Service Scheduler creates a new Linux kernel work
representing the task implementing the deferred service function, and adds it to a
dedicated work-queue specifically designed to handle all services. When the timer
expires, the Linux kernel work implementing the service is queued on the work-
queue, which contains all the tasks that must be executed immediately. The Service
Scheduler defines only one Linux kernel thread to extract and activate the works
implementing the services on the work-queue, in order to serialize the management

of all the events occurring in a distributed scenario like the channel access.

Once the work can be scheduled, the Linux kernel thread, which handles the
work-queue, invokes an outer function, namely flavia_srv_container, which, in turn,

executes the function implementing the service (pointed by flavia_service_hook), and

102

6 — Flexible, Modular and Virtualizable MAC Layer

reschedules the timer to execute the service later.

cpu_worqueue_struct

! unsigned long flavia_data i
void (*flavia_service_hook) (unsigned long data)-
i _ynsignedint _ flavia usec . _._._._._. -
structtimer_list flavia_timer
structlist_head flavia_ss_list

(a) Work Flow (b) Work-Queue

Figure 6.2: Service Scheduler: Flow chart and work-queue.

Function Handler. The Function Handler (FH) is designed to provide a stan-
dardized mechanism to hook the mac80211++ code (i.e., to add piece of code that
acts as glue between any function and the mac80211 procedures). More specifically,
the FH permits to register a function to any hook added to the mac80211++ code;
thus improving its functionalities with new functions. As depicted in Fig. 6.3, at the
occurrence of a specific event, the Function Handler will call the functions previously
registered on that hook. For example, when a new frame is received, the control flow
of the mac80211 code reaches a hook that transfers the control to the FH, which, in
turn, invokes the execution of all functions registered on that hook. Note that the
function invoked by the Function Handler can register a service or create a new task
executed by an independent kernel thread. Therefore, the FH mechanism provides

a high level of flexibility to the developers of new functionalities and services.

6.2.2.3 Virtualization

While mac80211++ extends the capabilities of the original mac80211, the design
of the mac80211 framework is intrinsically bound to the physical capabilities of the
HW advertised by the different device drivers. Past research work [88, 89, 90, 91]
has demonstrated that single radio hardware could be virtualized in a way very
similar to the virtualization of computational resource in the hardware resources
of computer. mac80211, and by extension mac80211++, brings a logical view to

the different wireless interfaces present in the system, but does not offer the proper

103

6 — Flexible, Modular and Virtualizable MAC Layer

hook triggered

}

Look for functions registered
on the hook flavia_hook_ops flavia_hooks

Are there further
functionsregistered
on the hook?

mac80211 kernel module

hook_n if€-=-=2 fon1 H fn2 - f
[Invoke the next function] [o :](_)|[-](_ $[-]]
~— i
\ Bindingperformed at runtime (late binding) by
flavia_register_function and flavia_function_hook_container
(a) Work Flow (b) Hooks Double Linked List

Figure 6.3: Function Handler: Flow-chart describing the main operations performed
by the Function Handler and structure used to fulfill the management task.

abstraction necessary for implementing proper virtualization without breaking the
existing code base. To overcome this limitation, we design FLAVIAn, an overlay
layer that offers virtualization capabilities to mac80211 and mac80211++, while
preserving the existing hooks and API.

Therefore, FLAVIAn abstraction is twofold: first, FLAVIAn presents the usual
drivers hooks that the traditional mac80211 is expecting. As well, FLAVIAn pro-

poses the counterpart drop-in replacements to be used in each hardware driver

To ensure appropriate interaction of the mac80211 stack and the device drivers
through the FLAVIAn overlay, a small modification in the driver code is also required
in order to reroute the mac80211 callbacks to the equivalent ieece80211_flavian_ops
structure specified by the FLAVIAn overlay.

The key functionality covered by these handlers cover frame transmission, en-
abling/ disabling the hardware, configuring Rx filtering or notifying about status of
the scanning procedure (start/complete). Similar modifications will be required to
support other mac80211 drivers (e.g., ath9k, b43) with the FLAVIAn overlay, but

as we explained above, such changes will involve limited programming effort.

104

6 — Flexible, Modular and Virtualizable MAC Layer

6.2.3 Use Cases

This section specifies a representative set of use cases to illustrate the functionality
introduced by the mac80211++ framework.

6.2.3.1 Advanced Monitoring

The Advanced Monitoring Service (AMS) module provides a passive monitoring
service able to measure several parameters related to radio channel conditions, ca-
pabilities of neighboring nodes and MAC 802.11 parameters estimation. Each node
performs PHY/MAC layer measurements within the time-scale of microseconds.
The wireless cards are set to promiscuous mode to ensure a comprehensive view of
the current wireless channel conditions. Then, all the measurements are performed
within the normal activity of the wireless card and reported periodically. The AMS
module supports multiple network interfaces per node. It works on a frame level,
meaning that all the frames sent and received by each network interface must be ex-
amined by the AMS functions. This imposes high requirements on the AMS module
on the effectiveness of the frame analysis (i.e., limited computational power available
at the nodes).

The AMS module hooks in the mac80211 module of the Linux kernel are placed
in the ieee80211_rz() function for the downlink frame path and in the ieee80211_tz()
function for the uplink frame path. The measurement functions called by the hooks
require access to each frame header and frame timing information to discover and

calculate a set of parameters per each neighboring station interface, such as: sup-
ported rates, SNR, F/BER, RTS_Threshold or number of retransmissions.

For communication with user space the netlink mechanism is used. The appli-
cation that requires monitoring data from the AMS module sends the command to
the receiving function of the AMS module. This command defines the parameters
the application requests and the time interval at which results are to be sent to the

application.

105

6 — Flexible, Modular and Virtualizable MAC Layer

6.2.3.2 SuperSense (SPS)

The virtualization and flexibility features of our proposed framework foster the de-
velopment of SuperSense (SPS), an innovative monitoring service that dynamically
analyses the available wireless spectrum using both passive and active techniques
to estimate the best network configuration. SPS analyses continuously the avail-
able wireless channels to select the set of parameters that provides the best network
performance.

The monitoring activity is performed concurrently to the data TX using two vir-
tual interfaces operating over a single physical interface. The virtualization module
is liable for scheduling the activities of the different virtual interfaces. In particu-
lar, the time spent for data transmission and active monitoring tasks is scheduled
according to a time division mechanism implemented using a preemptive weighted
round robin policy.

This module sets and manages the total duration of a SPS period and the specific
length of the operation modes by introducing a new data structure, the super-frame.
The duty-cycle of the super-frame, representing the alternation of transmission and
monitoring phases along with the time assigned to each activity, is broadcast by
the Access Point using a new Information Element (IE) contained in the beacon.
The IE contains two main variables indicating the overall duration of the super-
frame and the time spent to perform the active monitoring. Every super-frame
always starts with an active monitoring period followed by a transmission period, in
which all nodes that belong to the same BSS operate using the same medium access
mechanisms (either CSMA/CA or TDMA) to transmit their data traffic. During
an active monitoring frame, only one node is allowed to send probes on the wireless
channel in order to estimate actively the quality of the wireless links established with

nearby nodes and the interference which might be generated by external sources.

6.2.3.3 Power Saving (PS)

The goal of the Power Saving (PS) service module is to enable various power saving
algorithms, such as NoA/ASPP [92], to be easily implemented by specifying helpful

functional blocks and their interactions with other services or functions.

106

6 — Flexible, Modular and Virtualizable MAC Layer

Thanks to the modularity and flexibility exposed by mac80211++, this PS ser-
vice is easily implemented as a loadable module. For that, we define the following
two functions: (z) ps_policy(), which is registered into the Function Handler. It
incorporates the logic of the developed algorithms and stores information of the
mechanism(s) in operation and its(their) state; (i7) ps-management(), which pro-
vides management logic to support the PS mechanisms being implemented.

