
1

Streamline: an Optimal Distribution Algorithm for
Peer-to-Peer Real-time Streaming
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Abstract—In this paper we propose and evaluate an overlay distribution algorithm for P2P, chunk-based, streaming systems over
forest-based topologies. In such systems, the stream is divided in chunks; chunks are delivered by each node in a store-and-forward
way. A relaying node starts distributing a chunk only when it has completed its reception from another node. Peers are logically
organized in a forest of trees, where each tree includes all peers. The source periodically distributes different chunks to each tree for
their delivery.
Our key idea consists in employing serial transmission: for each tree and thus for each chunk, the source node sends the chunk to its
children in series; the same holds for each peer node of the tree, excluding the leaves.
Besides this basic idea, the contributions of this paper are: 1) we demonstrate the feasibility of serial transmission over a forest of
trees, which is not a trivial problem, unlike the case of parallel transmission; 2) we derive an analytical model to evaluate the system
performance; 3) we derive a theoretical bound for the number of nodes reachable in a given time interval or equivalently for the time
required to reach a given number of nodes; 4) we prove the optimality of our approach in terms of its capability to reach such bound;
5) we develop a general simulation package for P2P streaming systems and we use it to compare our solution to literature results.
Finally, we stress that this paper is focused on the theoretical properties and performance understanding of the proposed distribution
algorithm, rather than on its practical implementation in a real system. However, we briefly describe also a practical workable
implementation of our algorithm.

Index Terms—Distributed Systems, Distributed applications, Performance of Systems, Performance attributes.
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1 INTRODUCTION
Peer-to-peer (P2P) overlay systems are being proposed to
stream multimedia audio and video content from a source to
a large number of end-users.
In this scenario, the most natural and earlier solution for

deploying a P2P streaming system is to organize peer nodes
in one or more overlay multicast trees, and hence continuously
deliver the streamed information across the formed paths. This
is the case in [1], [2], [3]. Since the information, organized in
the form of small IP packets, is sequentially delivered across
these trees, the processing time of packets at each network
node is marginal, and performance bounds depend only on the
“optimality” of the formed distribution paths (with respect to
some meaningful performance metric). However, in practice,
this approach may not be viable in large-scale systems, and
with nodes characterized by intermittent connectivity (churn).
In fact, whenever a node in the middle of a path abruptly
disconnects, complex procedures would be necessary to i)
allow the reconstruction of the distribution path, and ii) allow
the nodes affected by such event to recover the amount of
information lost during the path reconfiguration phases. To
overcome such limitations, a completely different approach,
called data-driven, delivers content on the basis of content
availability information, locally exchanged among connected
peers, without any a priori pre-established path. This approach

• The Authors are with the Dipartimento di Ingegneria Elettronica
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essentially creates a mesh topology among overlay nodes.
Several proposed solutions, such as [4], [5], [6], [7], adopt
the data-driven approach.
In this paper, we focus on chunk-based systems, where,

similarly to most file-sharing P2P applications, the streaming
content is segmented into smaller pieces of information called
chunks. Chunks are elementary data units handled by the
nodes composing the network in a store-and-forward fashion.
A relaying node can start distributing a chunk only when it has
completed its reception from another node. The data-driven
solutions proposed in [4], [6], [7] may be regarded as chunk-
based. A characterizing feature of the chunk-based approach
is that, in order to reduce the per-chunk signalling burden, the
chunk size is typically kept to a fairly large value, greater than
the typical packet size. Thus, a chunk contains a number of
packets which is greater than one; typical chunk sizes are in
the order of 60 kbytes [4]. Instead, systems such as [1], [2],
[3] still handle the information in store-and-forward fashion
but with the important difference that the basic unit of this
operation is the IP packet, which is considerably smaller than
a typical chunk.
As for the overlay distribution topology, we too assume a

so-called forest-based topology: different chunks are cyclically
distributed across a finite set of distribution trees, where each
tree includes all peers and each tree is used to distribute a
sub-set of chunks.
The main novelty of our approach consists in using a serial

transmission: for each tree and thus for each chunk, the source
node sends the chunk to its children in series; the same holds
for each peer node of the tree, excluding the leaves.
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This may seem a small difference with respect to literature
proposals, but we will show that this choice has important
consequences. The idea behind serial transmission is that giv-
ing all the uplink capacity to a single child, instead of sharing
it among multiple children, allows that child to start serving
other nodes before than in the case of parallel transmission,
and before than in any other ways of dividing the available
capacity. This means that all nodes, except the last served ones,
can start serving their children in the smallest possible amount
of time; in turn, served children can become fathers of other
children in the smallest possible amount of time, and so on.
From the point of view of a given node, serial transmission,

parallel transmission, or any other ways of dividing the avail-
able uplink capacity are the same, i.e. there is not a particular
advantage, for a given node (provided that all the capacity is
fully used). However, if we look at the system on the whole,
we will show that serializing the chunk distribution brings
about significance performance advantages in terms of number
of nodes reached in a given time interval or equivalently in
terms of time required to reach a given number of nodes. We
show that serial transmission is the best possible policy, for
whatever value of the number of nodes to be reached, and of
the time instant in which the system is observed.
The main contributions of this paper are:
• we demonstrate the feasibility of serial transmission over
a forest of trees, i.e., that serial transmission does not pre-
vent the realization of multiple distribution trees without
conflicts in the uplink capacity; as it will become clear
later on, this is not a trivial result;

• we derive an analytical model to evaluate the system
performance, based on k-step Fibonacci numbers; since
the sum of the first t values of a k-step Fibonacci series
plays a fundamental role in our analytical model, a side
result of our work is the derivation of a novel explicit
expression for such sum and for its asymptotic value for
large values of t;

• we derive a theoretical performance bound for the number
of nodes reachable in a given time interval, or equiva-
lently for the time required to reach a given number of
nodes; this bound applies to any chunk-based distribution
algorithm operating over a forest topology;

• we prove the optimality of our algorithm in terms of its
capability to reach such bound;

• we find an asymptotic expression of the above perfor-
mance bound in terms of the number of nodes receiving
a chunk in a large time interval.

• we develop a simulation package and we use it to
compare our solution to literature results.

Since we formally prove that our solution is optimal, in
the sense explained above, we would not need to compare
our algorithm to other solutions. However, we want to give
a feeling of the quantitative improvements brought about by
the proposed serial transmission. Ideally, we would like to
compare analytically our solution to literature work. However,
quite simply, analytical models of other solutions do not exist.
For this reason, we follow a twofold approach: i) we perform
an analytical comparison between Streamline and an ideal

parallel transmission (conceived by ourselves for this purpose),
which differs from Streamline only in the fact of employing
parallel transmission instead of serial transmission; ii) we
perform a comparison between Streamline and a reference lit-
erature solution, SplitStream [3], by using a suitably developed
simulation package, based on our OPSS [8].
Finally, we emphasize that our paper is theory-oriented,

and as such addressed to understand the performance limits
achievable in forest-based topologies. Thus, we assume that
the forest-based distribution topology is derived thanks to a
sort of Maxwell’s demon that holds a global and centralized
vision of the whole network. This conceptual entity is able to
instruct peer nodes on how to optimally organize the overlay
forest-based topology and schedule chunk transmissions. Also,
we do not take into account propagation delays induced by the
underlying physical network topology. Practically speaking,
we assume that propagation delays are negligible when com-
pared with the chunk transmission time - indeed an assumption
valid for most practical P2P streaming systems. Finally, we
assume that there is no churn.
These are rather strong assumptions, but we need them

to make the problem tractable. In this way we can set the
framework of what is doable and achievable. The value of
this paper lies in such theoretical analysis, which sheds new
light on these phenomena.
However, we are aware that it is also important to show

to the reader the possibility of really implementing in the
real world a scheme based on our idea. For this reason, this
paper includes a brief description of a practical workable
implementation of our algorithm. As a matter of fact, we have
shown in a conference paper [9] that it is possible to remove
most of the assumptions listed above and design a practical and
working algorithm, named Operational Streamline or simply
O-Streamline. O-Streamline does not rely on a centralized
vision of the whole network and takes the churn into account.
In [9] we also evaluate, by means of simulations, the perfor-
mance of O-Streamline, and we show that such performance
is close to the optimal bounds derived for Streamline in this
paper. O-Streamline and its analysis make possible to state
that serial transmission is to be preferred also in a realistic
environment, and give a definitive evidence of the superiority
of our approach. The benefits of Streamline are realizable in
practice and not limited to an ideal environment.
This paper is structured as follows. Section 2 introduces the

framework of our proposal. Section 3 describes our proposal.
In Section 4 we derive the analytical model of our algorithm
and prove that our algorithm is optimal for the reference
topology, in the sense explained above. Section 5 assesses the
performance of our algorithm. Section 7 discusses the related
work. Section 8 gives some concluding remarks. Finally,
Appendix A derives some results on k-step Fibonacci sums,
necessary to evaluate the performance of our algorithm.

