One Size Hardly Fits All: Towards Context-Specific
Wireless MAC Protocol Deployment

Giuseppe Bianchi

Universita degli Studi di Roma - Tor Vergata, Italy

giuseppe.bianchi@uniroma2.it

ABSTRACT

This paper casts recent accomplishments in the field of Wire-
less MAC programmability into the emerging Software De-
fined Networking perspective. We argue that an abstract
(but formal) description of the MAC protocol logic in terms
of extensible finite state machines appears a convenient and
viable data-plane programming compromise for modeling
and deploying realistic MAC protocol logics. Our approach
is shown to comply with existing control frameworks, and
entails the ability to dynamically change the MAC proto-
col operation based on context and scenario conditions; in
essence, move from the traditional idea of “one-size-fits-all”
MAC protocol stack to the innovative paradigm of oppor-
tunistically on-the-fly deployed context-specific MAC stacks.
With the help of selected and currently developed use cases,
we report on preliminary integration activities within the
CREW federated wireless testbed, and its OMF experiment
control framework.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Wireless com-
munication

Keywords
programmable MAC; WLAN 802.11, cognitive radio

1. INTRODUCTION

Originally introduced as “just” cable replacements, wire-
less networks have today dramatically expanded their scope.
Market saturation, fierce competition, and traffic-revenue
decoupling requires wireless operators to find creative tech-
nical means (other than pricing) to diversify their offers and
get the most out of the current PHY technologies.

Flexibility and programmability of wireless devices ap-
pears crucial to foster wireless innovation [1]. Indeed, wire-
less service scenarios and application contexts evolve con-
tinuously and in an unpredictable way, and require signifi-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

WINTECH'13, September 30 2013, Miami, Florida, USA

Copyright 2013 ACM 978-1-4503-2364-2/13/09 ...$15.00.
http://dx.doi.org/10.1145/2505469.2505482.

llenia Tinnirello
Universita degli Studi di Palermo, Italy
ilenia.tinnirello@tti.unipa.it

cant and fast amendments of the underlying protocols. Cus-
tomers should be given a personalized delivery service and
quality of experience [2]. Wireless access performance should
be matched to the nature of the application or service being
used, and should be made able to smartly exploit oppor-
tunistically available spectrum and resources in dense envi-
ronments [3]. And, finally, wireless protocols and solutions
originally designed for general scenarios should be tailored
(stretched?) so as to fit the specific needs of largely diverse
(niche) contexts and deployments (industrial automation,
domotics, military, emergency, machine to machine, etc).

In the attempt to make wireless flexibility and programma-
bility viable, this work has a twofold goal.

First, we revisit recent work we carried out in [4, 5],
where we introduced the notion of Wireless MAC processor
(WMP). In a nutshell, the WMP design permits to decouple
a set of “dumb” hard-coded, access primitives, from a third-
party provided “smart” MAC protocol logic, according to
which such primitives shall be executed. While in previous
works we focused on the actual WPM core design [4], and
on the technical extensions needed to run-time permit on-
the-fly MAC protocol reconfiguration via “MAClets” [5], we
here argue about the broader scope of WMP abstractions as
data-plane interfaces for Wireless-specific Software-defined
Networking (SDN) frameworks.

Second, in the attempt to identify practical control frame-
works for WMP-enabled devices, we report on our integra-
tion experience within the federated experimental testbed
developed in the frame of the CREW FP7 European project.
Also via actually implemented and running use cases, we
show how OMF controllers [6], so far meant for testbed’s
experiment control, can be easily extended to accommodate
dynamic reconfiguration and deployment of context-specific
MAC protocol, and can be thus envisioned as possible base-
line controllers for wireless SDN scenarios.

2. MOTIVATION

Today, wireless technologies and protocols (in this paper
we are specifically concerned with the Medium Access Con-
trol protocol, MAC) suffer of an extremely slow pace of in-
novation.

On one side, standardization organisations are slow and
restrictive in adapting to the new evolving requirements.
Slow because a standard, even when dealing with “soft”
amendments at the MAC protocol logic level (versus, say,
hardware changes in the physical layer primitives) may take
years from the time it is chartered to the time it is finalized;
restrictive because pushing standard bodies in launching a

dedicated wireless standard amendment Task Group is all
but easy, especially for small or medium enterprises, user
communities or academic researchers.

On the other side, performance reasons require MAC pro-
tocols, and especially the low level MAC operation, to be
implemented directly in the Network Interface Card (NIC).
However, perhaps fearing commoditization, or perhaps sim-
ply not finding any compelling reason to take an alterna-
tive approach, most wireless manufacturers have pursued
a closed products’ design strategy. The aftermath is that
today’s commercial off the shelf wireless NICs remain un-
flexible, implement an one-size-fits-all standard MAC pro-
tocol, and expose very limited facilities (if any) to customize
and/or adapt the channel access mechanisms to the possibly
very specific and personalized context and service needs.