A generic PS scheme might require the ability of triggering sleep/awake events.
This action is ultimately performed in HW by setting the proper HW registers ac-
cordingly. We then specify a primitive to communicate to the immediately lower
layer the notification to execute the chosen event: drv_ps_notify(): This is a notifi-
cation primitive and requires drivers to provide its proper handling. Thus, we push
all the “intelligence” to the upper layer, designing this way a hardware-agnostic PS
framework. In order to support sleep/awake transitions typically required by power
saving algorithms, it is still needed that drivers and firmware support sleep/awake

events (issued by the previously mentioned primitives of the PS service).

6.2.3.4 Rate Adaptation

Most of the current mac80211 drivers rely on rate control algorithms provided by
the framework. These algorithms are encapsulated in independent kernel modules
that are linked to the specific driver once a new device is being loaded. The naming
convention of these modules is based on an 7¢80211_ prefix, followed by the name
of the algorithm. mac80211 implements two rate adaptation schemes, Minstrel and
PID, but also permits the drivers to implement specific rate adaptation mechanisms
and register them upon device initialization to notify the mac80211 framework that
rate selection will be handled by the driver itself. One example of such drivers is
ath9k for Atheros cards.

Despite the differences of these two approaches, they both use a common mech-
anism to interface with the mac80211 framework. Specifically, the rate_control_ops
callbacks are registered by the rate adaptation module to the framework. These
design principles are illustrated in Fig. 6.4.

Given the platform’s modularity and flexibility in allowing the integration of new

rate adaptation schemes, we investigate how a collision aware rate control algorithm,

107

6 — Flexible, Modular and Virtualizable MAC Layer

mac80211
7} r'y 'y A
ieee80211 _ops ieee80211 _ops
rate_control _ops il rate_control _ops il
-y v

.| Driver w. embedded
Driver rc80211 * || rate control

algorithm (e.g. ath9k)

N

Figure 6.4: Interfacing Rate Control with mac80211.

H-RCA [93], could be implemented. This is motivated by the fact that current state-
of-the-art algorithms do not distinguish losses due to packet collisions from losses
that occur due to noise. The driver incorporating H-RCA takes an approach similar
to the rate control algorithms of ath9k. To register the H-RCA algorithm to the
mac80211 framework, the driver is required to invoke ieee§0211 _rate_control_register
function passing a reference to a rate_control_ops structure, which contains the han-

dlers implemented by the algorithm.

6.3 Inter module Data Sharing for Flexible Wire-
less MAC

In this section we present an information management framework that greatly sim-
plifies the data sharing among the components of a wireless stack designed accord-
ing to a modular and flexible architecture. The designed information management
framework enforces a data model that accounts for synchronous and asynchronous
interactions, protection of values and includes a consistent memory management
approach. A prototype implementation has been integrated in the wireless stack of

the Linux kernel, as an extension of the mac80211 framework.

108

6 — Flexible, Modular and Virtualizable MAC Layer

6.3.1 Section Overview

Wireless technologies are usually implemented according to standards, such as IEEE
802.11 [1]. Although the specifications include different configurable operation
modes, existing implementations are designed to be comprehensive, one-size-fits-all
and may fail to be effective in specific niche contexts or particular network situa-
tions. Actually, the real scenarios in which wireless technologies are used are very
heterogeneous and the achieved performance is far from the ”standard case”. Thus,
many researchers have worked to change the behavior of standard technologies in
order to improve performance in terms of network capacity, transmission delay, etc.
To increase the exploitation probability, many efforts have been devoted to design
solutions with a limited impact on the existing standard implementation.

However the actual capability of implementing the proposed improvements de-
pends on the availability of solutions based on flexible architectures and modular
frameworks, where the wireless interface is conceived as a group of components that
work together to provide the required functionalities. The resulting protocol stack
is a (more or less complex) system in which many actors cooperate to the overall
functioning.

The building up of a flexible and modular wireless interface requires the definition
of a suitable hardware and software infrastructure, which enables the developers to
exploit the new architecture and the new interfaces.

At the PHY level, a paradigm toward in this direction is represented by software
defined radio (SDR). SDR proposes the implementation of the signal processing
modules (filters, modulators, codecs, etc.) via software running on generic hard-
ware. In this field, the popular JTRS Software Communication Architecture (SCA)
framework [94] makes a clear separation between the “programmable” environment,
the platform, and the protocol stack (i.e. the waveform), allowing for the portabil-
ity of the communication stack. GNURadio [95] is also a software radio platform,
which allows the combination of signal processing blocks for the generation of custom
waveforms, using a customized, yet completely open, architecture.

At the MAC level, WLAN card vendors are switching from a ”full-MAC” ap-
proach, in which all the MAC layer functions are left to the card’s hardware/firmware,

to a "soft-MAC” [96] design. Some low level primitives such as frame generation and

109

6 — Flexible, Modular and Virtualizable MAC Layer

management are delegated to the driver, but in a vendor and platform dependent
way, making modular functionality replacement an outstanding effort. Other ap-
proaches to extend the MAC functionalities make use of overlay software modules,
such as MultiMAC [97] or the Overlay MAC Project [98], to switch between prede-
fined MAC layer solutions, but the approach, inside the MAC level itself, cannot be
deemed as modular.

To extend the range of available primitives at the software level, some researchers
have devised mixed FPGA and software radio based implementations of IEEE 802.11
MACs, such as CalRadio [99] and WARP [100], or FPGAs have been combined
with old 802.11 cards [84]. Or have implemented open firmwares [101], still with the
limitations imposed by the wireless card vendors design.

A critical issue of modular systems is clearly the memory management and com-
munication among the various components, which normally is a limiting aspect of
real complex software infrastructures. In fact, operating systems make available
to developers several communication facilities, such as pipes, which associate in-
terprocess communication channels to file structures [102], or M-BUS systems, i.e.
middlewares that provide buses for the exchange of messages. The most notable
example in this field is the D-BUS system [103].

But developing at the driver level, in kernel space, programmers don’t have
access to these facilities, nor to standard operating system interfaces such as file
descriptors and sockets. Usually the different components of the kernel interact by
accessing the same global memory areas, but often, e.g. in Linux, these areas are
not made directly available to external kernel modules, which then need, in order to
communicate with other components or modules, to call functions for the retrieval
of pointers to global structures.

This section presents a solution for the management of information in a wire-
less protocol stack, designed according to a flexible and modular architecture. The
information management task is committed to a dedicated component, the Data
Gateway, which exposes an interface that allows to store and to retrieve data iden-
tified by unique keys. Moreover, the Data Gateway interface allows the components
to protect the stored values: they can acquire an exclusive right on them, inhibiting
write operations from the other components or partially limiting the value modi-

fication through the registration of specific callbacks. This section also describes

110

6 — Flexible, Modular and Virtualizable MAC Layer

a Data Gateway module prototype implementation for the WLAN Linux protocol
stack mac80211, evaluating its performance in terms of data access time performance

and its exploitation in a video streaming scenario.

Request
Response
Component 1 Component 2 Component 1
1Request Response I
A
Request Request Component 2
Response Response
Reques 1 Request Response I
Response
Component 3
Component 3 Request. Component 4 lRequest Respo,m‘[
Response
Component 4
(a) Direct Connections (b) Stack configuration

Figure 6.5: Simple and Stack Architecture Solutions

6.3.2 Information Management Architecture

To handle the information sharing among components, it is possible to relay on
different architectural patterns that offers various degrees of decoupling.