2 REFERENCE FRAMEWORK
We assume the following reference framework. We consider
a stream generated by a single node (source) at a constant
rate R (Kbps) and segmented into chunks with fixed size C
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Fig. 1. Streamline distribution architecture for the case U = 2, k = 4 and a network of 24 nodes.
(Kb). The source starts transmitting at time instant t = 0.
We define T = C/R (s) the chunk duration, which is also
the time elapsing between two consecutive chunks. Besides
to the source, the network is composed of an unlimited
number of nodes, which join the system simultaneously, are
always on and are assumed to be homogeneous in terms of
uplink capacity (equal to B Kbps) and downlink capacity
(this simplification is commonly used also in other literature
proposals). The downlink capacity is assumed to be great
enough so that downlinks are not a bottleneck of the system.
Each node has k overlay parents, from which it receives
chunks, and k overlay children, to which it serves chunks,
being the parent set potentially different from the children set.
We assume that the ratio between the uplink capacity of peer
nodes and the stream bitrate is equal to U , being U an integer
number. Finally, we normalize all performance figures with
respect to the time needed to download a complete chunk at
rate B. Thus, the latter time interval will be the unit of time.

3 STREAMLINE
Our distribution architecture organizes peers in multiple over-
lay trees, in such a way that each tree includes all peers. The
root nodes of the trees are children of the source. The source
periodically distributes different chunks to each tree for their
delivery in such a way that each tree is used to distribute a
sub-set of chunks. For each tree, and thus for each chunk, the
source node sends the chunk to its children in series; the same
holds for each peer node of the tree, excluding the leaves.
From the point of view of a given node, serial transmission,

or parallel transmission or any other way of dividing the
available uplink capacity among children are the same, i.e.
there is not a particular advantage, for a given node; however,
if we look at the system on the whole, we will show that
serializing the chunk distribution brings about significance
performance advantages. In fact, all nodes, except the last
served ones, start serving other nodes in the smallest possible
amount of time.
We also assume that the number k of children is greater than

U . This assumption is necessary in a forest-based topology.
Since each node may transmit a given chunk to at most U
children, the condition k > U is necessary to organize peers in
multiple overlay trees and transmit different sub-sets of chunks
across different overlay trees. We also note that this conclusion

is independent from the way of dividing the available uplink
capacity among children. For the sake of simplicity, we assume
that k is an integer multiple of U , even if it is possible
to generalize our analysis to arbitrary integer values of k.
Thus, the number of trees is k/U ; the number of sub-sets
of chunks is equal to k/U as well, and each sub-set of chunks
is distributed along a tree.
The operation of our distribution architecture is illustrated

in figure 1 for the case U = 2, k = 4 and a network of 24
nodes. The trees are k/U = 2 and there are two sub-set of
chunks.
In this figure the source is denoted with an “S”. Nodes and

chunks are progressively indexed starting from 1. Going from
the upper part of the figure to its lower part, we see how the
first two chunks are progressively distributed starting from the
source. The time since the start of the transmission, measured
in time units, and until time instant t = 7, is reported on the
left side of the figure. The tree on the left hand side of the
figure distributes the first chunk, while the tree on the right
hand side of the figure distributes the second chunk. Since the
first chunk is assumed to be available for transmission at the
source at time instant t = 0, the source starts transmitting the
first chunk to node 1 at t = 0; after finishing this transmission,
i.e at t = 1, it sends the first chunk to node 2, in series. When
the second chunk is available at the source (i.e. t = 2), the
source serves children other than the ones to which the same
source has served the first chunk. In more detail, the source
starts transmitting the second chunk to node 13 at t = 2 and
after finishing this transmission, i.e at t = 3, it sends the
second chunk to node 14, in series.
In such a way, after transmitting the first chunk to nodes 3

and 4 in series (i.e. at t = 3), node 1 starts serving the first
chunk also to the remaining children 7 and 13 in series. The
same holds for node 2, which transmits the first chunk only
three times instead of four, since all the nodes in the network
have already received the first chunk at t = 5 and there are
no other nodes to be served. In their turn, all the served nodes
transmit the first chunk to their children (if any) in series. In
the same manner, nodes 13 and 14 distribute in series the
second chunk to their children, which in turn transmit the
received chunk in series to their children (if any), and so on,
until all nodes in the network receive the second chunk.
And what about the third and the fourth chunk? As soon
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Fig. 2. Streamline distribution process of the first two
chunks in the time interval (0, 8) for the case U = 2, k = 4.

as the third chunk is available for the transmission at the
source (i.e. at t = 4), the source transmits it to nodes 1 and
2 in series, and the third chunk is distributed along the grey
distribution tree used for the first chunk. The fourth chunk
is instead distributed along the black distribution tree, used
for the second chunk. In other words, the system works as
if there were two classes of chunks, grey-colored chunks and
black-colored chunks, distributed through two different trees,
respectively the grey-one and the black-one. In this example,
grey-colored chunks are the even-index ones, while black-
colored chunks are the odd-index ones. It is to be noted that
each node in the grey (black) distribution tree receives a new
grey (black) chunk every 4 time units and can serve all its
4 children, if such children have no still received the grey
(black) chunk. Thus, the case U = 2, k = 4 is characterized
by two distribution trees, which repeat themselves with period
4. In general, the k/U distribution trees repeat themselves with
period k.
Figure 2 provides an alternative representation of the op-

eration of the proposed distribution algorithm for the case
U = 2, k = 4. From the notational point of view: i) the
source is denoted with an “S”; ii) nodes are progressively
indexed starting from 1; iii) in the notationm → n,m denotes
the sender node and n denotes the receiver node. The time is
shown in the bottom part of the figure, from 0 to 8 (time units).
The figure depicts which nodes are transmitting to which other
nodes, for each time unit. Going from the left part of the
figure to the right part, we see how chunks are progressively
distributed starting from the source till they reach all nodes.
Chunk 1 is available at the source at time 0, while chunk 2
is available at the source at time 2. The upper part of the
figure makes possible to follow the transmission of the first

chunk from the source to all nodes. The lower part refers to
the second chunk. For instance, after the first time unit, node 1
transmits the first chunk to node 3, while the source transmits
the same chunk to node 2; then, after the second time unit,
nodes 1, 2 and 3 transmit the first chunk respectively to nodes
4, 5 and 6. The figure shows only the transmission of the first
two chunks; however, as explained above, the other chunks
will be transmitted by repeating the same pattern with period
k = 4. The figure allows stating that the number of nodes that
receive the first two chunks of the stream within 8 time units
is 47.
To complete the definition of Streamline we must first solve

a problem, which we call “tree intertwining” problem. For our
distribution algorithm to work it is necessary that the k/U
distribution trees are organized in such a way that no conflicts
in uplink capacity arise.
In other words we must verify that there exists an organi-

zation of the k/U distribution trees such that a given node is
not required to serve more than one receiver at the same time.
Otherwise our approach would not work.
In the next subsection we describe the “tree intertwining”

problem, by means of a low-dimension example, with U = 1;
we could make the same description in more general terms,
and using parameters instead of specific numbers but we find
the numerical example more effective. The solution of the
general “tree intertwining” problem can be found in [10], since
we can not include it here for space limitations.