One-size hardly fits all

The wireless industry has so far standardized “protocols”,
including the MAC stack, buried once for all inside the NIC
implementation, and great care has been obviously made in
making the evolution of such protocols backward-compatible,
via amendments and extension of a legacy protocol spec-
ification. At the opposite extreme, starting long time ago
with cognitive [7] and active [8] wireless network visions, the
wireless research and academic community has pushed for-
ward dynamic reprogrammability of devices, so as to best
fit unpredictable and dynamically mutating context situa-
tions, adapt to service demand variations, and smartly ex-
ploit temporarily unused radio spectrum.

In a fully programmable vision, a protocol stack should
not be designed once for all, but the most appropriate pro-
tocol fitting the possibly very specific context at hands could
be automatically downloaded upon need. Protocols would
be simpler (for instance, why bothering with hidden termi-
nals in contexts where there is none?), and backward com-
patibility would not be an issue anymore (all the stations
in a same radio coverage could download and run the same
stack).

However, it is unfortunate that the wireless reseach com-
munity, while pursuing such an idealized vision, did mostly
focus on specific technology platforms rather than on open
interfaces and means to formally describe a desired radio
behavior. Indeed, many valuable programmable radio plat-
forms have been developed in the course of the past years,
including but not limiting to GNUradio [9], WARP [10],
USRP [11], SORA [12], AirBlue [13], and including plat-
forms specialized for MAC layer programmability, such as
[14, 15, 16]. However, what appears largely under-explored
is the identification of abstractions and relevant program-
ming languages which formally describe a desired wireless
operation, and which can be deployed across multiple ven-
dors’ platforms (somewhat similarly to Java applets [1]), ir-
respective of their internal implementation (be it FPGA or
DSP or a proprietary HW).

The need for abstractions (learning from SDN)

The impressive rise of Software-Defined Networking (SDN)
in the wired domain has underlined the crucial role of vendor-

'Quoting Craig Partridge [1], “One might imagine a lot of
practical and theoretical work has been done on how to tell a
radio how to behave and how a radio can describe its own be-
havior. However, rather stunningly, little work has targeted
this problem”.

independent behavioral abstractions for the data forwarding
plane, originally pioneered by OpenFlow [17], but today not
limited to it. SDN is not “just” about the separation of
control and data planes, or “just” about the massive deploy-
ment of the OpenFlow protocol and its emerging extensions.
Nor SDN should be confused with the complementary Net-
work Function Virtualization (NF'V [18]) trend of handling
network functions as virtualized software-based services run-
ning on commodity hardware?.

Rather, as crystal clarified in a talk by a leading SDN sci-
entist®, the SDN’s paradigm-breaking vision that may obso-
lete the very idea of standards and protocols is the ability to
control network functions and elements through viable ab-
stractions “consistent with the vendors’ need for closed plat-
forms” (quoting [17]). These permit to dynamically provi-
sion, control, and even fully reprogram network nodes, using
formal descriptions (e.g. an OpenFlow match/action table)
of their forwarding behavior, provided by third party pro-
grammers via centralized remote controllers.

Arguably, the wireless enterprise community has antic-
ipated, if not even inspired, the shift towards centralized
controllers, but apparently has not been capable to recog-
nize and harness the underlying SDN implications. Indeed,
control/data plane separation and remote control of wire-
less access points was advocated as much as 10 years ago,
and has lead IETF to charter, in 2005, the Control And
Provisioning of Wireless Access Points (CAPWAP) proto-
col, later on standardized in RFC 5415. And the CAPWAP’
“split MAC” idea of encapsulating MAC layer control frames
and delivering them to a controller for centralized process-
ing resembles the way OpenFlow delivers to the controller
information about newly incoming flows.

What however the wireless community has somewhat ne-
glected is the need to i) devise viable programming abstrac-
tions for wireless functions, and ii) show that they can be
handled with suitable extensions of already deployed network
control frameworks. Our proposals for addressing these two
issues are presented in the next two sections, respectively.

3. WIRELESS MAC ABSTRACTION

Although [4, 5] do not mention SDN, in retrospective we
believe that we therein identified a viable compromise be-
tween the ability to program a broad range of wireless MAC
protocols, and the consistency with the vendors’ need for
closed platforms. We now briefly review the basic Wireless
MAC Processor (WMP) concept and the relevant MAC pro-
gramming abstraction, to the extent needed for understand-
ing the new network-wide control and orchestration means
described in the next section and integrated in the CREW
testbed. The reader interested in technical details and im-
plementation aspects (on a cheap commodity brand-name
vendor’s cards) is referred to the original works.

