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Abstract—Programmable wireless platforms aim at responding
to the quest for wireless access flexibility and adaptability. This
paper introduces the notion of wireless MAC processors. Instead
of implementing a specific MAC protocol stack, Wireless MAC
processors do support a set of Medium Access Control ”com-
mands” which can be run-time composed (programmed) through
software-defined state machines, thus providing the desired MAC
protocol operation. We clearly distinguish from related work in
this area as, unlike other works which rely on dedicated DSPs
or programmable hardware platforms, we experimentally prove
the feasibility of the wireless MAC processor concept over ultra-
cheap commodity WLAN hardware cards. Specifically, we re-
flash the firmware of the commercial Broadcom AirForce54G
off-the-shelf chipset, replacing its 802.11 WLAN MAC protocol
implementation with our proposed extended state machine exe-
cution engine. We prove the flexibility of the proposed approach
through three use-case implementation examples.

Keywords-programmable MAC; WLAN 802.11, reconfigurabil-
ity; cognitive radio

I. INTRODUCTION

More than 20 years have elapsed since the establishment,
in 1990, of the IEEE 802.11 Wireless Local Area Network
committee. Initially foreseen as a technology for replacing
Ethernet cables with wireless connectivity, IEEE 802.11 has
been severely challenged by the highly heterogeneous needs
emerged in the last two decades. Indeed, the original 802.11
CSMA/CA Medium Access Control (MAC) has shown sig-
nificant shortcomings when facing the breakthrough rate im-
provements made available by the latest PHY enhancements
(802.11n, 802.11ac), as well as when applied to scenarios
and contexts such as ad hoc and mesh networks, vehicular
environments, directional antennas, quality of service support,
real time media streaming support, multi-channel operation,
dynamic spectrum access, and many others.

Actually, the WLAN research community has found effec-
tive and ingenious solutions for adapting the 802.11 MAC
operation to these new challenges. However, as for instance
detailed in a comprehensive analysis carried out in the frame of
the FLAVIA FP7 European project [1], most of the proposed
MAC modifications do not comply with the 802.11 standard
MAC operation. In the best case, i.e., when the required MAC
amendments are endorsed by some 802.11 standardization
task groups, several years may elapse before they become

This work has been carried out in the frame of the EU FP7-FLAVIA project,
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available in commercial cards/devices. More frequently, when
the promoted MAC amendments are either deemed out of
the standard task groups’ scope, or mandate a “way too
significant” departure from the native CSMA/CA MAC oper-
ation, their real world deployment is very unlikely, especially
when they require changes in time-critical operations natively
implemented in the network interface card.

Programmable WLAN systems

A very first step to address the above concerns is to
evolve from the current generation of closed network interface
cards, implementing the very specific WLAN protocol stack,
to programmable WLAN platforms1, capable of permitting
software-based modifications in the wireless access operation.

Obviously, the technical hurdle to face is how to support or
modify time-critical operations which cannot be delegated to
driver-level software modification, or controlled by dedicated
overlay software modules running on the host computer.

The research community has mainly circumvented this issue
by developing FPGA-based and/or Software Defined Radio
platforms, such as [2], [3], [4], [5], [6], [7], [8], and has
therein implemented and tested modifications to the wireless
access operation. Quite recently, the public domain release
of a (simplified) open firmware implementation [9] of the
802.11 Distributed Coordination Function, has further opened
up the very appealing possibility to perform time-critical MAC
modifications directly on commercial cards [10], [11], and thus
with a much greater deployment potential.

From Wireless Cards to Wireless Processors

Despite the above discussed advances in programmable
wireless systems, we share with a few other recent works [12],
[13] the belief that wireless access programmability should
go well beyond the ability to just “hack” firmware/software
code implementing a pre-established MAC protocol stack, and
should rather be designed into the MAC stack architecture.

In such a direction, this paper promotes the concept of
Wireless MAC processor, a programmable device which i)
provides a set of stateless Medium Access Control commands,
and which ii) embeds a MAC protocol engine in charge of

1In this work, we concentrate on pure technical aspects, and we choose not
to discuss the (controversial!) strategic implications behind wireless access
programmability, such as vendors’ business interest to pursue such a direction,
possible fragmentation of the solutions’ space, interoperability issues, etc.



executing a finite state machine able to exploit and compose
the sequence of commands forming a desired protocol.

The Wireless MAC processor commands can be considered
analogous to the instruction set of an ordinary CPU. They
are meant to implement elementary actions, namely MAC
operations such as transmit a frame, set a timer, freeze a
backoff, etc, which may (or may not) be then executed in the
appropriate sequence and/or under the occurrence of specific
events and conditions mandated by a protocol logic. Going
ahead with the same analogy, the MAC protocol engine can
be somewhat related to an ordinary CPU control unit. It is
in charge of executing an user-developed software program
implementing the desired MAC protocol operation, which,
in our proposed architecture, is provided in the form of an
extended finite state machine.