3.1 The “tree intertwining” problem
To understand the tree intertwining problem, we propose the
following example. Let us consider our distribution algorithm
in case of k = 3, U = 1 and a network of 28 nodes. In such a
case, peer nodes are organized into 3 distribution trees, which
are denoted as T3,1, T3,2 and T3,3. T3,1, T3,2 and T3,3 repeat
themselves with period 3 in such a way that

• T3,1 is used to transmit chunks 1, 4, 7, . . . and in general
all chunks c with c mod 3 = 1;

• T3,2 is used to transmit chunks 2, 5, 8, . . . and in general
all chunks c with c mod 3 = 2;

• T3,3 is used to transmit chunks 3, 6, 9, . . . and in general
all chunks c with c mod 3 = 0.

Figure 3 shows how the distribution trees T3,1, T3,2 and T3,3

allow distributing the first 3 chunks in the time interval (0, 8).
This figure has the same structure and meaning as figure 2.
Going from the left part of the figure to the right part, we see
how the first three chunks are progressively distributed starting
from the source till they reach all nodes. The difference with
respect to figure 2 is that now U = 1, k = 3 and thus
we have three distribution trees. In addition, peer nodes are
differently indexed: peer nodes are indexed starting from 1
in each overlay tree and the subscript 1, 2 or 3 allows to
distinguish between T3,1, T3,2 and T3,3. In other words, we
do not use the same index to denote the same node in each
overlay tree, but different indexes denote the same node in
different distribution trees. As we will understand later on
in this section, the reason for this change is that using the
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Fig. 3. Overlay trees T3,1, T3,2 and T3,3 of Streamline in a
network of 28 peer nodes: distribution process of the first
3 chunks in the time interval (0, 8)
indexing of figure 2 would imply that we have already solved
the problem.
From figure 3, we can observe that for each overlay tree

T3,i with i = 1, 2, 3 it is possible to classify the 28 peer nodes
as follows:

• 4 nodes, namely 1i, 2i, 3i and 4i, i = 1, 2, 3, transmit
for 3 consecutive time units. We refer to these nodes as
“class 3” nodes.

• 4 nodes, namely 5i, 6i, 7i and 8i, i = 1, 2, 3, transmit
for 2 consecutive time units. We refer to these nodes as
“class 2” nodes.

• 7 nodes, namely 9i, 10i, . . . , 15i, i = 1, 2, 3, transmit for
only 1 time unit. We refer to these nodes as “class 1”
nodes.

• 13 nodes, namely 16i, 17i, . . . , 28i, i = 1, 2, 3, do not
transmit at all. We refer to these nodes as “class 0” nodes.

Thus, we define “nodes of class j” the set of nodes that
transmit for j consecutive time units. In addition, as T3,1,
T3,2 and T3,3 repeat themselves with period 3, we observe
that, even if each distribution tree includes the whole set of
28 nodes, a node that belongs to a given class in a given
distribution tree can belong to the same or to another class in
another distribution tree. For instance “class 3” nodes in T3,1

transmit for three consecutive time units and then start again,
thus they do not have idle times to transmit also in T3,2 and
T3,3. As a consequence, “class 3” nodes in T3,1 have to be
“class 0” nodes in T3,1 and T3,3.

The tree intertwining problem consists in assigning peer
nodes to classes in each distribution tree in such a way that
no conflict occurs in the uplink capacity. By no conflict in
the uplink capacity we mean that the node must be able to
transmit at full rate to a single node. We will now present a
solution of the tree intertwining problem for the case depicted
in figure 3. The general procedure to solve the problem can
be found in [10].
The solution of the tree intertwining problem is given

by showing what is the role played by the nodes in each
distribution tree. For instance, node indexed as 1 in tree T 3,1,
which is a “class 3” node has to become a “class 0” node in
T3,2 and in T3,3. Thus, to avoid conflicts, this node will have
to become one of the node indexed from 16 to 28 in T 3,2

and in T3,3, i.e. one of the nodes that do not have to relay
the received chunk further on. The complete solution for our
example is given in table 1. In this table each row describes
the role played by each node in each tree. For instance in the
first row we see that node 1 of class 3 in tree T3,1 becomes
node 16 of class 0 in tree T3,2 and then becomes node 16 of
class 0 in tree T3,3. Another example is that of node 5 of class
2 in tree T3,1 that becomes node 9 of class 1 in tree T3,2 and
then becomes node 20 of class 0 in tree T3,3. In fact, given
the periodicity of 3 time units of the distribution trees, node
5 in T3,1 transmits for two time units and before transmitting
again in the same tree it has to wait for a time unit. Thus,
it can play the role of a “class 1” node in tree T3,2 and of
a “class 0” node in tree T3,1. Of course several solutions are
possible, and table 1 presents only one of them.

T3,1 T3,2 T3,3
Node Node Node Node Node Node
index class index class index class
11 3 162 0 163 0
21 3 172 0 173 0
31 3 182 0 183 0
41 3 192 0 193 0
51 2 92 1 203 0
61 2 102 1 213 0
71 2 112 1 223 0
81 2 122 1 233 0
91 1 202 0 53 2
101 1 212 0 63 2
111 1 222 0 73 2
121 1 232 0 83 2
131 1 132 1 133 1
141 1 142 1 143 1
151 1 152 1 153 1
161 0 12 3 243 0
171 0 22 3 253 0
181 0 32 3 263 0
191 0 42 3 273 0
201 0 52 2 93 1
211 0 62 2 103 1
221 0 72 2 113 1
231 0 82 2 123 1
241 0 242 0 13 3
251 0 252 0 23 3
261 0 262 0 33 3
271 0 272 0 43 3
281 0 282 0 283 0

TABLE 1
Role played by the nodes in each distribution tree:

solution of the tree intertwining problem in a network of
28 nodes.
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4 PERFORMANCE ANALYSIS
In this section we derive an analytical model to evaluate the
performance of Streamline. The main performance indexes that
we evaluate are:

• N(c, k, U, t): the number of peer nodes that complete the
download of the c-th chunk within t time units, being
k the number of parents/children and U the ratio B/R
between the uplink capacity U and the stream bit rate R;

• T (c, k, U, n): the maximum amount of time needed by n
peer nodes to complete the download of the c-th chunk,
being k the number of parents/children and U the ratio
B/R. Since chunk c arrives at the source node at time
(c − 1)U , the time needed to distribute the chunk since
its generation (absolute delay) is readily computed as
T (c, k, U, n)− (c − 1)U .