As represented in Figure 6.5, the simplest solution is to create direct links be-
tween the various components using direct communication. However, this solution
causes a strong coupling among components and reduces the system flexibility mak-
ing any possible change/addition in the system complicated.

Another strategy, that is widely used in protocol stacks, is to organize the compo-
nents in levels, creating a hierarchy of connections. This solution reduces the degree
of coupling between components leading to the classical requests and responses pat-
tern.

To obtain the highest temporal and spatial decoupling degree is possible to use
use the data-oriented architecture represented in Figure 6.6, in which the modules

communicate via a ”proxy” component: the Data Gateway.

111

6 — Flexible, Modular and Virtualizable MAC Layer

Data Gateway

&
Response Response
Request Response Request
Request
Component Component
1 3
L
Component
2

Figure 6.6: Gateway Architecture Solutions

The Data Gateway (DG) allows for information sharing among modules and it
is responsible for solving conflicts which may arise when the components operate on
the same set of data. The data sharing model, presented in this section, assumes
that the data structures representing the system information are globally defined
and that each has an assigned Unique Identifier (UID), which is notified to all the
components.

The Data Gateway module offers three modes of information management, rep-

resented in Figure 6.7:

e Single writer multiple readers
e Multiple writers multiple readers

e Subscribe and notify

In the the Single writer multiple readers mode (SW), as represented in Figure

6.7, a single component is allowed to execute create/read/write/update (CRUD)

112

6 — Flexible, Modular and Virtualizable MAC Layer

Get / Set

/ Component 1

Get / Set

A

Component 2

o Cotiset
Component 3

A) | Data Gateway

Got/Set > Component 1
- :;" t-I_S— ; "~ Protect

B) Data Gateway f[—— > —— = Component 2
Protec!

Get/ Set Component 3

(,/E‘tﬁt/' Component 1

OnChangelListener

C) | Data Gateway

e,
-~ -,
o

Component 2

Figure 6.7: Data Gateway Interactions

operations while the others can only read the published information. The SW inter-
action model is typically used by components to manage information publication.
Let’s consider for example a measuring component of a wireless interface that con-

tinuously produces values that have to be made available to other components.

The Multiple Writers Multiple Readers (MW) interaction model allows the shar-
ing of memory areas allowing to perform the CRUD operations on the data from
every component, as reported in Figure 6.7. In order to enforce a simple form of
control over the values, there is also the possibility for components to protect the
stored information using callbacks that can temporarily inhibit the change or can
only allow operations in accordance with predetermined logic. Consider the follow-
ing example: two components need to control the value of the transmission power

of a wireless card. A component may impose a limit on the maximum power that

113

6 — Flexible, Modular and Virtualizable MAC Layer

can be set, e.g. according to the regulation of the specific country. To operate such
a limitation, the component registers a protection callback which is responsible for
checking and authorizing the change.

The Data Gateway also provides a push modality for information retrieval. As
described in Figure 6.7, the component can register its interest in specific data.
Then, when this data changes, the DG notifies the new value to all the registered
components. This subscribe/notify interaction model is provided for both SW and
MW data sharing modes.

6.3.3 CRUD operations
6.3.3.1 Single writer

In the Single Writer model of operation a component sets a value and receives a
Modification Identifier (MID) by the Data Gateway. The MID can be used both for
updating or deleting the stored data. The main operations can be schematized as

follows:

e createData(UID, value): MID; operation that allows data initialization using
a public UID. The operation produces the MID that can be later used for write

and update operations.

e changeData(MID, value): outcome; This operation allows to set a new value
for the data field identified by the MID, proving that the calling module is

authorized for such operation.

e clearData(MID): outcome; This operation allows the initializing module to
remove a data field from the DG.

6.3.3.2 Multiple writers

The multiple writers with challenge protection scheme is used when data has to be
shared among multiple modules. In this case, all the system modules can read and
write data. However, optionally, a module can register one or more consistency Veri-
fication operations, to be verified before any value updates. The Data Gateway calls

sequentially all the consistencyVerification operations registered at each attempt of

114

6 — Flexible, Modular and Virtualizable MAC Layer

changing the data value. If all the consistency tests are passed, the old value is
replaced by the new value.

The main operations for supporting the above behavior are defined as:

o setValue(UID, data value): outcome; This operation enables all the system

modules to set a data field overriding the single writer protection.

e deleteData(UID): outcome; This method enables all the system modules to
remove a data field from the DG by using the UID.

e protectData(UID, consistencyVerification): outcome; This method allows to

register a consistency verification operation for a given data field.

6.3.3.3 Reading the Data

The Data Gateway offers both push and pull models for retrieving data through the

following operations:

e getData(UID) operation allows a component to retrieve the value correspond-

ing to the given unique identifier (UID).

e onChangeListener(UID, changeListener) operation is used by components to
register a change listener function associated to the data field identified by the
UID.

6.3.4 Memory Management Model

An important aspect of the Information Management Architecture is memory man-
agement. This section specifies how the DG deals with the stored values and how
other modules can interact with the DG.

Three operations are described to illustrate how this issue has been addressed:
the write, read and update operations. These define a clear distinction between the
memory of the DG and the memory of the module. As a result, the deletion process
gets simplified and potential issues, such as memory leaks or concurrency problems,

are avoided.

115

6 — Flexible, Modular and Virtualizable MAC Layer

Figure 6.8a represents the write operation. Component 1 passes the Value A to
the DG using the set operation. The DG allocates memory to store value A and the

related metadata. If the operation is completed successfully a positive response is

returned.

WRITE

Component 1

Value A

READ

UPDATE

Component 1

=

Component 1

Value C

1-Set 3- Result 1 - Update 3 - Result
1 - Read 3 - Resuit
| | Vel A Value €
2 - Copy \2 - Copy 2 - Replace
DS_ttem | G 2ata DS ltem Data DS_ltem Data
ateway Gatewa
Gateway [vouec !
(a) Write (b) Read (c) Update

Figure 6.8: Read, write and update interactions

The read operation is depicted in Figure 6.8b. The component 1 needs to access
a previously stored value, thus it allocates enough memory space to store it and
queries the DG using the key associated to the value. The DG copies the requested
value, if available, in the allocated space and returns it to the requesting module.

Figure 6.8c describes the update operation. Now, in this case, a module changes
a stored value by providing it to the DG. If the memory required for the new
value is equal to the amount used to store the old value, then the value is simply
substituted. On the contrary, if the new value exceeds the memory size, the memory

cell is released and a new allocation for the new value occurs.

6.3.5 Linux Kernel Implementation

To prove the effectiveness of the proposed information management architecture we
implemented the Data Gateway module in the Linux wireless mac80211 framework
[85] that is used by all the modern IEEE 802.11 drivers. We first briefly describe the

116

6 — Flexible, Modular and Virtualizable MAC Layer

mac80211 data management architecture and then the Data Gateway extension.

6.3.5.1 mac80211 Integration

mac80211 is a framework designed to provide soft-MAC functionality to the underly-
ing drivers and cards. The actual implementation includes a ”global” data structure
teee80211 local that is a general-purpose collection of information embedding other
structures. For example, it includes the ieee§0211_hw structure that contains the
hardware specific information of the wireless card. Another contained structure is
ieee80211_ops (the ieee80211 operations) that is used to access the driver operation
from the mac80211 module. In addition, iece80211_local contains the states of the
wireless interface (suspended, resuming, started, etc.) and other management and
configuration information. The mac80211 framework integrates the teee80211 _local
structure in the Linux "net device” that is used by the Linux kernel to differen-
tiate among the wireless interfaces. At run time each physical card is controlled
by a driver that allocates a separate ieee80211 _local, and the operations can occur

independently on the different interfaces.

| Data : [Data : | Data ‘I Data

1 Gateway [Gateway 11| Gateway 1 Gatweay
: wif1 b] wif2 b wif3 :

! ! ! |

, Wireless ! | Wireless ! | Wireless ! mac80211
. Interface1) Interface1 {7, Interface1 |

I ' l !