Our contribution

The specific contributions of this paper include:
• the design of a MAC processor architecture;
• the design of its programming interface in terms of i)

detailed identification of actions, events and conditions
(for concreteness tailored to the specific WLAN case),
and ii) their integration/handling through a programmable
Extended Finite State Machine (XFSM);

• the implementation of the proposed system over a com-
modity card (the off-the-shelf Broadcom AirForce54G
chipset), by replacing its 802.11 WLAN MAC firmware
implementation with our MAC protocol engine;

• the proof-of-concept validation via three very diverse
MAC extensions, tackling different MAC aspects (pro-
grammable frame replies, accurate scheduling of TX
times, and fine-grained radio control).

Although we are the first to use the convenient and descrip-
tive term Wireless MAC processor, we do not claim the novelty
of the underlying MAC decomposition idea, which appears for
instance in [12], [13]. Rather, besides the technical differences
discussed in section II, we believe that our most distinguishing
achievement is providing an architectural solution able to
clearly decouple what the device is able to do (the pre-installed
MAC commands) from what it is instructed - at run time - to
do (the injected state machine).

II. RELATED WORK

The ability to modify the operation of commodity WLAN
systems goes along with the availability of public-domain
open-source 802.11 MAC protocol code. Besides the signifi-
cant expertise required to modify existing code, a further de-
ployment barrier for many appealing MAC extensions consists
in the limited extent to which software changes may affect the
device operation. Indeed, early 802.11 devices were designed
according to a full-MAC approach. The MAC layer was
almost entirely implemented in the card hardware/firmware,
and programmability of the relevant drivers (when provided
as open source) involved a marginal set of functionalities.
The flexibility of commodity WLAN cards has significantly
improved since a number of vendors (including Intel, Ralink,
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Realtek, Atheros, Broadcom), started to exploit an innovative
soft-MAC [15] design, transferring to the host processor non-
time-critical MAC layer functionalities (figure 1).

Still, even in the soft-MAC case, the “Lower MAC”, com-
prising crucial sub-systems such as transmission, reception and
protocol control, remains hard-coded in the card. Although
some chipsets (e.g. from Atheros and Broadcom) permit the
tuning of selected MAC parameters (such as contention win-
dows) via registers, more substantial MAC operation changes
require access to the firmware code. To the best of our knowl-
edge, no vendor has to date released an open source firmware,
and the only available public-domain code is OpenFWWF [9],
a recently released simplified DCF firmware implementation
for Broadcom/AirForce54G chipsets. However, OpenFWWF
extensions require reimplementation of large portions of as-
sembly code, thus making it usable only by experts.

In parallel, a significant effort has been spent on the
development of overlay software modules. Solutions such as
the Overlay MAC Project [16], MultiMAC [17], FlexMAC
[18], Soft-TDMAC [19], etc, do exploit firmware configuration
registers and some driver hacks for building quite advanced
MAC programming interface (for instance, MultiMAC per-
mits to override the frame format, disable ACKs, RTS/CTS,
virtual carrier sense, disable transmission backoff, etc). Even if
notable implementations of custom MAC protocols, including
TDMA-like ones, have been demonstrated, overlay approaches
cannot get rid of some intrinsic limitations. Their scalability
may be impaired by the need to overlap and duplicate similar
functionalities at different layers; they remain constrained by
the basic programming interface made available by the driver;
and their limited ability to accurately control the card’s timing
prevents to deploy features such as programmable manage-
ment of frame replies and handshakes, precise scheduling of
medium access times, fine-grained radio tuning control, etc.

Clearly, the shift from commodity wireless cards to ded-
icated wireless platforms permits to push programmability
much farther, although the beneficiaries remain mainly con-
fined within the research community - real world deployment
of costly and/or bulky platforms being unlikely.



Wireless MAC Processor

Fig. 2. Internal architecture of the Wireless MAC processor

Early platforms such as RUNIC [3] and CalRadio [2] re-
implemented the 802.11 MAC protocol stack on, respectively,
a Xilinx FPGA and a Texas DSP, interfaced to a commercial
PHY-only Intersil 802.11b chip. As such, they permitted
arbitrary MAC modifications, but protocol reconfiguration
required a deep knowledge of the platforms and could only
be done offline by recompiling the modified C code.