Since the expressions that we are going to derive for these
indexes are not in closed form, we provide also an asymptotic,
closed form expression of such indexes (in subsection 4.2).
This expression is not only very simple and convenient to
use, but is also very accurate already for very small values of
the relevant system parameters (see the numerical comparison
in subsection 5.2).
As regards the performance index N(c, k, U, t), we observe

that: i) the source always transmits only one chunk to only one
of its children at any one time; ii) the source starts transmitting
the first chunk at time instant 0, serves it to U of its children in
series and completes the transmission at time instant U , when
the second chunk is available, and so on; iii) by generalizing
the property in ii), the source starts transmitting the generic
c-th chunk at time instant (c − 1)U , it serves it to U of its
children, and it ends serving the last child at time instant cU ,
when the (c+1)-th chunk is available; iv) the number of nodes
that complete the download of the c-th chunk within t time
units is the sum of the numbers of nodes that complete the
download of that chunk exactly after t, t− 1, t− 2 time units,
and so on, up to t−(c−1)U−1 time units. In fact, no node can
complete the download of the c-th chunk before time instant
t = (c − 1)U + 1, that is when the source ends transmitting
that chunk to the first child.
To evaluate the performance metric N(c, k, U, t), we let

n(c, k, U, i) be the number of nodes that complete the down-
load of the c-th chunk exactly i time units after the gener-
ation of that chunk at the source. It results N(c, k, U, t) =
t−(c−1)U∑

i=1

n(c, k, U, i). In order to evaluate n(c, k, U, i), we

distinguish among three cases:
1) if 1 ≤ i ≤ U , the source is still serving the c-th chunk
and n(c, k, U, i) = n(c, k, U, i− 1) + n(c, k, U, i− 2) +
· · · + n(c, k, U, 0), where n(c, k, U, 0) = 1, to take the
children served by the source into account;

2) if U < i ≤ k, no node has finished serving its k children
and n(c, k, U, i) = n(c, k, U, i− 1) + n(c, k, U, i− 2) +
· · · + n(c, k, U, 1);

3) if i > k, only the nodes that have completed the down-
load of that chunk exactly i−1, i−2, i−3, · · · , i−k−1
time units after the generation of that chunk have still
children to be served; nodes that have completed the

download of that chunk with a delay less than i− k− 1
time units have already served all their k children; con-
sequently n(c, k, U, i) = n(c, k, U, i−1)+n(c, k, U, i−
2) + · · · + n(c, k, U, i − k − 1).

It is not difficult at this point to derive the condition
n(c, k, U, i) = Fk(i)+Fk(i−1)+ · · ·+Fk(i−U +1), where
Fk(·) is the k-step Fibonacci sequence, defined as follows

Fk(i) =






0 if i ≤ 0
1 if i = 1∑k

j=1 Fk(i − j) if i > 1
(1)

By assuming that t is always an integer value, generalization
to continuous time being straightforward, we can write:

N(c, k, U, t) =
t−(c−1)U∑

i=1

U∑

j=1

Fk(i − j + 1) (2)

The performance index N(c, k, U, t) may be re-written as a
function of the sum of the first values of a k-step Fibonacci
sequence

Sk(t) =
{

0 if t ≤ 0∑t
i=1 Fk(i) if t ≥ 1 (3)

By exploiting (3), formula (2) can be rewritten as

N(c, k, U, t) =
U∑

j=1

Sk(t − (c − 1)U − j + 1) (4)

We turn now our attention to the evaluation of T (c, k, U, n).
Unfortunately it is not possible to derive analytically this
performance index, because Streamline generates, by its na-
ture, unbalanced distribution trees that impede to evaluate the
number of nodes for each level in closed form. The only
thing that we can do is to provide an implicit formulation for
T (c, k, U, n), which can be solved numerically by trial and
error:

T (c, k, U, n) = min{t ≥ (c − 1)U : (5)
U∑

j=1

Sk(t − (c − 1)U − j + 1) ≥ n}

We conclude the Section by presenting an important result:
we show that our algorithm is optimal for the considered
topology. The algorithm is optimal in the sense that it allows
reaching the greatest possible number of nodes in a given time
interval or equivalently it allows reaching a given number of
nodes in the smallest possible time interval.
Before presenting the theorem we introduce some notations.

Let us denote a generic distribution algorithm with D(A),
where A is the set of uplink capacity allocation strategies of
all nodes in the considered forest-based topology. We also let
ND(c, k, U, t) be the number of peer nodes that complete the
download of the c-th chunk within t time units, being k the
number of parents/children, U the ratio B/R and D = D(A)
the distribution algorithm. We can now state the theorem.
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Theorem 1: For every distribution algorithm D = D(A),
ND(c, k, U, t) is upper-bounded as follows:

ND(c, k, U, t) ≤
U∑

j=1

Sk(t − (c − 1)U − j + 1) ∀t (6)

where Sk(·) is the sum of a k-step Fibonacci sequence
introduced in (3).
A direct consequence of this Theorem is that Streamline

is optimal in the sense given above among all distribution
algorithms for the considered topology, since N(c, k, U, t) =∑U

j=1 Sk(t − (c − 1)U − j + 1). The proof of this Theorem
is given in the following subsection 4.1.
4.1 Proof of Theorem 1

Proof: Let X be a generic non-source peer. Let us define
the metricND,X(c, k, U, d) as the number of peer nodes which
receive the c-th chunk either directly or indirectly (through a
neighbor, or a neighbor of a neighbor, etc) from X within d
time units since the time instant at which peer node X has
received that chunk. Let us include in the count also peer X
itself. By construction, i) N D,X(c, k, U, d) = 0 ∀d < 0, as
peer X has not yet received the c-th chunk and hence it has
not yet started to distribute it further, ii) N D,X(c, k, U, 0) =
1, as the only peer which can receive the c-th chunk with a
null delay is X itself, iii) ND,X(c, k, U, d) is a monotone non
decreasing function of d.
We first prove the following result

ND,X(c, k, U, d) ≤ Sk(d + 1) ∀D, ∀X, ∀d (7)

The proof is given by contradiction.
Let us assume that there exists a distribution algorithm

D0 and a peer node X0 such that ND0,X0(c, k, U, d) >
Sk(d + 1), starting from a time instant that we denote as d0.
Let chX0,1, chX0,2, . . . , chX0,k be the children of peer node
X0. Let also T1,D0 , T2,D0 , . . . , Tk,D0 be the time intervals
between the time instant at which peer node X0 receives
the c-th chunk and the time instants at which the children
chX0,1, chX0,2, . . . , chX0,k receive chunk c from node X0.
Subscript D0 points out the dependence of such time instants
on the considered distribution algorithmD0 = D0(A0), which
includes also the uplink capacity allocation strategy of peer
node X0. In addition, we observe that peer node X0 does not
necessarily transmit the c-th chunk to all its children. Due to
this, it is possible that Ti,D0 = ∞ for some i. Without loss of
generality, we assume T1,D0 ≤ T2,D0 ≤ . . . ≤ Tk,D0 .
By exploiting the above notation, we observe that

ND0,X0(c, k, U, d) = 1 +
k∑

i=1

ND0,X0(c, k, U, d−Ti,D0) (8)

where ND0,X0(c, k, U, d − Ti,D0) = 0 if Ti,D0 = ∞.
We now observe that the minimum duration of each trans-

mission is 1. This happens when the sending node assigns
all the uplink capacity to only one receiver node. As a
consequence, i) the minimum value that T1,D0 may assume
is 1, ii) the minimum value that T2,D0 may assume is 2 and
so on up to Tk,D0 = k. Thus, Ti,D0 ≥ i ∀i = 1, 2, . . . , k.

As ND0,X0(c, k, U, d) is by definition a monotonically non-
decreasing function, the following condition holds

ND0,X0(c, k, U, d) ≤ 1 +
k∑

i=1

ND0,X0(c, k, U, d − i) (9)

Condition (9) has to hold also for d = d0. As a consequence,

1 +
k∑

i=1

ND0,X0(c, k, U, d0 − i) ≥

≥ ND0,X0(c, k, U, d0) > Sk(d0 + 1) (10)

where the latter inequality holds because of the contradiction
assumption.
On the other side, d0 = min{d : ND0,X0(c, k, U, d) >

Sk(d + 1)} (we recall that d0 is the first value of time such
that ND0,X0(c, k, U, d) > Sk(d + 1)). Thus,

ND0,X0(c, k, U, d0 − 1) ≤ Sk(d0)
ND0,X0(c, k, U, d0 − 2) ≤ Sk(d0 − 1)

· · ·
· · ·

ND0,X0(c, k, U, d0 − k) ≤ Sk(d0 − k + 1)

(11)

Conditions (11) also imply that

1+
k∑

i=1

ND0,X0(c, k, U, d0−i) ≤ 1+
k∑

i=1

Sk(d0−i+1) (12)