! 1! [1

! TR T ’

~ - ~ - ~ ",

Figure 6.9: Multi Interface Repository

To extend the functionality of the IEEE 802.11 interfaces, developers have to
change the ieee80211 local structure in order to save custom information. Moreover,
since the 1eee80211 local is specific to the single IEEE 802.11 interface, components
dealing with multiple interfaces have to relay on different Linux kernel communica-
tion strategies.

Hence, to integrate the designed information management architecture in mac80211,

117

6 — Flexible, Modular and Virtualizable MAC Layer

we have devised a practical way of extending the ieee§0211_local structure: the im-
plemented DG interface includes ieee80211 local as a parameter. When ieee80211 _local
is provided, the DG stores the data within that structure, creating separate data
storage for each interface. Otherwise, if the actual interface ”repository” is not
provided, the DG module uses a global repository that can be accessed by all com-

ponents.

6.3.5.2 Linux Module

The Data Gateway has been implemented, according to the interface presented in
6.3.3, as a Linux module that depends on mac80211 and exports a kernel wide

interface, reported in Table 6.2.

All the operations receive the structure ieee80211 local as first parameter to
select the repository and, as second parameter, an integer to identify the specific
data that can be, respectively for MW or SW, the Unique Identifier (UID) or the
Modification Identifier (MID). In addition, the function ds_set requires as input
the data value and size, while the function ds_protect receives also the protection
callback that accept as input parameters the teee80211_local structure, the old value,
the new value and the data UID.

The SW operations are implemented in the same way of the MW operations.
The dg_create_sw function is used to gain the control over an UID and a unique

integer MID is used to control the update and remove operations.

All the operations return an int value that allows to check if errors occur and

are intrinsically designed to be thread safe.

Two operations are defined for of the push interface: dg_on_change_listener_add
and dg_on_change_listener_rem that can be used respectively to register or unregister
a notify operation. Both functions require as parameter the UID to select the
observed data. The dg_on_change_listener_add operation returns a Listener Identifier
(LID) associated to the registered listener. Later on this identifier can be used as
parameter in dg_on_change_listener_rem to unregister that specific listener. Note

that the notify operation is executed asynchronously in a Linux work.

118

6 — Flexible, Modular and Virtualizable MAC Layer

‘ Operation ‘ Parameters ‘

dg_set struct ieee80211_local *local,
int UID, void *data, un-
signed int size

dg_remove struct ieee80211_local *local,
int UID

dg_protect struct ieee80211_local *lo-
cal, int UID, int (*protec-
tion)(void *)

dg_create_sw struct ieee80211 local *local,

int UID, void *data, un-
signed int size
dg_update_sw struct ieee80211_local *local,
int MID, void *data, un-
signed int size

dg_remove_sw struct ieee80211_local *local,
int MID
ds_get struct ieee80211 local *local,

int UID, void *data
dg_on_change _listestencadate80211 local *local,
int UID, void (*notify)(void
*)
dg_on_change_listestencreme80211 local *local,
int UID, int LID

Table 6.2: Implemented Data Gateway Operations

6.3.6 Data Access Performance

We provide the performance figures of the Data Gateway module in terms of access
time to a stored value. The Data Gateway architecture is compared with the two
other architectures discussed in Section 6.3.2: the simple architecture in which two
modules are directly connected and a stack architecture with three layers (Figure
6.5).

All the modules are implemented as Linux kernel modules. The simple archi-
tecture is composed by two modules connected by a kernel exported function. The
stack architecture comprises three modules connected hierarchically by means of ex-
ported functions. The Data Gateway based architecture includes the Data Gateway,

a publishing module and a reading module. All the configurations perform a data

119

6 — Flexible, Modular and Virtualizable MAC Layer

copy in response to the read call according to the memory management strategy
described in Section 6.3.4.

The experiments are executed in a Linux PC with Vanilla kernel 3.4.6 (Ubuntu
distribution), equipped with an Asus Motherboard P8Z68-V, a Processor Intel i7-
2600@3.4GHz, 8GB of Kingston DDR3 RAM and a Corsair Force GT (V5 128GB)
hard disk mounting an ext 4 file system.

Each architecture is tested with 380 sequential readings of 1 kbyte of data, allo-
cated as a char*® by the vmalloc Linux kernel function.

Results are reported in Figure 6.10 and show that the Direct connection and
the Data Gateway architectures present almost the same access time. Hence the
introduction of the key to access the data is almost negligible. Clearly the stack
architecture has a longer access time due to the double redirection of the reading
function.

We also note that the delay is almost constant for successive reading operations
for all the three architectures and that the major contribution to the access time
came from the memcpy function. This has been verified by testing the vmalloc and

memcpy functions independently.

4
28 10 : —Stack Architecture (3 modules)

—Direct Connection

—Data gateway

Access Time (ns)

WJAAM L et AAWA’\JJWM—A oM, AN

1 | 1 1 1
0 50 100 150 200 250 300 350
i-th memory access

Figure 6.10: Access Time of the different architectures

We performed also a stress test of the Data Gateway architecture calculating
the number of data retrievals supported by the module. We introduced a group

of reading modules that access data stored in the Data Gateway continuously for

120

6 — Flexible, Modular and Virtualizable MAC Layer

progressively increasing time intervals, up to 21 minutes. The results per second are
reported in Table 6.3.

Number | Average num- | Cumulative
of Simul- | ber of access | number of
taneously | per module | access (access
Reading | (access per | per second)
Modules | second)

1 721,098 721,098

2 521,838 1,043,676

3 382,435 1,147,305

5 191,846 959,232

Table 6.3: Stress test of the Data Gateway Module

The test uses the same machine described in Section 6.3.6. We found that the
Data Gateway module supports about 721,098 requests per second (with maximum

of 763,976 requests per second and a minimum of 710,270 requests per second).

6.3.7 Module Exploitation in the SVC video streaming sce-

nario

To illustrate an use case of the Data Gateway module intercommunication facility we
use the cross-layer architecture devised for the support of Scalable Video Streaming
over WLANSs presented in Chapter 5.

The architecture that can be deployed using the Data Gateway and [104] to
support the video streaming is schematized in Figure 6.11, and comprises various
MAC-level modules that seamlessly communicate: some monitor or estimate the
WLAN parameters of interest and publish their values by using the Data Gate-
way facility, then the optimization logic module retrieves these values, computes
the NALU queue configuration that maximizes the overall received video quality
and stores the result of the computation in the Data Gateway. The NALU queue
management module is, finally, responsible for retrieving the optimal configuration

and installing the NALU queues accordingly.

121

6 — Flexible, Modular and Virtualizable MAC Layer

NetDevice

Linux Sched

D D |:| |:| Queue Management
P

S Tnvd Estimation

MAC80211pp
MAC80211 InformationBase STA Association Rate

FunctionHandler

ServiceHandler

Optimization Logic

p

Driver

Figure 6.11: Data Gateway exploitation in a scalable video over WLAN scenario

6.4 Chapter Conclusions

The first part of this chapter has provided the specifications of a high level software
architecture that proves the modularity, flexibility and virtualization to enhance
user experience in wireless networks. Our specification has started from an existing
framework in Linux, mac80211, which has been substantially extended in order to
support the aforementioned features. This new framework, namely mac80211++,
becomes our development platform. Specifically, the extension of the mac802114++
is twofold: () we intend to create a modular framework by untangling the existing
mac80211, at the present at early stage of development. (ii) we have developed
and implemented a Service Handling module that allows loading new services in
real-time, based on the mac80211++ framework.