Software defined radio (SDR) platforms, such as GNURadio
[4] and USRP [5], overcome the dependency on a specific
PHY interface and permit to develop full-custom MAC/PHY
cross-layer protocols. A large amount of work focuses on
means to improve the slow SDR performance. On one side,
solutions such as SORA [6] achieve a throughput comparable
to commodity 802.11 hardware by distributing computation on
multiple cores and by relying on sophisticated optimizations,
as well as on an efficient radio control board. However,
the software complexity makes protocol stack modifications
not easy, as any update implies a redesign of the software
block repartitions to multiple CPU cores. On the other side,
platforms such as WARP [7] and AirBlue [8] improve perfor-
mance by delegating most processing functions to the FPGA
Hardware, meanwhile retaining the ability to closely control
such functions via, e.g., registration of interrupt handlers,
hardware triggers, read/write of hardware registers, etc. In the
case of AirBlue, a modular organization coupled with careful
design choices permits relatively easy modifications, changes
in a module not affecting the others.

[12] and [13] are probably the works more closely related to
the Wireless MAC Processor approach presented in this paper.
Both start from a “breakdown” analysis devised to identify
core MAC functions. Based on this, [12] proposes a split-
functionality architecture, where time-critical MAC functions
are run on the radio hardware, but their control is kept on the
host PC. The architecture is implemented over the GNURadio
and USRP SDR platforms. Conversely, in the Decomposable
MAC framework proposed in [13] and detailed in [14] both
basic blocks and protocol logic are supported on a WARP
platform. The MAC logic is composed via a wiring engine
that connects the basic blocks required to support the desired

MAC operation.
Similar to [13], we also support the MAC protocol logic

directly on the radio card. However, our work differs from
[12], [13] for at least three major aspects. First, our breakdown
analysis further includes events and conditions, in addition to
MAC functions. Second, we leverage injection in the radio
card (and more specifically in the designed MAC protocol
engine) of Extended Finite State Machines, thus permitting
a greater flexibility as well as run-time re-programmability
of the MAC operation without interrupting the MAC service.
Third, we provide an experimental proof of our architecture
on resource-constrained commodity WLAN cards instead of
powerful and capable FPGA radio boards.

III. WIRELESS MAC PROCESSOR ARCHITECTURE

Our design starts from the consideration that most modern
wireless cards do embed a general-purpose CPU for supporting
the hardware control logic. We propose to push this approach
farther, by transforming the card itself in a specialized pro-
cessor, called Wireless MAC Processor (WMP). The WMP is
devised to specifically handle hardware/PHY events and sched-
ule actions on the hardware/PHY card resources, thus leaving
the MAC protocol developer with the much simpler task of
describing when and under which events and/or conditions
such actions should occur. In other words, similarly to other
processors specialized for handling digital signals (DSPs) or
graphical images (GPUs), we introduce a processor specialized
for handling MAC operations.

A. General WMP Architecture

The wireless MAC processor has been conceived as a CPU
specialized for handling hardware/PHY events and actions by
executing Extended Finite State Machines (XFSMs). We chose
to abstract the definition of the medium access control logic
in terms of state machine because they are very effective
in modeling the behavior of sequential control operations,
and most MAC protocols are formally described in terms of
state machines. Figure 2 shows the internal architecture of the
WMP, which includes five main components:

• an execution engine, running the provided XFSMs;
• a memory block for data and program;
• an interruption block passing the signals coming from the

hardware to the execution engine;
• a set of operations which can be invoked by the execution

engine, which include logic, arithmetic and flow control
operations plus specialized MAC operations;

• a set of registers for saving system state parameters.
The figure also shows the interface towards the transmis-

sion/reception blocks and the PHY, and the interface towards
the upper-MAC (external to the device, residing on the PC
host). Finally, figure 2 shows a further module, called XFSM
Builder. This is an optional module, external to the WMP,
and running on the host PC, which, analogous to a compiler,
permits the user to write state machines in an higher level
(symbolic) language. The XFSM Builder further verifies that
the underlying WMP is able to support (in terms of timers, data



XFSM formal notation MAC engine meaning
S symbolic states MAC protocol states
I input symbols triggering events, e.g., hardware

signals, timer expiration generated
by the interrupt block, etc.

O output symbols MAC actions: commands acting on
the hardware, performed by atomic
functions either native in the device
or implemented in the pre-loaded
operations module (including arith-
metic and logic operations, data
creation and deletion, etc)

D n-dimensional linear
space D1 × · · · ×Dn

all possible settings of n configu-
ration registers

F set of enabling functions
fi : D → {0, 1}

set of conditions to be verified on
the configuration registers for en-
abling the transitions

U set of update functions
ui : D → D

configuration commands devised to
change the value of the configura-
tion registers

T transition relation T : S×
F × I → S × U ×O

indicates the target state, the MAC
commands and the configuration
commands to be associated to each
transition

TABLE I
MAC PROGRAMS EXPRESSED AS EXTENSIBLE FINITE STATE MACHINES

space, etc.) the high-level state machine provided, may further
perform automatic state/transition optimizations, and may be
equipped (as in our implementation described in section IV)
with a graphical interface to further simplify the creation of
MAC programs.