Since 1 +
k∑

i=1

Sk(d0 − i + 1) = Sk(d0 + 1) for Lemma 1 (see

Appendix A), condition (12) contradicts condition (10), and
this is absurd. So we can conclude that N D,X(c, k, U, d) ≤
Sk(d + 1) ∀D, ∀X, ∀d.
We now observe that the performance metric N(c, k, U, t)

differs from the performance metric N D,X(c, k, U, d) because
it represents the number of nodes which have received the c-
th chunk starting from the source S, rather than a generic
node X , and not including the source in the count. We
also observe that in the considered forest-based topology the
source serves each chunk to U out of its k children. We
denote the U children receiving chunk c from the source
as chs,1, chs,2, · · · , chs,U . Let Ts1,D, Ts2,D, . . . , TsU,D be the
time intervals between the time instants at which the children
chs,1, chs,2, · · · , chs,U receive chunk c from the source and
the time instant (c−1)U . Without loss of generality, we assume
Ts1,D ≤ Ts2,D ≤ . . . ≤ TsU,D . Thus, it results

N(c, k, U, t) =
U∑

j=1

ND,chs,j(c, k, U, t − (c − 1)U − Tsj,D)

(13)
As previously said, the minimum value that each trans-

mission duration may assume is 1. As a consequence, i) the
minimum value that Ts1,D may assume is 1, ii) the minimum
value that Ts2,D may assume is 2 and so on up to TsU,D = U .
Thus, Tsi,D ≥ i ∀i = 1, 2, . . . , U and the following inequality
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chain holds:

N(c, k, U, t) ≤
U∑

j=1

ND,chs,j(c, k, U, t − (c − 1)U − j) ≤

U∑

j=1

Sk(t − (c − 1)U − j + 1) ∀t, ∀D

(14)
which proves Theorem 1.
4.2 Asymptotic approximation of N(c, k, U, t) and
T (c, k, U, n)
In this subsection we derive an asymptotic, closed form ap-
proximation of N(c, k, U, t) and T (c, k, U, n) with respect to t
and n, respectively. This is done by exploiting the asymptotic
expression (30) of k-step Fibonacci Sums, derived in Appendix
A, Lemma 4. It results:

N(c, k, U, t) =
U∑

j=1

Sk(t − (c − 1)U − j + 1) ≈

≈
U∑

j=1

φk · φt−(c−1)U−j+1
k

(φk − 1)Qk(φk)
−

U∑

j=1

1
k − 1

=

=
φ2

k(1 − φ−U
k )φ−(c−1)U

k

Qk(φk)(φk − 1)2
· φt

k − U

k − 1

(15)

T (c, k, U, n) ≈ (c − 1)U+

+

⌈
logφk

[
(φk − 1)2 Qk(φk)
φ2

k

(
1 − φ−U

k

) ·
(

n +
U

k − 1

)]⌉
(16)

The numerical values for the Fibonacci constants φk and
the parameters Qk(φk) are provided in Appendix A.
An interesting observation is that the derived performance

metrics explicitly account for the fact that each node can feed
at most k neighbors. If this restriction is removed (i.e., if each
node can reach whatever other node), then, by using expression
(31) provided in Appendix A, Lemma 5, we obtain a more
simple and immediate expression for N(c,∞, U, t)

N(c,∞, U, t) =
U∑

j=1

S∞(t − (c − 1)U − j + 1) =

=
U∑

j=1

2t−(c−1)U−j = 2t−(c−1)U (1 − 2−U )

(17)
A similar result can be derived also for T (c,∞, U, n). We
finally observe that relation (17) has already been derived in
[13], where the author limits itself to investigate full-mesh
overlay topologies and the case U = 1.

5 PERFORMANCE RESULTS
In this section we provide some performance results of Stream-
line. We use the exact formulas (4) and (6) in subsection
5.1. We use the approximated, asymptotic formulas (15) and
(16) in subsection 5.2, also to compare the exact solution
of the performance indexes of Streamline to their respective
asymptotic approximations.
In principle, we would not need to compare our algorithm

to other solutions, having formally proven its optimality;

however, we want to give a feeling of the quantitative im-
provements brought about by the proposed serial transmis-
sion. For this reason, Streamline is analytically compared in
subsection 5.1 to an ideal parallel transmission (conceived
by ourselves for this purpose), which differs from Streamline
only in the fact of employing parallel transmission instead of
serial transmission. In addition, we perform in subsection 5.3
a comparison between Streamline and a reference literature
solution, SplitStream, by using a suitably developed simulation
package, based on our OPSS [8].
5.1 Exact evaluation of N(c, k, U, t) and T (c, k, U, n)

Before presenting the results, we note that the values of the
performance indexes N(c, k, U, t) and T (c, k, U, n) evaluated
for chunk c are equal to those evaluated for chunk c+D, if we
shift the time byD·U time units1. Thus, in principle we would
not need to present results for different values of c. However,
we will do that, for the convenience of the reader. This fact
has also the important consequence that the performance of our
approach is equally good both at the start of the transmission,
when there are a few chunks, and as time passes.
Figure 4 shows the time T (c, k, U, n) needed by n peer

nodes to complete the download of the 100-th chunk for four
different combinations of k and U values. In order to make
a fair comparison, we assume that the bit rate of the stream
(R) is kept constant, while the available uplink capacity of
peer nodes (B) changes so as to make U take the two values
considered in the figure. In other words, we consider the
case in which the same stream is distributed in two different
networks, where peer nodes have two different values of uplink
capacity B. Since we normalize all performance figures with
respect to the time needed to download a complete chunk at
rate B, different values of the available uplink capacity B
imply different time scales. This would make the comparison
of the performance indexes in figure 4 very difficult. To solve
the problem, we normalize all performance indexes in figure 4
with respect to the time needed to download a complete chunk
in the case U = 1. The figure shows that: i) given a ratio U
between the available uplink capacityB and the stream bit rate
R, the greater the number k of parents/children, the lower the
time needed to stream the same content to the same number
of nodes, ii) given a number k of parents/children, the greater
the available uplink capacity, the better the performance. For
instance, to stream the 100-th chunk across 10000 nodes in
the case U = 1, Streamline with k = 2 requires 118 time
units, while Streamline with k = 6 needs 114 time units.
Likewise, to stream the 100-th chunk across 10000 nodes in
the case k = 6, Streamline with U = 1 requires 118 time
units, while Streamline with U = 3 needs about 103.67 time
units. Out of curiosity, and without any claims of performing
a comparison with other approaches, we present in this figure
also the performance of an ideal reference scheme, which
differs from Streamline only in the fact of employing parallel
transmission instead of serial transmission. As said in the
Introduction, we would not need to compare our algorithm

1. Actually this holds for the performance index N(c, k, U, t). However,
it is possible to evaluate T (c + D, k, U, n) starting from T (c, k, U, n), by
adding D · U .
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to other solutions, as we formally prove the optimality of our
approach. However, we present this curve only to show the
consequence of adopting a parallel transmission in place of a
serial transmission, all other system parameters being equal.
Figure 5 shows the number of peer nodes N(c, k, U, t) that

can complete the download of the 1-st chunk as a function
of the time t and for four different combinations of k and U
values. This figure is affected by the problem of different time
scales as well. We adopted the same solution as in figure 4.
The figure shows that i) given a ratio U between the available
uplink capacity B and the stream bit rate R, the greater
the number k of parents/children, the higher the number of
served peer nodes in the same time, ii) given a number k
of parents/children, the greater the available uplink capacity,
the better the performance. For instance, the number of peer
nodes that can complete the download of the 1-st chunk at
time unit 50 in the case U = 2 is 1.52 × 1028 for k = 4 and
2.24 × 1029 for k = 6. Likewise, the number of peer nodes
that can complete the download of the 1-st chunk at time unit
50 in the case k = 4 is 1.09×1014 for U = 1 and 1.52×1028

for U = 2.
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Fig. 4. Time units, T (c, k, U, n), needed by n peer nodes
to complete the download of the 100-th chunk for four
different pairs of the values of the number k of par-
ents/children and the ratio U = B/R in Streamline.
It is also important to note that both performance indexes of

Streamline improve monotonically as a function of the number
k of parents/children. However, we verified that the perfor-
mance improvement becomes negligible as k gets greater than
4 or 5. This is readily justified as the performance depends on
the number of deployed trees through the Fibonacci constant
values φk (see Section 4); as a matter of fact, Fibonacci
constants φk very rapidly tend to the limit value 2 [15] (e.g.
φ4 is already 1.96595). From a practical point of view, this is
a useful property, as the number of trees and their dynamic
management may introduce signalling overhead which may
turn to be a practical limiting factor on k.
5.2 Comparison between exact and asymptotic for-
mulas
In this subsection we compare the exact solution of the
performance indexes of Streamline to their asymptotic, closed
form approximations.
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Fig. 5. Number of peer nodes, N(c, k, U, t), that can
complete the download of the 1-st chunk as a function of
the time t for four different pairs of values of the number k
of parents/children and the ratio U = B/R in Streamline.