We have identified as candidate modules to be implemented key representative
blocks such as SPS and Power Saving. In order to implement the virtualization, a
new layer, called FLAVIAn, has been specified between the framework and the wire-
less drivers, exceeding the bounded capabilities of the driver on which the mac80211
framework relies.

In the second part of this chapter, an information management mechanism for

modular wireless drivers architectures has been presented. The proposed solution

122

6 — Flexible, Modular and Virtualizable MAC Layer

allows for a loose coupling among MAC components by introducing a Data Gateway
module that allows for information sharing. This new component exposes a flexible
interface that enables symmetric or asymmetric information protection and push
and pull data retrieval.

The Data Gateway has been implemented in the Linux kernel, and the imple-
mented module has been exploited in an SVC video streaming over IEEE 802.11
networks scenario.

The work illustrated in Section 6.2 of this chapter has been presented at the
Future Network & Mobile Summit 2012 with an article entitled “A modular, flexi-
ble and virtualizable framework for IEEE 802.117, co-authored by Pablo Salvador,
Stefano Paris, Paul Patras, Yan Grunenberger, Xavier Pérez-Costa and Janusz
Gozdecki.

123

Conclusions

We have seen how Wireless Community Networks (WCNs) have opened new study
areas to networking researchers. In Chapter 1 we have illustrated the peculiarities of
this phenomenon and the underlying technologies, focusing on the Optimized Link
State Routing protocol (OLSR), very popular among WCNs. The development of
this phenomenon might be limited by the lack of service support from the networking

plane, which has been addressed by this thesis at different levels.

Chapter 2 has shown our approach to packet-droppers, i.e. misbehaving nodes,
mitigation in WCNs. Compared to previous work on the subject, packet forwarding
overhearing is not required, but instead steganographic techniques are employed to
hide path-wide probes in normal user traffic. The information gathered from these
probes is propagated on the whole network by a new OLSR protocol extension.
Then, using a global reputation algorithm, packet-droppers are detected and avoided
by adjusting routing metrics accordingly. Simulations show the effectiveness of this

approach.

In Chapter 3 we add support at the routing level for distributed service discov-
ery. We exploit OLSR’s default message forwarding algorithm for the transport of
multicast DNS packets, generated by end hosts and encapsulated in a new OLSR
message type. Our implementation has been tested on the field and is now popular

among WCN users.

In Chapter 4 we also devise an OLSR extension, targeted to support multimedia
streaming services. Departing from the OBAMP overlay protocol for multicast
delivery, we integrated its capabilities in the OLSR protocol mechanisms, reducing
the overall signaling overhead. We believe that building a distribution tree that

approximates the minimum spanning tree as much as possible and limiting the

124

protocol signaling provide a solid basis for making our solution scalable with the
multicast group size. Our implementation has been tested and disseminated in
WCNss.

In Chapter 5 we remain on the topic of multimedia streaming services and in
particular in the context of the optimization of video streaming over IEEE 802.11
wireless local area networks. We exploit the adaptation properties of the H.264
scalable video (SVC) encoding to devise a packet scheduler that gives priority to
the most important information of video streams. The lack of publicly available
tools for the assessment of SVC video quality encouraged us to develop and publicly
release our own set of tools (the SVEF evaluation framework). Our results, from
real testbeds, show that an application-layer packet scheduler can already yield good
performance in terms of overall quality of the delivered video streams. However, a
generalization of the scenario to the case of the presence of background uplink traffic
and a formalization of the problem lead us to find the optimal solution. This depends
on a parameter, the non-video time (7},,4), which is in practice hard to estimate. For
this reason we developed a sub-optimal cross-layer scheduler whose performances we
show to be close to our theoretical findings.

Chapter 6 is aimed at service support at the MAC layer. Researchers who wish
to extend or integrate their solutions in wireless drivers have to patch the source
code with inefficient or however inelegant hacks, which rarely find their way out of
the scope of the specific research work. Introducing modularity, flexibility and sup-
port for virtualization in Linux wireless drivers are the targets of the mac80211+4+
framework. The existing Linux mac80211 layer has been analyzed and decomposed
into smaller blocks, and support for the scheduling of MAC-layer services has been
introduced, as well as a virtualization layer. Some services that have been effectively
implemented using this framework.

In the same context, a component that allows for data exchange among mod-
ules is devised, with support for different modalities of operation, including data
protection and a notification mechanism. This component is employed to devise a

cross-layer scalable video streaming architecture.

125

Bibliography

1]

RS

SIS

[10]

[11]

[12]

[13]

“IEEE Standard for Information Technology-Telecommunications and Infor-
mation Exchange Between Systems-Local and Metropolitan Area Networks-
Specific Requirements - Part 11: Wireless LAN MAC and Physical Layer
(PHY) Specifications,” IEEE Std 802.11-2007 (Revision of IEEE Std 802.11-
1999).

“Ninux.org wireless community network.” http://ninux.org/.

“Freifunk: non commercial open initiative to support free radio networks in

the German region.” http://www.freifunk.net/.

“Athens wireless metropolitan network,” September 2008.

“Guifi.net.” http://guifi.net/en.

“Funkfeuer free net.” http://www.funkfeuer.at/.

“Pico peering agreement v1.0.” http://www.picopeer.net/PPA-en.html.

“Freenetworks.org peering agreement v1.1.” http://freenetworks.org/

peering.html.

“Commons for open free & neutral network (OFNN).” https://guifi.net/
en/CommonsXOLN.

J. Camp and E. Knightly, “The ieece 802.11 s extended service set mesh net-
working standard,” Communications Magazine, IEEE, vol. 46, no. 8, pp. 120
126, 2008.

T. Clausen and P. Jacquet, “Optimized link state routing protocol (OLSR).”
IETF RFC 3626, October 2003.

J. Chroboczek, “The Babel routing protocol.” RFC 6126 (Experimental),
2011.

A. Neumann, C. Aichele, M. Lindner, and S. Wunderlich, “Better Approach

126

Bibliography

[17]

[22]

23]

To Mobile Ad-hoc Networking (B.A.T.M.A.N.).” IETF draft-openmesh-b-a-
t-m-a-n-00, March 2008.

“B.A.T.M.A.N. advanced.”

A. Neumann, E. Lépez, and L. Navarro, “An evaluation of bmx6 for com-
munity wireless networks,” in Wireless and Mobile Computing, Networking
and Communications (WiMob), 2012 IEEE 8th International Conference on,
pp. 651-658, IEEE, 2012.

M. Abolhasan, B. Hagelstein, and J. C.-P. Wang, “Real-world performance of
current proactive multi-hop mesh protocols,” in Proceedings of the 15th Asia-
Pacific conference on Communications, APCC’09, (Piscataway, NJ, USA),
pp- 42-45, IEEE Press, 2009.

D. Murray, M. Dixon, and T. Koziniec, “An experimental comparison of
routing protocols in multi hop ad hoc networks,” in Telecommunication Net-
works and Applications Conference (ATNAC), 2010 Australasian, pp. 159 -
164, November 2010.

“Wireless battle of the mesh.” http://battlemesh.org/.

D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris, “A high-throughput
path metric for multi-hop wireless routing,” in MobiCom °03: Proceedings of
the 9th annual international conference on Mobile computing and networking,
(New York, NY, USA), pp. 134-146, ACM, 2003.

A. Tgnnesen, “Implementing and extending the optimized link state routing
protocol,” Master’s thesis, UniK University Graduate Center - University of
Oslo, 2004.