B. Execution Engine and MAC programs

The execution engine, analogous to the control unit of a
microprocessor, is the core of the architecture. It performs the
tasks of fetching the MAC program, translating it into logical
operations and basic actions (as in RISC micro-instructions),
scheduling actions on the hardware, and storing results.

The engine is in charge to execute the MAC program,
written by the developer as an XFSM, and (dynamically)
loaded in the WMP micro-instruction memory from the host
PC. Starting from the current state, the engine waits for tran-
sition events (input signals). It then verifies whether optional
triggering conditions are verified, in which case it executes the
transition action and the state change.

XFSMs are a generalization of the finite state machine
model and permit to conveniently control the actions per-
formed by the MAC protocol as a consequence of the protocol
logic, of events such as arrivals and timer expirations, and
of conditions on configuration registers (whose settings can
be verified for enabling state transitions and updated when
the transition is triggered). Since the configuration memory
is not explicitly represented in the state space, XFSMs allow
to model complex protocols with relatively simple transitions
and limited state space. Table I maps the formal definition of
an XFSM, in terms of its abstract 7-tuple (S, I,O,D, F, U, T )
[20], onto the specific terminology used in this paper, and the
relevant meaning in terms of MAC primitives or parameters.

An user-defined MAC program is thus specified by the set of
states S, the triggering conditions F and the transition relations
T. The number of states and relations is in principle arbitrary

events actions conditions
CH UP set/get(reg, value) dstaddr
CH DOWN switch RX() myaddr
RCV ACK TX start() queue length
RCV DATA tx ACK() queue type
RCV RTS tx DATA() cw
RCV CTS tx RTS() cwmin
END BK tx CTS() cwmax
COLLISION switch TX() backoff
HEADER END prepare header() RTS thr
MED END set backoff() ACK on
MED DATA CONF freeze bk() srcaddr
MED DATA START resume backoff() frame type
MED DATA END update cw() fragment
QUEUE OUT UP set timer(value) channel
QUEUE IN OVER stop timer() tx power
END TIMER more frag() plength
END SIFS

TABLE II
WMP APPLICATION PROGRAMMING INTERFACE: SUPPORTED EVENTS,

ACTIONS AND CONDITIONS.

and depends on the device capability. Conversely, the set of
events I, the set of actions O and U, and the set of registers
D over which conditions may be enforced is predefined by
the Wireless MAC Processor device and represent the WMP
programming interface, detailed next. In other words, these
sets represent the wireless device capabilities (for instance, the
switch to a different frequency band) which, as such, cannot
be programmed by the user, but must be supported by the
device hardware, and can “only” be invoked and controlled
by the user-defined state machine.

C. WMP Programming Interface

In order to define an interface covering most of the MAC
programmability requirements emerged so far for WLAN
systems, we analyzed several use cases [21] including a hybrid
contention/polling, a TDMA-like, and a multi-channel access
protocol. The set of identified events, actions and conditions
able to support the analyzes use cases is summarized in Table
II, and discussed in the reminder of this section. Obviously,
since the WMP programming interface also represents what
the device is able to do, it can be extended when new
PHY capabilities (such as full duplex, beamforming, etc.),
are available (similarly to the release of a more powerful PC
processor).

Events. These are the set of signals either provided by
the hardware interrupt block, or coming from the upper
layers. The signals are generated by: i) the energy detec-
tion subsystem (CH UP and CH DOWN signals, i.e. start
and end of channel busy intervals); ii) the receiver sub-
system, (RCV ACK, RCV DATA, RCV RTS, RCV CTS,
HEADER END signals, i.e. end of reception of different
frame types or frame portions; MED DATA START and
MED DATA END/MED END signals, which delimit the re-
ception of a generic frame); iii) the frame control subsystem
(COLLISION signal, i.e., checksum failure); iv) the transmitter
sub-system (MED DATA CONFIRM signal, i.e., end of a
frame transmission; v) the transmission and reception queues
(QUEUE OUT UP and QUEUE IN OVER signals, respec-
tively enqueuing of a new frame and overflow at the reception



queue); vi) the clock (END BK, END TIMER signal when a
pre-set timer expires).

Actions. In addition to arithmetic, logic and control flow
primitives, the operation block supports MAC-specialized op-
erations, categorized into configuration commands and hard-
ware commands. The former work on the WMP registers
storing the information about the configuration of PHY and
MAC parameters, which refer to: i) the energy detection
mechanism: set/get(sensitivity), set/get(detection mode); ii)
the transceiver: set/get(channel), set/get(power); iii) the head-
of-line frame: update retry(), more frag(), prepare header();
iv) the contention parameters: set/get(cwmin), set/get(cwmax),
set/get(cw), set/get(RTS thr). The second group of oper-
ations drive different card sub-systems: i) the transceiver
subsystem: switch RX(), tx ACK(), tx beacon(), tx data(),
tx RTS(), tx CTS(), switch TX(), enable ACK(); ii) the
timers: set bk(), freeze bk(), set timer(value); iii) the upper-
layer interface: report().