Figure 6 shows the time T (c, k, U, n) needed by n peer
nodes to complete the download of the 100-th chunk in the
case U = 1, as a function of the number n of peer nodes
and for two values of the number k of parents/children. We
observe that the asymptotic approximate expression tends to
be exact for large values of t but is accurate already for very
small values of t.
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Fig. 6. Asymptotic and exact evaluation of the time units,
T (c, k, U, n), needed by n peer nodes to complete the
download of the 100-th chunk in the case U = 1 as a
function of the number n of peer nodes, and for two values
of k.
The same behavior can be observed in figure 7, which shows

the number of peer nodes N(c, k, U, t) that can complete the
download of the 1-st chunk as a function of the time t and for
two pairs of values of the number k of parents/children and
ratio U .
As a matter of fact the exact and approximated curves can

not be distinguished in both the above figures.

5.3 Comparison between Streamline and a literature
proposal
We compare our solution to SplitStream [3], since it is maybe
the most representative example of algorithms exploiting
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combinations of k and U values.
forest-based topologies, like our Streamline. In SplitStream
the stream is stripped into stripes to be distributed across
a forest of overlay multicast trees. The construction of the
overlay multicast trees is based on Scribe [11]. Scribe is an
application-level group communication system built on top of
Pastry [12], which is a DHT-based self-organizing, structured,
P2P overlay network. The key idea is the following: each
multicast group is associated with a pseudo-random Pastry
key, and the corresponding multicast overlay tree is formed
by the union of the Pastry routes from each group member to
the root node2 for that group Pastry key.
In more detail, SplitStream uses a separate overlay multicast

tree for each stripe. A fundamental property of the SplitStream
overlay trees is that they are interior-node-disjoint trees. In
other words, SplitStream nodes are organized into overlay trees
in such a way that each node is interior node in at most one
tree and leaf node in the remaining trees. To achieve this goal,
SplitStream i) chooses stripe/group identifiers that all differ
in the most significant digit, and ii) it takes advantage from
the Pastry property of forwarding messages towards nodes
whose identifiers share progressively longer prefixes with the
messages key.
To compare SplitStream and Streamline, unfortunately we

could not perform an analytical comparison, since SplitStream
is a working practical solution but lacks an analytical model
for SplitStream. Thus, we resorted to simulation techniques
and implemented SplitStream by using a suitably developed
simulation package, based on our OPSS [8].
In order to perform a fair comparison, we considered a

number of stripes and, consequently, a number of overlay
multicast trees at least equal to the number of Streamline
distribution trees. Since the analytical model that we presented
in this paper for Streamline assumes homogeneous networks
in terms of uplink capacity, we also simulated SplitStream
in a homogeneous uplink capacity scenario, and we always
compared SplitStream and Streamline under the same value

2. We recall that the root node for a Pastry key is the node with the identifier
that is numerically closest to the key.
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Fig. 8. Cumulative distribution function of Nserved(c, d)
in Streamline and SplitStream in case of a network with
11504 nodes, ratio between uplink capacity and stream bit
rate equal to 1, for three different values of the number of
stripes.
of the ratio U between the uplink capacity of peer nodes
and the stream bitrate. As regards the downlink capacity, we
used for SplitStream a value great enough so that downlinks
are not a bottleneck of the system, as done for Streamline.
In addition, we simulated SplitStream in absence of churn.
Finally, we observe that SplitStream segments the stream into
sub-streams organized as small IP packets and sequentially
delivered across separate trees, whereas Streamline divides the
stream into chunks of size larger than the typical IP packet
size, delivered in a store-and-forward fashion across separate
trees. Nevertheless, in order to make the comparison between
SplitStream and Streamline possible, we let SplitStream oper-
ate by distributing chunks. In other words, we simulated a P2P
overlay network where i) peer nodes are organized according
to SplitStream multicast trees, ii) the stream is segmented
into chunks, iii) chunks are grouped into different sub-sets of
chunks distributed across separate SplitStream multicast trees.
We evaluated the performance of SplitStream by considering

the performance index N served(c, d), that is the average num-
ber of nodes that complete the download of a chunk c with a
chunk delivery delay less than or equal to d; the chunk delivery
delay is the difference between the time instant at which the
chunk arrives at the source and the time instant at which
the chunk is completely received from a node. Note that this
performance index is very similar to the performance index
N(c, k, t) used to evaluate the performance of Streamline. In
fact, if in N(c, k, t) we consider the chunk delivery delay
t − c − 1 instead of the absolute time t of chunk delivery
and we average on all chunks, we obtain N served(c, d).
We first consider a scenario with 11504 nodes and a ratio

between uplink capacity and stream bit rate equal to 1.
In figure 8 we plot the cumulative distribution function of

Nserved(c, d) by comparing Streamline to SplitStream; in the
case of SplitStream we consider three different values of the
number of stripes. We observe that the outbound degree of
each node, that is the number of children which each node
may forwards stripes to, has been set to the number of stripes.



11

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
 10  20  30  40  50  60

 17472

 15000

 12500

 10000

 7500

 5000

 2500F
r
a
c
t
i
o
n
 
o
f
 
S
e
r
v
e
d
 
N
o
d
e
s

Chunk Delivery Delay [sec]

U=2, 17472 nodes

Streamline

Splitstream
4 stripes
outdegree 4

Splitstream
4 stripes
outdegree 6

Splitstream
4 stripes
outdegree 8

Splitstream
8 stripes
outdegree 16

Splitstream
16 stripes
outdegree 32

Fig. 9. Cumulative distribution function of Nserved(c, d)
in Streamline and SplitStream in case of a network with
17472 nodes, ratio between uplink capacity and stream bit
rate equal to 2, for different values of the number of stripes
and the outbound degree.
The reason is that, since the ratio between uplink capacity
and stream bit rate is equal to 1: i) the source may serve each
chunk just to one child; ii) each node may serve a given chunk
exactly to s children (s being the number of stripes), before the
time instant it will receive the next chunk and it will have to
serve it to the same children. The curve relative to Streamline
has been analytically derived by setting k = 4. In fact, even
if the performance of Streamline improve monotonically as
a function of the number k of children, we chose k = 4
since, as observed in subsection 5.1 the improvement becomes
negligible for greater values of k. We observe that Streamline
outperforms SplitStream regardless of the number of stripes. In
addition, as the number of stripes increases, the performance
of SplitStream get worse. For instance, while Streamline serves
all 11504 nodes within 15 seconds, with 4 groups, SplitStream
serves on average 87 nodes in case of 4 stripes, 9 nodes in
case of 8 stripes and 1 node in case of 16 stripes.
Now we consider a second scenario with 17472 nodes and

a ratio between uplink capacity and stream bit rate equal to 2.
In figure 9 we plot the cumulative distribution function of

Nserved(c, d) by comparing Streamline to SplitStream; in the
case of SplitStream we consider different values of the number
of stripes and of the outbound degree. The curve relative to
Streamline has been analytically derived by setting k = 4.
As in the previous case, Streamline outperforms SplitStream
regardless of the number of stripes and of the outbound degree.
In addition, we can observe that, given a number of stripes, as
the outbound degree increases, the performance of SplitStream
worsen.