S. D. Kamvar, M. T. Schlosser, and H. G. Molina, “The EigenTrust algorithm
for reputation management in P2P networks,” in WWW ’03: Proceedings of
the 12th international conference on World Wide Web, (New York, NY, USA),
pp. 640-651, ACM, 2003.

C. Adjih, D. Raffo, and P. Miihlethaler, “Attacks against OLSR: Distributed
key management for security,” in 2005 OLSR Interop and Workshop, (Ecole
Polytechnique, Palaiseau, France), July 28-29 2005.

C. Adjih, T. Clausen, P. Jacquet, A. Laouiti, P. Miihlethaler, and D. Raffo,
“Securing the OLSR protocol,” in Proceedings of the 2nd IFIP Annual
Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net 2003), (Mahdia,

127

Bibliography

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

Tunisia), June 25-27 2003.

D. Raffo, C. Adjih, T. Clausen, and P. Miihlethaler, “An advanced signature
system for OLSR,” in Proceedings of the 2004 ACM Workshop on Security of
Ad Hoc and Sensor Networks (SASN °04), (Washington, DC, USA), pp. 10-16,
ACM Press, October 25 2004.

S. Marti, T. J. Giuli, K. Lai, and M. Baker, “Mitigating routing misbehavior
in mobile ad hoc networks,” in MobiCom ’00: Proceedings of the 6th annual
international conference on Mobile computing and networking, (New York,
NY, USA), pp. 255-265, ACM, 2000.

S. Buchegger and J.-Y. Le Boudec, “Performance analysis of the CONFI-
DANT protocol,” in MobiHoc °02: Proceedings of the 3rd ACM international
symposium on Mobile ad hoc networking & computing, (New York, NY, USA),
pp. 226236, ACM, 2002.

P. Michiardi and R. Molva, “CORE: a collaborative reputation mechanism to
enforce node cooperation in mobile ad hoc networks,” in Proceedings of the
IFIP TC6/TC11 Sixth Joint Working Conference on Communications and
Multimedia Security, (Deventer, The Netherlands, The Netherlands), pp. 107—
121, Kluwer, B.V., 2002.

K. Paul and D. Westhoff, “Context aware detection of selfish nodes in DSR
based ad-hoc networks,” in proceedings of IEEE GLOBECOM, pp. 178-182,
2002.

S. Buchegger, C. Tissieres, and J. Le Boudec, “A test-bed for misbehavior
detection in mobile ad-hoc networks - how much can watchdogs really do?,”
in Proceedings of IEEE WMCSA 2004, (English Lake District, UK), December
2004.

E. Ayday, H. Lee, and F. Fekri, “An iterative algorithm for trust and reputa-
tion management,” in Information Theory, 2009. ISIT 2009. IEEE Interna-
tional Symposium on, pp. 2051 -2055, july 2009.

W. Cordeiro, “OLSR modules for ns2 (OLSRMD, OLSRETX, OLSRML,
OLSR).”

C. Zouridaki, B. L. Mark, M. Hejmo, and R. K. Thomas, “E-hermes: A robust
cooperative trust establishment scheme for mobile ad hoc networks,” Ad Hoc
Networks, vol. 7, pp. 1156-1168, August 2009.

128

Bibliography

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[44]

[45]

[46]

D. Djenouri and N. Badache, “On eliminating packet droppers in MANET: A
modular solution,” Ad Hoc Networks, vol. 7, pp. 1243-1258, August 2009.

S. Yang, S. Vasudevan, and J. Kurose, “Witness-based detection of forwarding
misbehaviors in wireless networks,” in Wireless Mesh Networks (WIMESH
2010), 2010 Fifth IEEE Workshop on, pp. 1-6, IEEE, June 2010.

S. Zakhary and M. Radenkovic, “Reputation-based security protocol for
MANETS in highly mobile disconnection-prone environments,” in Proceedings
of WONS 2010, Kranjska Gora, Slovenia, February 2010.

N. Duffield, F. L. Presti, V. Paxson, and D. Towsley, “Inferring link loss using
striped unicast probes,” in IEEE INFOCOM 2001, pp. 915-923, IEEE, April
2001.

“Olsrd official website.” http://www.olsr.org/.

“Comunidade portuguesa de aficionados da tecnologia wireless.” http://
unimos.net/.

J. Postel, “Domain name system structure and delegation.” IETF RFC 1591,
March 1994.

N. W. Group, “Protocol standard for a NetBIOS service on a TCP/UDP
transport: detailed specifications.” IETF RFC 1002, March 1987.

B. A. D. Thaler and L. Esibov, “Link-local multicast name resolution
(LLMNR).” RFC 4795 (Informational), January 2007.

Cheshire and Krochmal, “Multicast DNS.” draft-cheshire-dnsext-
multicastdns-07, September 2008.

M. Rimondini, “Emulation of computer networks with netkit,” Tech. Rep.
RT-DIA-113-2007, Dipartimento di Informatica e Automazione, Roma Tre
University, January 2007.

A. Detti and N. Blefari-Melazzi, “Overlay, Bortuvka-based, ad-hoc multicast
protocol: description and performance analysis,” Wireless Communications
and Mobile Computing, 2007.

M. Ge, S. V. Krishnamurthy, and M. Faloutsos, “Application versus network
layer multicasting in ad hoc networks: the ALMA routing protocol,” FElsevier
Ad Hoc Networks Journal, vol. 4, no. 2, pp. 283-300, 2006.

S. J. Lee, W. Su, and M. Gerla, “On-demand multicast routing protocol in

129

Bibliography

[51]

[52]

[55]

multihop wireless mobile networks,” ACM/Baltzer Mobile Networks and Ap-
plications, vol. 7, no. 6, pp. 441-453, 2002.

A. Detti, C. Loreti, and R. Pomposini, “Overlay Boruvka-based ad hoc mul-
ticast protocol - demonstration,” in IFIP Med-Hoc-Net 2006 - demo session,
2006.

R. Perlman, “An algorithm for distributed computation of a spanning tree in
an extended LAN,” ACM SIGCOMM Computer Communication Review 15,
vol. 15, pp. 44-53, Septempber 1985.

I. T. Union, “ITU-T recommendation H.264: Advanced video coding for
generic audiovisual services,” November 2007.

M. van der Schaar, S. Krishnamachari, S. Choi, and X. Xu, “Adaptive cross-
layer protection strategies for robust scalable video transmission over 802.11
WLANS,” Selected Areas in Communications, IEEE Journal on, vol. 21,
pp. 1752 - 1763, dec. 2003.

R. Kuschnig, I. Kofler, M. Ransburg, and H. Hellwagner, “Design options and
comparison of in-network h.264/svc adaptation,” Journal of Visual Commu-
nication and Image Representation, vol. 19, no. 8, pp. 529 — 542, 2008. Special
issue: Resource-Aware Adaptive Video Streaming.

L. Han, D. Raychaudhuri, H. Liu, and K. Ramaswamy, “Cross layer optimiza-
tion for scalable video multicast over 802.11 WLANSs,” in Consumer Commu-
nications and Networking Conference, 2006. CCNC 2006. 3rd IEEE, vol. 2,
pp- 838 - 843, jan. 2006.

Y. P. Fallah, P. Nasiopoulos, and H. Alnuweiri, “Efficient transmission of H.264
video over multirate IEEE 802.11e WLANSs,” EURASIP J. Wirel. Commun.
Netw., vol. 2008, pp. 11:1-11:14, January 2008.

I. Kofler, M. Prangl, R. Kuschnig, and H. Hellwagner, “An H.264/SVC-based
adaptation proxy on a WiFi router,” in Proceedings of the 18th International
Workshop on Network and Operating Systems Support for Digital Audio and
Video, NOSSDAV 08, (New York, NY, USA), pp. 63-68, ACM, 2008.