Conditions. The WMP contains registers explicitly updated
by WMP actions and/or implicitly updated by WMP events,
which store information on the card configuration and network
state. These registers include: the station MAC address and the
queue registers (queue length/type), the transceiver registers
(channel and power), the contention registers (timers, con-
tention windows and backoff counter), the handshake registers,
the frame registers (frame type, destination and source address,
fragment), the medium state register. An example of register
updated by a WMP action is the backoff counter register
(set by invoking the set bk() command), while an example
of register automatically updated by hardware events is the
medium state register (busy when a CW UP event occurs).

IV. IMPLEMENTATION ON A COMMODITY WLAN CARD

To prove the viability of Wireless MAC processors, we
challenged its implementation over an ultra-cheap commodity
WLAN network interface card. Basically, for supporting the
WMP paradigm, the card has to expose the WMP interface
and run a MAC Engine.

We worked on the AirForce54G chipset from Broadcom
[22], since one author of this paper contributed to develop the
relevant open source firmware [9], and some documentation
on the internal card structure and its general purpose proces-
sor, registers, timers and transmission/reception primitives is
available. We replace the original card firmware with an as-
sembly code implementing the WMP state machine execution
engine, and map the previously described WMP programming
interface into actual signals, operations and registers of the
card2. Finally, for supporting the upper-MAC operations and
interacting with the other protocol layers, we use the b43 [23]
soft-MAC driver, which adapts the Linux internal mac80211
[24] interface to network card.

2Note that a similar firmware update and core procedure implementations
can be in principle performed on a card based on a different chipset, provided
that the chipset assembling tools and the documentation on the internal card
structure are available.

A. Hardware Platform

The AirForce54G chipset is built around an 8 MHz proces-
sor with 64 registers supporting arithmetic, binary, logic and
flow control operations. The other main blocks include:

• TX and RX engine. These blocks implement the transmis-
sion and reception actions of the WMP architecture. They
encode and decode packets from internal representation to
the 802.11b/g CCK and OFDM encodings; compute and
verify the Frame Check Sequence; transmit and receive
frames. Packet reception is performed by the RX engine
in parallel to other processor tasks.

• TX and RX FIFO queues. These queues are interfaced
to the host kernel. On the transmission path, packets
forwarded from the driver are enqueued in the TX queue,
from which the chipset pull frames and moves them into
the TX engine. On the opposite path, the processor waits
for a packet received by the RX engine, and pushes (or
drops) the received data towards the host kernel.

• Shared memory. This memory space of 4 KB can be ac-
cessed also by the host and can be used for implementing
the micro-instruction memory, i.e. the MAC program.

• Internal code memory. This 32 KB memory is used for
implementing the MAC actions not natively supported by
the hardware and the MAC engine.

• Template RAM. The RAM memory can be used for
composing arbitrary frames (including customized frame
replies) that can be pushed to the TX engine as if they
came from the TX queue.

• Internal registers and external conditions (EC). The inter-
nal registers keep hardware configuration settings. They
can be set by the processor in response to changes in the
EC to program the radio interface and set up timers.

B. WMP Implementation choices and issues

Our actual XFSM execution engine implementation works
as summarized in figure 3-(a). The main difference with the
WMP conceptual architecture is the management of events.
Hardware signals are in fact directly handled by registers and
cannot be asynchronously intercepted by the MAC engine
implemented in the firmware. For example, the end of a frame
reception (i.e., the MED DATA END event of the WMP) is
signaled by a change of status of a specific frame reception
register. Hence, we were forced to resort to a cyclic polling
of the event-logging registers. To limit polling delay, per each
MAC program state, we restricted the list of polled registers to
those logging events which could eventually trigger non-null
state transitions. As shown in figure 3-(a), the relevant list is
pre-loaded at each state transition.

From the above discussion, it follows that our imple-
mentation does not strictly distinguish between events and
conditions, both of them being verified by monitoring card
registers. However, the condition verification does not require
a cyclic polling, being performed only when a transition is
triggered. For what concerns the WMP programming interface
implementation, all the register configuration actions and part
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Fig. 3. MAC Engine work flow (a) and MAC program examples (b).

of the MAC actions summarized in table II were natively sup-
ported by the chipset; the remaining ones were developed and
pre-installed as micro-code procedures. Finally, we mapped
all the table II’s events and conditions into the Airforce54G
internal registers.