In designing a viable abstraction for platform independent
wireless MAC protocols specification, the technical hurdle to

2 Although with some stretch, NFV may be considered as the
wired counterpart of the Software Defined Radio’s ability to
replace HW transceiver components with software programs.
This analogy also helps to clarify why SDR and “wireless”
SDN are very different concepts.

3Scott Shenker, The Future of Networking, and the
Past of Protocols, Open Networking Summit 2011,
Stanford, October 18-19, 2011; can be watched at
http://www.youtube.com/watch?v=YHeyuD89n1Y

face is how to formally model the MAC protocol behavior
using an high level language, and meanwhile support opera-
tions which may require a precision in the order of microsec-
onds (e.g. schedule a frame transmission), and which cannot
hence be outsourced to software programs running outside
the NIC (e.g. in the driver). Our proposed abstraction is
based on the following decoupling compromise:

e NIC cards do support an hard-coded (not modifiable
by the MAC protocol programmer) instruction set,
namely an Application Programming Interface (API)
comprising of actions, events and internal parameters
upon which conditions can be evaluated (see [19] for
of our APT’s details)

e Third-party MAC programmers formally describe how
actions are coordinated and triggered (by events and
conditions) via eXtensible Finite State Machines (XFSM
- [4]); in essence, the programmer can specify in a for-
mal (executable) model, custom protocol states, state
transitions and relevant triggering events and condi-
tions, and actions invoked when state transitions occur
and/or when a state is reached.

e To execute injected XFSM (suitably compiled into a
byte-code-like language), the NIC further implements
a generic XFSM processing engine, conceptually anal-
ogous to a Central Processing Unit (CPU) in ordinary
computing systems, but technically differing in its op-
eration, as its role is to fetch states, parse events, trig-
ger state transitions, and invoke associated actions.

The above abstraction clearly decouples the role of the
NIC manufacturer from that of the MAC programmer. Ven-
dors remain in charge of providing HW signals and in bring-
ing about innovation in the radio primitives (faster trans-
mission technologies, advances in modulation and coding
schemes, etc.); MAC programmers are free to define the
protocol states and relevant transitions which orchestrate
such primitives according to their desired MAC protocol
logic. And dynamic MAC protocol reconfiguration becomes
as easy as switching from a state machine to another.

4. USING OMF AS CONTROL FRAMEWORK

4.1 OMTF Control Architecture

Several SDN concepts have been somewhat anticipated
in the context of software frameworks for the configuration,
execution and centralized control of wireless testbed exper-
iments [20, 6]. Although conceived for benchmarking pur-
poses, experiment controllers exploit some basic principles
of software defined networking: i) build a global view of the
network in terms of interactions between nodes; ii) provide a
model of different network resources with different abstrac-
tion levels for configuring the desired behavior; iii) bind a
set of resources to one central controller running a program
which defines how to change resource properties and recon-
figure nodes in reaction to events.

The first architecture developed according to these princi-
ples was the ORBIT [20] wireless testbed, whose main com-
ponents, the cOntrol Management Framework (OMF) and
Measurement Library (OML), are now deployed in several
worldwide testbeds (from USA to Australia), including the
European testbed CREW. In an OMF-enabled testbed, the

Data Network

Bytecode
Manager
0S+wmp
firmware

Configuration

XFSM Table
arameters |

m

prototype
| Node.1 | Node.2 | Node X

) Control Network

Experlment

Opt Luglc %

prototype

WMP prototype

Figure 1: WMP integration in the OMF architec-
ture as a specific node prototype.

global view of the network is given by the aggregation of dif-
ferent testbed resources in a network topology whose state is
monitored by the aggregation manager (AM); the hardware
and software network resources are abstracted in terms of
nodes, interfaces and applications, that can be configured
by means of a set of parameters called properties and com-
bined in different prototypes; the experiments are managed
by a central experiment controller (EC) able to send con-
figuration commands to all the nodes and react to network
events defined by the testbed users.