R. Kuschnig, I. Kofler, M. Ransburg, and H. Hellwagner, “Design options and
comparison of in-network H.264/SVC adaptation,” Journal of Visual Commu-
nication and Image Representation, vol. 19, no. 8, pp. 529 — 542, 2008. Special

issue: Resource-Aware Adaptive Video Streaming.

130

Bibliography

[56]

[59]

[60]

[61]

[62]
[63]

[66]

M. Eberhard, L. Celetto, C. Timmerer, E. Quacchio, H. Hellwagner, and F. S.
Rovati, “An interoperable streaming framework for scalable video coding based
on mpeg-21.” in Visual Information Engineering, 2008. VIE 2008. 5th Inter-
national Conference on, pp. 723 -728, 2008.

“IEEE standard 802.11-2007, IEEE standard for information technology -
telecommunications and information exchange between systems - local and
metropolitan area networks-specific requirements - part 11: Wireless LAN
medium access control (MAC) and physical layer (PHY) specifications;,” June
2007.

A. Kamerman and L. Monteban, “WaveLAN-II: A high-performance wireless
LAN for the unlicensed band,” Bell Labs Technical Journal, vol. 2, pp. 118—
133, Aug. 1997.

K. Ramachandran, H. Kremo, M. Gruteser, and P. Spasojevié¢, “Scalability
analysis of rate adaptation techniques in congested ieee 802.11 networks: An
orbit testbed comparative study,” in in Proc. of IEEE WoWMoM, 2007.

C. H. Foh, Y. Zhang, Z. Ni, J. Cai, and K. N. Ngan, “Optimized cross-layer de-
sign for scalable video transmission over the IEEE 802.11e networks,” Circuits
and Systems for Video Technology, IEEE Transactions on, vol. 17, pp. 1665
-1678, december 2007.

“Joint scalable video model - reference software.” http://ip.hhi.de/
imagecom_G1/savce/downloads/SVC-Reference-Software.htm.

T. Zahariadis, “Astrals project presentation,” September 2007.

S. W. Y. W. T. Schierl and A. Eleftheriadis, “Rtp payload format for SVC
video.” draft-ietf-avt-rtp-sve-17, February 2009.

J. Kim, S. Kim, S. Choi, and D. Qiao, “CARA: Collision-Aware Rate Adapta-
tion for IEEE 802.11 WLANSs,” in INFOCOM 2006. 25th IEEE International
Conference on Computer Communications. Proceedings, pp. 1-11, Apr. 2007.
S. H. Y. Wong, H. Yang, S. Lu, and V. Bharghavan, “Robust rate adaptation
for 802.11 wireless networks,” in Proceedings of the 12th annual international
conference on Mobile computing and networking, MobiCom 06, (New York,
NY, USA), pp. 146-157, ACM, 2006.

M. Heusse, F. Rousseau, G. Berger-Sabbatel, and A. Duda, “Performance

131

Bibliography

[67]

[68]

[71]

[72]

[75]

[76]

anomaly of 802.11b,” in INFOCOM 2003. Twenty-Second Annual Joint Con-
ference of the IEEE Computer and Communications. IEEE Societies, vol. 2,
pp- 836 - 843 vol.2, march-3 april 2003.

H. K. Lee, V. Hall, K. H. Yum, K. I. Kim, and E. J. Kim, “Bandwidth esti-
mation in wireless lans for multimedia streaming services,” Adv. MultiMedia,
vol. 2007, pp. 9-9, January 2007.

C. Sarr, C. Chaudet, G. Chelius, and I. G. Lassous., “A node-based available
bandwidth evaluation in IEEE 802.11 ad hoc networks,” in Proceedings of the
11th International Conference on Parallel and Distributed Systems - Work-
shops - Volume 02, ICPADS 05, (Washington, DC, USA), pp. 68-72, IEEE
Computer Society, 2005.

S. H. Shah, K. Chen, K. Nahrstedt, and I. Introduction, “Available bandwidth
estimation in IEEE 802.11-based wireless networks,” 2003.

M. N. Nielsen, K. Ovsthus, and L. Landmark, “Field trials of two 802.11
residual bandwidth estimation methods,” in Mobile Adhoc and Sensor Systems
(MASS), 2006 IEEE International Conference on, pp. 702 -708, oct. 2006.
D. Wu, Y. T. Hou, and Y.-Q. Zhang, “Scalable video coding and transport
over broadband wireless networks,” Proceedings of the IEEE, vol. 89, no. 1,
pp. 6-20, 2001.

H. Schwarz and M. Wien, “The scalable video coding extension of the
H.264/AVC standard [standards in a nutshell],” Signal Processing Magazine,
IEFEE, vol. 25, no. 2, pp. 135-141, 2008.

M. Handley, S. Floyd, J. Padhye, and J. Widmer, “TCP friendly rate control
(TFRC): protocol specification).” IETF RFC 3448, January 2003.

O. I. Hillestad, A. Perkis, V. Genc, S. Murphy, and J. Murphy, “Adaptive
H.264/MPEG-4 SVC video over IEEE 802.16 broadband wireless networks,”
in Packet Video 2007, pp. 26-35, 2007.

J. Viéron and C. Guillemot, “Real-time constrained TCP-compatible rate con-
trol for video over the internet,” Multimedia, IEEE Transactions on, vol. 6,
no. 4, pp. 634-646, 2004.

T. Schierl, T. Stockhammer, and T. Wiegand, “Mobile video transmission
using scalable video coding,” Circuits and Systems for Video Technology, IEEE
Transactions on, vol. 17, no. 9, pp. 1204-1217, 2007.

132

Bibliography

[77]

[78]

[30]

[81]

[85]

[30]

H.-L. Chen, P.-C. Lee, and S.-H. Hu, “Improving scalable video transmission
over IEEE 802.11e through a cross-layer architecture,” in Wireless and Mobile
Communications, 2008. ICWMC °08. The Fourth International Conference
on, pp- 241-246, 2008.

Y. Fallah, H. Mansour, S. Khan, P. Nasiopoulos, and H. Alnuweiri, “A link
adaptation scheme for efficient transmission of h.264 scalable video over multi-
rate WLANSs,” Clircuits and Systems for Video Technology, IEEE Transactions
on, vol. 18, no. 7, pp. 875-887, 2008.

R. Agrawal and V. Subramanian, “Optimality of certain channel aware
scheduling policies,” in Proceedings of the Annual Allerton Conference on
Communication Control and Computing, vol. 40, pp. 1533-1542, The Uni-
versity; 1998, 2002.

T. Ozcelebi, M. Sunay, M. Civanlar, and A. Tekalp, “Application-layer QoS
fairness in wireless video scheduling,” in Image Processing, 2006 IEEE Inter-
national Conference on, pp. 1673-1676, 2006.

X. Ji, J. Huang, M. Chiang, G. Lafruit, and F. Catthoor, “Scheduling and
resource allocation for SVC streaming over OFDM downlink systems,” Circuits
and Systems for Video Technology, IEEE Transactions on, vol. 19, no. 10,
pp. 1549-1555, 20009.

G. Bianchi, A. Detti, P. Loreti, C. Pisa, F. Proto, W. Kellerer, S. Thakolsri,
and J. Widmer, “Application-aware h.264 scalable video coding delivery over
wireless lan: Experimental assessment,” 2009.

G. Bianchi, “Performance analysis of the IEEE 802.11 distributed coordination
function,” Selected Areas in Communications, IEEE Journal on, vol. 18, no. 3,
pp. 535-547, 2000.