C. WMP Machine language

To permit the MAC engine to execute an XFMS, the latter
must be coded in a suitable machine language, analogous to a
bytecode. Let ns be the number of symbolic states, and let ne
be the number of input events in I , the easiest approach is to
code the XFSM as an ns × ne table. At each location (i, j),
the table stores the state transition when event j is received
at state i. Each transition has been defined by means of the
6-bytes triplet (a, c, s), where:

• a ∈ O + U is a 2-bytes MAC transition action, where
the first byte identifies the action label, and the second
byte the action parameter (needed in case of configuration
actions);

• c ∈ F is a 2-bytes condition enabling the transition (first
byte = register name, second byte = register state);

• s is the target state, coded with 2 bytes.
Note that we did not limit to 1 byte per state as the number

of actual states may become larger than the nominal ones:
when multiple actions/conditions are associated to a same
transition, as a consequence of the above coding, the state must
be split into a sequence of intermediate states, each triggering
at most one action and verifying at most one condition.

In practice, to cope with the severe memory limitations of
the chipset (only 4 KB are available for storing the MAC
program table), we optimized the memory occupancy by
replacing each table’s row with a list containing only the
non-null state transitions. As each state generally reacts to
a number of input events much lower than the total inputs
number (i.e., the table is sparse), skipping null-transitions
significantly reduces the required memory space. Moreover,
as a second optimization, we enabled the possibility to use
the second byte of the state labels for encoding an additional

state action (with no parameter) to be executed after the state
transition.

D. XFSM builder

To avoid writing MAC programs in the above described
machine language, we developed an XFSM builder which
includes a graphic XFSM editor on the eclipse platform for
composing MAC program, and a “bytecode” compiler which
translates an XFSM graphical representation into the machine
language understandable by the firmware’s MAC engine. The
bytecode can be uploaded to the device by using debug tools,
or can be injected from the host to the card by forwarding
special packets whose payload carries the MAC bytecode.
Loading a new bytecode on the chipset allows changing on-
the-fly the card behavior without any re-compiling operation.

V. FUNCTIONAL AND PERFORMANCE EVALUATION

In order to validate the proposed approach, we first verified
that our WMP implementation on the Broadcom card could
efficiently support a full “Lower MAC” protocol implemented
in the WMP XFSM machine language instead of micro-code.
The obvious choice was to (re)implement the legacy 802.11
DCF as an XFSM executed by the WMP, and compare its per-
formance with the benchmark provided by the native Broad-
com’s firmware, as well as with the performance provided by
the OpenFWWF firmware (i.e., DCF as well reprogrammed
on the card, but via straight firmware re-coding).

The relevant XFSM is illustrated in figure 3-(b) (black
states and transitions - the same figure shows, with different
colors, the extra transitions and states modeling the exten-
sions discussed next). Besides the self-explaining state labels,
input events, and transition arrows, the figure reports guard
conditions and actions (when associated to a transition) in
square brackets and in italic style, respectively. In case of
multiple timers simultaneously active, the figure also specifies
the source register (e.g. #DIFS) of the end timer events.
For graphical convenience, the figure separates the TX state
machine (left) from the RX one (right). Our performance tests,
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Fig. 4. Example of Piggybacked ACK operations.

performed for all the supported PHY rates (up to 54 Mbps)
did not show any noticeable difference with respect to the
Broadcom and OpenFWWF benchmarks.

We then ran a second set of experiments, having the
functional goal of showing that the availability of wireless
MAC processors may permit very easy and fast modifications
in the Lower MAC operation. To this purpose, in the following
subsections, we show how three MAC modification exam-
ples are readily deployed via straightforward state machine
modifications. We remark that some selected examples are
simplistic, and do not aim at being scientific proposals. Rather,
they are chosen because they are very easily explained in the
limited space available, and, most important, because they
tackle distinct MAC operation aspects which indeed recur
in several literature proposals: programmable management of
frame replies, (section V-A), precise scheduling of the medium
access times (section V-B) and fine-grained control of the radio
channels (section V-C). Note that without the WMP, despite
their simplicity, an actual (accurate) implementation of such
examples likely requires complex firmware-level hacks.

For monitoring the behavior of the MAC program exe-
cutions, apart from measuring the throughput performance,
we also used a customized tool for acquiring and processing
channel activity traces. The trace acquisition is based on USRP
[5], while the trace processing is performed in MATLAB for
deriving the power levels of the channel samples3.