6 O-STREAMLINE: FROM THEORY TO PRAC-
TICE

O-Streamline puts into practice the two basic principles of
Streamline: i) the organization of peers and chunks in a finite
number of overlay trees and groups and ii) the serialization
of chunk transmissions. Here we present very briefly O-
Streamline; we refer the reader to [9] for more details.

The second principle is easy to be put into practice. As
regards the first principle, O-Streamline constructs the overlay
topology as follows. Peer nodes are uniformly divided into
G different groups, in such a way that i) each node belongs
only to one group, ii) each node establishes random overlay
bidirectional connections with P peer nodes in the same group
to which it belongs and O peer nodes in each of the remaining
groups. This can be easily achieved in a real distributed
environment. Provided that groups are progressively identified
starting from 0, each node may establish its membership
group if it extracts an (integer) random number with uniform
distribution in the interval [0, G − 1]. The G groups are also
used to organize the chunks. In more detail, if chunks are
progressively indexed starting from 1, chunk i is associated
with the group g such that g = i mod G.
To describe how O-Streamline schedules chunk transmis-

sion, we let R, C, B, T , U be the same parameters as in
Streamline.
The scheduling algorithm operates as follows:
• the source, which does not belong to any of the groups
and it is connected to U neighbors per each group, sends
the generic chunk in series to the U neighbors of the
corresponding group. The source serves the chunks to the
neighbors of each group following the order implicitly
established in the association between chunk identifiers
and groups. The source repeats this distribution pattern,
modulo G, unless churn changes the overlay neighbors.
Therefore, each node which is child of the source receives
a new chunk from the source every G×U × C

B seconds;
• the generic peer relays only the chunks of the group it
belongs to. A FIFO queue is used to manage the chunks
of the group to which the generic peer belongs;

• the generic peer is interested only in chunks that arrive at
the source starting from the time instant at which the peer
joins the system. This could be achieved by querying the
source node at bootstrap time, asking for the identifier of
the latest produced chunk;

• the generic peer serves each chunk in the FIFO queue
in series to G × U neighbors, by giving priority to the
neighbors of its own group (if there are G×U neighbors
missing that chunk). This implies that the number of
neighbors P has to be at least equal to G × U ;

• if a peer ends serving a chunk to G × U neighbors and
there are no new chunks to be served in the FIFO queue,
it tries to serve that chunk to other neighbors, until a new
chunk to be served is enqueued in the FIFO queue.

We observe that, being O-Streamline a data driven algo-
rithm, it is not necessary to re-configure the whole overlay
topology in case of peer churn. In addition, we observe that
the value of P must be greater than G×U , for the algorithm
to handle the churn. In fact, peer nodes may loose a neighbor,
due to a disconnection, and have less neighbors than G × U
in their own group; thus, such nodes may look for another
neighbor and maintain G × U as the minimum number of
connections in that group.
To give an idea of the performance of O-Streamline, we

now present some simulation results, obtained with our OPSS
simulator [8], which refer to the case of a network with 17472
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nodes and a ratio between uplink capacity and stream bit
rate equal to U = 2. For a more comprehensive performance
evaluation, we refer the reader to [9].
We consider the same performance index N served(c, d) as

the one considered in subsection 5.3 to evaluate the perfor-
mance of SplitStream. As already said, the advantahe of such
performance index lies in its high closeness to the perfor-
mance index N(c, k, U, t) used to evaluate the performance
of Streamline.
In figure 10 we plot the cumulative distribution function

of N served(c, d) in the case of G = 2 groups, for three
different values of the number of neighbors per group, under
the assumption P = O. The curve relative to Streamline has
been analytically derived by setting k = 4. We observe that as
the number of neighbors per group increases, the performance
of O-Streamline get closer to the ones of Streamline.
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Fig. 10. Cumulative distribution function of Nserved(c, d)
in Streamline and O-Streamline in case of a network with
17472 nodes, U = 2 and G = 2 groups, for three different
values of the number of neighbors per group.
Figure 11 refers to the same scenario as in figure 10, with

the only difference that nodes disconnect due to churn. We
assume that the session times are exponentially distributed
with an average value of 10 minutes. We plot the cumu-
lative distribution function of N served(c, d) in the case of
P = O = 8 for three different values of the number G
of groups. We observe that: i) the performance worsen with
respect to what happens in absence of churn, ii) the lower the
number of groups, the more significant the worsening, iii) a
single group implies a maximum chunk delivery delay of about
25 seconds; using 2 or 3 groups makes possible to reduce this
delay to about 16 − 17 seconds.

7 RELATED WORK

The literature abounds of papers proposing practical and
working distribution algorithms for P2P streaming systems;
however very few theoretical works on their performance
evaluation have been published up to now. As a matter of
fact, due to the lack of basic theoretical results and bounds,
common sense and intuitions and heuristics have driven the
design of P2P algorithms so far.
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Fig. 11. Cumulative distribution function of Nserved(c, d)
in O-Streamline in case of a network with 17472 nodes,
U = 2 and P = O = 8 neighbors per group, for three
different values of the number of groups.

In addition, the few available theoretical works mostly
focus on systems where the streaming information, optionally
organized in sub-streams, is continuously delivered across
overlay paths. In such case, a fluidic approach is typically
used to evaluate performance and, as long as some feasibility
conditions are met (see e.g. [14]), the bandwidth available on
each link plays a limited role with respect to the delay perfor-
mance, which ultimately depend on the delay characterizing
a path between the source node and a generic end-peer. As
a consequence, the delay performance optimization becomes
a minimum path cost problem. If we further assume that
the network links are homogeneous (i.e. characterized by the
same delay), then the problem of finding a delay performance
bound is equivalent to finding what is the minimum depth
of the tree (or multiple trees) across which the stream is
distributed. This problem has been thoroughly addressed in
[17], where it is proven that: i) if we assume no restriction on
the number of children a node may upload to, a tree depth
equal to two is always sufficient, ii) if we assume that a
node may upload to at most M children, the minimum tree
depth is )logM ((M − 1)n + 1)*, being n the total number of
nodes to be served. Other studies address the issue of how
to maximize throughput by using various techniques, such as
network coding [18] or pull-based streaming protocol [19].
This work differs from the previously cited ones mainly

because it focus on chunk-based systems. Chunk-based sys-
tems have a key difference with respect to sub-stream-based
systems: the streaming information is organized into chunks
whose size is significantly greater than IP packets. Since a peer
must complete the reception of a chunk before forwarding
it to other nodes (i.e. chunks are delivered in a store-and-
forward fashion), the obvious consequence is that the delay
performance are mostly affected by the chunk transmission
time and by the uplink capacity available at each link. Be-
sides, we can use discrete-time approaches instead of fluidic
approaches. Surprisingly enough, according to the best of our
knowledge and our literature survey, there is only one work
[13] where chunk-based systems are theoretically analyzed.
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In more detail, the author of [13] derives a minimum delay
bound for P2P video streaming systems, and proposes the so
called snow-ball streaming algorithm to achieve such bound.
However, such bound has been derived under the full-mesh
overlay topology assumption, and it is the same that we found
as a particular case in our analysis when k → ∞. Differently
from [13], we consider a forest-based topology, and we show
that we can achieve performance very close to the ones of
the full-mesh case, even with a limited overlay connectivity
among nodes.