G. Bianchi, A. Di Stefano, C. Giaconia, L. Scalia, G. Terrazzino, and I. Tin-
nirello, “Experimental assessment of the backoff behavior of commercial IEEE
802.11b network cards,” in INFOCOM 2007. 26th IEEFE International Con-
ference on Computer Communications. IEEE, pp. 1181-1189, 2007.

Linux kernel mac80211 framework for wireless device driver.
http://linuxwireless.org/en/developers/Documentation/mac80211.

FLAVIA Project (Flexible Architecture for Internet Access). http://www.ict-

flavia.eu/.

133

Bibliography

[87]

[91]

[92]

[95]

[96]

[97]

“IEEE Standard for Information technology—Telecommunications and infor-
mation exchange between systems—Local and metropolitan area networks—
Specific requirements Part 11: Wireless LAN MAC and PHY Specifications
Amendment 5: Enhancements for Higher Throughput,” IFEE Std 802.11n-
2009.

G. Bhanage, D. Vete, 1. Seskar, and D. Raychaudhuri, “SplitAP: Leveraging
Wireless Network Virtualization for Flexible Sharing of WLANSs,” in IFEE
GLOBECOM, pp. 1 -6, dec. 2010.

T. Hamaguchi, T. Komata, T. Nagai, and H. Shigeno, “A Framework of Bet-
ter Deployment for WLAN Access Point Using Virtualization Technique,” in
IEEE WAINA, pp. 968 -973, Apr. 2010.

L. Xia, S. Kumar, X. Yang, P. Gopalakrishnan, Y. Liu, S. Schoenberg, and
X. Guo, “Virtual WiFi: bring virtualization from wired to wireless,” in Proc.
of the 7th ACM SIGPLAN/SIGOPS, VEE '11, (Newport Beach, California,
USA), pp. 181-192, 2011.

G. Aljabari and E. Eren, “Virtualization of wireless LAN infrastructures,” in
IEEE IDAACS, vol. 2, pp. 837 -841, Sept. 2011.

D. Camps-Mur, X. Pérez-Costa, and S. Sallent-Ribes, “Designing energy ef-
ficient access points with Wi-Fi Direct,” Flsevier Comput. Netw., vol. 55,
pp. 2838-2855, Sept. 2011.

K. Huang, K. R. Duffy, and D. Malone, “H-RCA: 802.11 Collision-aware Rate
Control,” Technical report, Hamilton Institute, 2011.

C. Aguayo Gonzalez, C. Dietrich, and J. Reed, “Understanding the software
communications architecture,” Communications Magazine, IEFEE, vol. 47,
pp- 50 -57, september 2009.

E. Blossom, “Gnu radio: tools for exploring the radio frequency spectrum,”
Linuzx journal, vol. 2004, no. 122, p. 4, 2004.

M. Neufeld, J. Fifield, C. Doerr, A. Sheth, and D. Grunwald, “Softmac-flexible
wireless research platform,” in Proc. HotNets-1V, 2005.

C. Doerr, M. Neufeld, J. Fifield, T. Weingart, D. C. Sicker, and D. Grun-
wald, “Multimac-an adaptive mac framework for dynamic radio networking,”
in IEEE DySPAN, 2005.

134

Bibliography

[98]

[99]

[100]

[101]

[102]
[103]
[104]

7

A. Rao and I. Stoica, “An overlay mac layer for 802.11 networks,” in Proceed-
ings of the 3rd international conference on Mobile systems, applications, and
services, pp. 135-148, ACM, 2005.

A. Jow, C. Schurgers, and D. Palmer, “Calradio: a portable, flexible 802. 11
wireless research platform,” in International Conference On Mobile Systems,
Applications And Services: Proceedings of the 1 st international workshop on
System evaluation for mobile platforms, vol. 11, pp. 49-54, 2007.

A. Khattab, J. Camp, C. Hunter, P. Murphy, A. Sabharwal, and E. W.
Knightly, “Warp: a flexible platform for clean-slate wireless medium access
protocol design,” ACM SIGMOBILE Mobile Computing and Communications
Review, vol. 12, no. 1, pp. 56-58, 2008.

P. Gallo, F. Gringoli, and I. Tinnirello, “On the flexibility of the IEEE 802.11
technology: Challenges and directions,” in Future Network Mobile Summit
(FutureNetw), 2011, pp. 1 -10, june 2011.

M. Khambatti-Mujtaba, “Named pipes, sockets and other ipc,”

R. Love, “Get on the d-bus,” Linuz Journal, vol. 2005, no. 130, p. 3, 2005.

P. Salvador, S. Paris, C. Pisa, P. Patras, Y. Grunenberger, X. Perez-Costa,
and J. Gozdecki, “A modular, flexible and virtualizable framework for IEEE
802.11,” in Future Network Mobile Summit (FutureNetw), 2012, pp. 1 -8, july
2012.

135

Bibliography

Appendix A: Publications

e “Application-aware H.264 Scalable Video Coding delivery over Wireless LAN:
Experimental assessment” - Bianchi, G.; Detti, A.; Loreti, P.; Pisa, C.; Proto,
F.S.; Kellerer, W.; Thakolsri, S.; Widmer, J.; Cross Layer Design, 2009. TW-
CLD ‘09. Second International Workshop on 11-12 June 2009 Page(s):1 - 6
Digital Object Identifier 10.1109/IWCLD.2009.5156512

e “The OLSR mDNS Extension for Service Discovery” - Proto, F.S.; Pisa,
C.; Sensor, Mesh and Ad Hoc Communications and Networks Workshops,
2009. SECON Workshops ‘09. 6th Annual IEEE Communications Soci-
ety Conference on 22-26 June 2009 Page(s):1 - 3 Digital Object Identifier
10.1109/SAHCNW.2009.5172965

e “SVEF: an Open-Source Experimental Evaluation Framework for H.264 Scal-
able Video Streaming” - Detti, A.; Bianchi, G.; Pisa, C.; Proto, F.S.; Loreti,
P.; Kellerer, W.; Thakolsri, S.; Widmer, J.; Computers and Communications,
2009. ISCC 2009. IEEE Symposium on 5-8 July 2009 Page(s):36 - 41 Digital
Object Identifier 10.1109/ISCC.2009.5202390

e “Cross-layer H.264 Scalable Video Downstream Delivery Over WLANs” -
Bianchi, G; Detti, A; Loreti P; Pisa, C; Thakolsri, S.; Kellerer, W; Wid-
mer, J.C.; World of Wireless Mobile and Multimedia Networks (WoWMoM),
2010 IEEE International Symposium on a , vol., no., pp.1-9, 14-17 June 2010
Digital Object Identifier 10.1109/WOWMOM.2010.5534890

e “Implementation of the OBAMP overlay protocol for multicast delivery in
OLSR wireless community networks” - Proto, F.S.; Pisa, C.; World of Wire-
less Mobile and Multimedia Networks (WoWMoM), 2010 IEEE International

136

Bibliography

Symposium on a , vol., no., pp.1-3, 14-17 June 2010 Digital Object Identifier
10.1109/WOWMOM.2010.5534941

“A framework for Packet-Droppers Mitigation in OLSR Wireless Community
Networks” - Proto, F.S.; Detti, A.; Pisa, C.; Bianchi, G.; IEEE ICC 2011 5-9
June, Kyoto.

“A modular, flexible and virtualizable framework for IEEE 802.11” - Salvador,
P.; Paris, S.; Pisa, C.; Patras, P.; Grunenberger, Y.; Perez-Costa, X.; Gozdecki,
J., Future Network & Mobile Summit (FutureNetw), 2012 Publication Year:
2012 , Page(s): 1-8

137