A. PiggyBacked ACK

As an example of access protocol using an acknowledgment
mechanism different from the standard one, we considered a
PCF-like frame exchange under random access. The basic idea
is very simple: when a given station wins the medium con-
tention and transmits its DATA frame on the shared channel,
if the destination station has a not-empty transmission queue
and the frame size is not longer than a given threshold, it
can reply with a DATA+ACK frame (a standard data frame,
whose subtype field is 0001 rather than 0000), i.e. with a data
frame carrying in piggybacking an acknowledgment for the
received frame. The enabling threshold is used for limiting
the DATA+ACK transmission time, since such a frame trans-
mission is not protected by the duration field specified in the
previous DATA frame and could be corrupted by hidden nodes.
The DATA+ACK frame is sent after a Short Interframe Space
(SIFS) interval from the end of the DATA frame reception, as
in the case of normal ACK frames. If the destination station
has an empty transmission queue or a too long frame, the
normal ACK frame is sent as usual.

3We chose to use a SDR platform rather than developing a monitoring
XFSM for validating the performance of the MAC program execution by
means of a third-party instrument.

Fig. 5. An experimental trace of medium occupancy times under legacy
DCF and Piggybacked ACK.

Figure 3-(b) shows how such a variant can be easily defined
in terms of an update (red states and transitions) on the
DCF finite state machine. Let us consider the receiver sub-
system, which includes the main modifications. Starting from
an ongoing reception, i.e. from the RX DATA state, when
the header reception is completed (HEADER END event),
the station transits to the REPLY FORGING state under the
condition [dst addr = myaddr], [pklength < thr] and
[queue! = empty]. While in this state, the station contin-
ues the reception process and simultaneously prepares the
DATA+ACK frame reply (labeled as DACK). If the trans-
mission queue is empty or the packet size is higher than the
threshold (but the frame destination is the target station), the
receiver sub-system transits to the normal WAIT SIFS state
at the reception end (MED DATA END event).

Figure 4 illustrates an example of channel access operations
of two stations involved in a TCP data session, under the
piggybacked ACK scheme. In [25], where the application was
originally introduced, a performance comparison between the
piggybacked ACK and the standard DCF protocol shows that
the piggybacked ACK scheme leads to a TCP throughput gain
of about 20% for the considered scenario.

Experimental Results: We implemented the state machine
of the piggybacked ACK (with a piggybacking threshold
set to 200 byte) by porting the implementation discussed
in [25] on the engine-based firmware platform. We set up
a simple networking scenario: two TCP data sessions are
originated between two different senders (STA1 and STA2)
and a common receiver (STA0). The receiver uses two data
transport services: the piggybacked ACK for the TCP sink
connected to STA1, and the legacy DCF for the TCP sink
connected to STA2. The TCP sessions are created by the
iperf software with a payload size of 1500 byte, while all
the stations use a fixed 802.11g rate equal to 12 Mbps.

Figure 5 shows a segment of the channel activity trace
acquired (after a transient phase) by the USRP, in terms of re-
ceived power levels. Because of the different distance between
the stations and the USRP, the received power levels permit to
distinguish the three transmitting stations. The figure includes
three channel access handshakes, where normal ACKs and











  





 



 

Fig. 6. Example of Pseudo-TDMA operations.

TCP acks are characterized by a different duration (namely,
about 93 µs for TCP acks and 31 µs for normal ACKs). In the
first handshake, STA1 sends a TCP segment which is followed
by a TCP ack sent by STA0. In the second case, STA2 sends
its data segment and STA0 answers with a standard ACK.
Finally, the TCP ack sent by STA0 to STA2 contends to the
medium as a normal data packet and is acknowledged by a
normal ACK frame (sent by STA2).

B. Pseudo-TDMA

In order to prove that our platform can provide a precise
scheduling of medium access times, we considered some
simple DCF extensions devised to support a pseudo-TDMA
mechanism, similar to the one described in [26]. The scheme
assumes that a preliminary admission control test has to be
verified before contending for a pseudo-slot. A graphical
representation of the pseudo-frame organization is given in
figure 6, where for space reasons the ACK frames are not
explicitly shown and have to be considered included in the
transmission boxes. After a successful random access, the
admitted CBR flow schedules the next medium access at the
end of a fixed time interval, corresponding to the pseudo-frame
duration. If the medium is idle, the transmission is immediately
performed when the timer expires. Otherwise, the channel
access can be performed at a very high priority after a PIFS
time from the end of the previous transmission. Subsequent
CBR flows admitted in the network will start the first random
access during the empty pseudo-frame interval, thus obtaining
a different pseudo-slot position within the frame. In case of
transmission failure, a new random access has to be performed
for gaining a new pseudo-slot.

The implementation of such a scheme in terms of updates
on the standard DCF finite state machine is shown in figure
3-(b) with blue states and transitions. After the first ACK
reception, the transition to the TX state can be performed from

Fig. 7. An experimental trace of medium access times under Pseudo-TDMA.

 
 

  






 
 

  



Fig. 8. Example of randomized multi-channel MAC operations.

the WAIT PSEUDO FRAME state at the expiration of the
frame timer. If during the timer expiration a CH UP signal is
revealed, the machine transits to TDM RX. When the medium
is idle again (CH DOWN event), a PIFS timer is set in case
of expiration of the pseudo frame interval. In case of empty
queue, the machine comes back to the IDLE state.