8 CONCLUSIONS
In this paper we proposed a new distribution algorithm whose
performance coincides with the theoretical upper-bound on the
number of nodes reached versus time achievable for a forest
topology (and hence, dually, on the time required to deliver a
stream); our algorithm is optimal in that sense. The proposed
analytical model allows evaluating the system performance
quite easily. The asymptotic approximation provides a closed
formula that is useful to better understand the phenomena at
hand and yet is sufficiently accurate to be used to assess
the performance in real cases of interest. A side result of
this work is the novel derivation of explicit, asymptotic, and
recursive expressions for the sum of the first t values of a
k-step Fibonacci sequence.
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APPENDIX A
SOME RESULTS ON k-STEP FIBONACCI SUMS
While k-step Fibonacci series have been extensively investi-
gated in related literature, to the best of our knowledge, very
few results are available on the sum of k-step Fibonacci series,
earlier defined by (3). Since these sums play a fundamental
role in our analysis, we derive some new key results concern-
ing them.
Lemma 1: Recursive expression for k-step Fibonacci

Sums. Let Sk(n), with n ≥ 1, be the sum of the first n terms
of a k-step Fibonacci sequence as defined in (1). Then, Sk(n)
may be recursively computed as:

Sk(n) = 1 +
k∑

i=1

Sk(n−i) ∀n ≥ 1 (18)

The proof is based on the mathematical induction. Condition
(18) is immediately verified for n = 1. Hence, let us assume
that condition (18) holds for all indices up to n. By applying
such condition to Sk(n) and by using the k-step Fibonacci
series definition (1), it is straightforward to prove that (18)
holds also for n + 1:

Sk(n + 1) = Sk(n) + Fk(n + 1) =

= 1 +
k∑

i=1

Sk(n−i) +
k∑

i=1

Fk(n+1−i) =

= 1 +
k∑

i=1

[Sk(n−i) + Fk(n−i+1)] = 1 +
k∑

i=1

Sk(n+1−i)

(19)
Lemma 2: Relation between k-step Fibonacci Sums and

k-step Fibonacci Series. The following general relation holds

Sk(n) =

k∑

i=1

(i+1−k)Fk(n+i)

k − 1
− 1

k − 1
(20)

We also observe that the well known result S2(n) = F2(n+
2)−1, relative to the sum of traditional Fibonacci series (i.e.,
k = 2), is a special case of equation (20) (achievable for
k = 2).
The proof requires some algebraic elaboration. We start

by reformulating the linear recurrence (1) as the following
difference equation:

Fk(i) +
k−1∑

j=1

Fk(i + j) − Fk(i + k) = 0 ∀i ≥ 1 (21)
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Since this equality holds for any i ≥ 1, it holds also for the
sum

n∑

i=1




Fk(i) +
k−1∑

j=1

Fk(i + j) − Fk(i + k)




 = 0 ∀n ≥ 1

(22)
In addition, Sk(n)=

∑n
i=1 Fk(i) and the following algebraic

manipulations may be performed on the left-hand member:

Sk(n) +
k−1∑

j=1

n+j∑

i=1+j

Fk(i) −
n+k∑

i=1+k

Fk(i) =

= Sk(n) +
k−1∑

j=1

(
n∑

i=1

Fk(i) +
n+j∑

i=n+1

Fk(i) −
j∑

i=1

Fk(i)

)
+

−
n∑

i=1

Fk(i) −
n+k∑

i=n+1

Fk(i) +
k∑

i=1

Fk(i) =

= (k − 1)Sk(n) +
k−1∑

i=1

(k − i)Fk(n + i) −
k∑

i=1

Fk(n + i)+

−
k−1∑

i=1

(k − i)Fk(i) +
k∑

i=1

Fk(i) = (k − 1)Sk(n)+

+
k∑

i=1

(k − i − 1)Fk(n + i) −
k∑

i=1

(k − i − 1)Fk(i)

Using the last elaboration and then solving equation (22), we
achieve

Sk(n) =

k∑

i=1

(i + 1 − k)Fk(n + i)

k − 1
−

k∑

i=1

(i + 1 − k)Fk(i)

k − 1
(23)

Equation (20) is now proven by noting that the numerator of
the second term can be simplified to 1, taking into account
that Fk(1) = 1 and Fk(i) = 2i−2 ∀i : 2 ≤ i ≤ k + 1.
Lemma 3: Exact non recursive expression for Sk(n). We

now derive a “Binet-like” exact expression for Sk(n). As a
starting point, we recall that an exact expression has been
derived in [16] for the k-step Fibonacci sequence Fk(n). This
expression, which generalizes the historical Binet’s Formula
derived for the case of k = 2, has been conveniently expressed
in [15] as

Fk(n) =
k∑

j=1

φn
k,j

Qk(φk,j)
(24)

where φk,j , j ∈ (1, k) are the k (real and complex) roots of
the characteristic polynomial

Pk(x) = xk − xk−1 − xk−2 − · · · − x− 1 =
xk+1 − 2xk + 1

x − 1
(25)

and Qk(x) is the following sequence of polynomials

Q2(x) = −1 + 2x
Q3(x) = −1 + 4x − 1x2

Q4(x) = −1 + 6x + 0x2 − 1x3

...
...

...
...

...

Qk(x) = −1 + 2(k − 1)x +
k−1∑

i=2

(k − i − 2)xi

(26)

Thanks to the key relation provided in Lemma 2, we can
now substitute the exact expression of Fk(·) (24) in (20), thus
obtaining:

Sk(n) =

k∑

i=1

(i+1−k)
k∑

j=1

φn+i
k,j

Qk(φk,j)

k − 1
− 1

k − 1
=

=
k∑

j=1

φn
k,j

(k − 1)Qk(φk,j)

k∑

i=1

(i+1−k)φi
k,j −

1
k − 1

(27)

Now,
k∑

i=1

(i+1−k)φi
k,j =

φk,j

φk,j − 1

[
k−1+

1−2φk
k,j+φk+1

k,j

φk,j − 1

]
(28)

The last fraction in (28) vanishes, as this is the characteristic
polynomial (25) computed for one of its roots. Hence, expres-
sion (27) simplifies to the final expression:

Sk(n) =
k∑

j=1

φk,j

(φk,j − 1)Qk(φk,j)
φn

k,j −
1

k − 1
(29)

Lemma 4: Approximate closed form expression for Sk(n).
The exact expression derived in the prior lemma is not
handy, as it requires to handle all the complex roots of the
characteristic polynomial (25). However, such roots are known
to satisfy an important property [16]: only one root has module
greater than 1. This root (obviously real) is hereafter referred
to as k-step Fibonacci constant φk. For k = 2 it is the most
known golden ratio (1 +

√
(5))/2 = 1.61803; for growing

k, it rapidly tends to the value 2 (φ2 = 1.61803, φ3 =
1.83929, φ4 = 1.92756, φ5 = 1.96595, φ6 = 1.98358). Since
all the other real and complex roots have modulus lower
than 1, their contribution in either (24) and (29) rapidly
becomes negligible as the index n grows. As a consequence,
the following approximate expression holds:

Sk(n) ≈ φk

(φk − 1)Qk(φk)
φn

k − 1
k − 1

(30)

We remark that this expression asymptotically converges to
the exact (integer) sequence, and the approximation becomes
negligible (within the unit) even for small values of n. For
the convenience of the reader, the first few values of the terms
Qk(φk) areQ2(φ2) = 2.23607, Q3(φ3) = 2.97417, Q4(φ4) =
3.40352, Q5(φ5) = 3.65468, Q6(φ6) = 3.80162.
Lemma 5: Derivation of S∞(n). A possibility would be

to obtain this as the limit of expression (30) for k → ∞3.
However, there is another trivial alternative way to derive
S∞(n). It suffices to recognize that F∞(n) = 2n−2 for n > 1,
and F∞(1) = 1, so that

S∞(n) =
n∑

i=1

F∞(i) = 1 +
n∑

i=2

2n−2 = 2n−1 (31)

3. The computation of this limit is not straightforward because of the tight
and non trivial dependence of parameters φk and Qk(φk) on index k. A way
to circumvent this problem is to algebraically transform (30) into a function
of the only variable φk and then take the limit for φk → 2. This is possible
by exploiting the known property k = − logφk

(2−φk) related to Fibonacci
constants. Details are omitted for reasons of space.
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