Experimental Results: Figure 7 shows an example of chan-
nel activity trace acquired by the USRP during an experiment
in which two stations executing the Pseudo-TDMA program
send packets of different size (namely, 500-byte packets from
the first station STA1, and 100-byte packets from the second
STA2) towards a common destination station (STA0). Both
the stations employ an 802.11b PHY with a transmission rate
set to 11 Mbps and a pseudo-frame interval of 1.536 ms (i.e.
0x600 µs). In the figure, the different frame lengths allow
to distinguish the two transmitters, while the different power
levels allow identifying acknowledgment transmissions and
idle times. The medium access times are scheduled with a
precision (of the order of micro-seconds) not achievable with
driver level hackings.

C. Randomized multi-channel access

As an example of fine-grained radio control, we chose the
possibility to perform a per-frame dynamic configuration of
the radio in terms of transmission channel tuning. Also in
this case, we focused on the analysis of the programmability
requirements for supporting the access scheme, rather than
on performance optimization. We considered a simple access
mechanism for single radio nodes able to switch between two
transmission channels and transmitting traffic towards a multi-
radio access point (simultaneously synchronized on both the
channels). At each backoff extraction, the nodes extract a new
backoff counter and randomly choose to change or not the
transmission channel.

The updates on the legacy DCF state machine are included
in figure 3-(b) in terms of a new action (in green) associated to
the transition from state WAIT DIFS BK to state BACKOFF.
Although the protocol is a very simple example of multi-
channel MAC, it may lead to the potential benefits depicted
in figure 8. In case of independently interfered channels,
the hopping mechanism allows to partially aggregate the
bandwidth available on each channel. In practical, the channel
switching operation could not be instantaneous. Therefore,
more efficient solutions could be implemented by enabling
the channel switching on the basis of traffic-load estimators
(rather than being random), in order to reduce the channel
wastes occurring at each switch.

Experimental Results: In this experiment we used an
802.11g PHY, with the data rate set to 18 Mbps. We considered
a multi-channel MAC program, switching between channel



0 10 20 30 40 50 60

0

2

4

6

8

10

Time [sec]

Th
ro

ug
hp

ut
 [M

b/
s]

 

 

STA1 chan1
STA1 MC COL
STA1 MC RND
STA2 chan1

Fig. 9. Throughput performance of a station randomly hopping between an
idle channel and a bursty interfered channel.

1 and channel 10 with a switching probability set to 1/16,
and a DCF legacy program working on channel 10. For
quantifying the performance of the scheme and the channel
switching overheads, we compared the throughput perceived
by a station loading the multi-channel MAC program (dashed
green line) or the DCF legacy program (blue line), when
it contends with another legacy station which transmits in-
termittently on channel 10 (as shown by the red curve in
figure 9). The source rate of the contending station is set
to 5 Mbps. When the contending station is not active (i.e.
in the time intervals [0,10]s, [20, 30]s and [40, 50]s) there
is no remarkable performance difference between the legacy
DCF scheme and the multi-channel scheme, thus proving that
the channel switching overhead is almost negligible. However,
when channel 10 is interfered, the multi-channel MAC allows
to increase the average throughput from 5 Mbps up to about 7
Mbps (i.e. to about the average value between 10 Mbps gained
on channel 1 and 5 Mbps gained on channel 10). By activating
the channel switching condition only in case of collision (with
a 0.5 switching probability), the performance of the multi-
channel MAC (dashed purple line) can be further improved,
by maintaining almost a fixed 10 Mbps throughput.

VI. CONCLUSIONS

Current network interface cards are meant to implement a
specific MAC protocol stack, and can be reprogrammed only
having access to the (very complex, and rarely public domain
available) firmware code.

The Wireless MAC processor introduced in this paper is a
new approach to conceive wireless access devices. Rather than
supporting a given protocol stack, our Wireless MAC proces-
sor supports MAC commands and relevant triggering events
and conditions, which are then composed and controlled by a
MAC protocol engine, namely an extended finite state machine
executor. Thus, an eventually full-custom MAC protocol can
be programmed by simply injecting (or replacing at run-time,
for dynamic MAC protocol reconfiguration) in the Wireless
MAC Processor an user-defined state machine modeling the

desired MAC operation.
In this paper, we have provided an architecture design for

the Wireless MAC Processor, we have specified its program-
ming interface in terms of actions, events and conditions, and
we have concretely proved that it can be implemented over an
ultra-cheap commodity WLAN card. Three very diverse use-
case examples have been finally implemented and validated, to
show the flexibility and versatility of the proposed approach.
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