Fig. 1 shows the general architecture of an OMF-enabled
testbed: the testbed nodes run a resource control process
(RC) to interact with the EC, and one or more monitoring
processes called measurement points (MPs) for collecting
node statistics to be sent to the OML data base. Differ-
ent messages can be exchanged between the resource con-
trol processes and the experiment controller: loading mes-
sages, for sending and installing the binary code of the ap-
plication modules to the nodes; call messages, for launching
the installed applications with specific configuration param-
eters; event messages, for signaling some events such as the
successful installation of an application; management mes-
sages, for verifying the configuration and the status of the
nodes. The controller sends the messages for driving the
applications on the testbed nodes according to an experi-
ment description file which allows to change the application
parameters dynamically during the experiments. The ex-
periment controller is also responsible for handling nodes’
configuration consistency, synchronization problems, node
state monitoring, etc., thus significantly simplifying the ex-
periment description programmed by the users.

OMF testbeds have been used for experiments focusing
on very different network aspects (from routing protocols, to
content sharing applications and cooperative transmissions
for ad-hoc networks) thanks to the application abstraction
that allows to load on the testbed physical and virtual ma-
chines different network stacks and OSs, by linking interfaces
and software modules (written in a generic programming
language) with specific configuration parameters.

4.2 The WMP Prototype

Being the OMF programmability model based on com-
posable software modules and parametric configuration in-
terfaces, we considered the possibility to exploit the WMP
abstractions for supporting a parametric definition of novel
and dynamic MAC schemes in terms of coded XFSMs. To

defApplication('BM', 'bytecode-manager') do |appl
app.description = 'Sothbound Interface to WMP'
app.path = '/root/src/bytecode-manager’

app.defProperty ('listen', "enable XFSM remote
injection", "-s ", {})

app.defProperty ('connect', "send a XFSM to a remote
note ", "-c ", {:type => :string, :default =>
'localhost', :order => 1})

app.defProperty ('run', "activate the XFSM on a given
position", "-a ", {:type => :integer, :default =>
1})

app.defProperty('load', "inject a XFSM on a given
card position", "-1", {:type => :string, :order =>

1})

app.defProperty ('machine', "specify the bytecode

text file", "-m ", {:type => :string, :order => 2})
app.defProperty ('dump', "outputs some card internal
registers ", "-x ", {:type => :integer, :default =>
11

end

Figure 2: OML wrapper for the bytecode manager
application.

this purpose, as depicted in figure 1, we defined a WMP
prototype by integrating: i) the custom-made firmware de-
veloped for Broadcom wireless cards, ii) an interface appli-
cation called bytecode manager, iii) a set of measurement
points specifically designed for estimating the state of the
wireless network.

Firmware. The firmware module allows to re-purpose
the testbed wireless cards on which the prototype is loaded,
by changing the card behavior from executing a standard
802.11 protocol to executing a generic programmable state
machine. In comparison with the original version [4], the
firmware has been slightly extended for enabling the possi-
bility to collect low-level measurements to be exploited by
the MPs. Two different extensions have been considered:
the introduction of customized statistic registers that can
be incremented by a relevant action at the occurrence of
hardware events to be monitored; the possibility to filter the
packets in the transmission and reception buffers by verify-
ing a match condition in a two-bytes field in different frame
positions.

Interface. For conveniently load a bytecode on the card
or programming a switch to a new bytecode, our WMP re-
lease exploits an application called bytecode manager. To
enable the exchange of messages with the EC, we developed
a wrapper for using the bytecode manager as an OMF appli-
cation. The wrapper allows to load the bytecode manager on
the controlled node, invoke the WMP interface commands as
different application properties, and track the output of the
commands in the state of the controlled nodes. A simplified
version of this wrapper is shown in figure 2. The wrapper,
according to the SDN terminology, implements a southbound
interface for configuring the node behaviors according to the
injected XFSM.

Measurement Points. A set of auxiliary OMF applica-
tions have been developed for monitoring different network
statistics on the controlled nodes. We developed a wrapper
for the tcpdump packet analyzer whose properties allow to
configure the packet filtering criteria, and a monitoring ap-
plication of the WMP internal registers (called WMPdump)

Sensing Configuration
defGroup('N1l', property.resl) do |gl|
g.addApplication ('WMPdump') do |app]
app.property('cw')
end
end

Context Definition
defEvent (:HIGH_CW) do |event|
app_status =
group ('N1'") .state ("apps/app[@name="WMPdump']/io/out/line")
if lapp_status.nil?
app_status.each do |element]|
event.fire if element>31
end
end
end

Reaction Mechanism
onEvent (:HIGH_CW) do |event]
group ('N1') .stopApplication (*‘WMPdump’)
group ('N1') .addApplication(‘bytecode-manager’) do |appl
app.setProperty('run', 2)
end
group ('N1') .startApplication (‘bytecode-manager’)
end

Scenario
onEvent (:ALL_UP_AND_INSTALLED) do |event|
group ('N3"') .exec ('iperf -s')
wait 1
group ('N2') .exec ('iperf -c 192.168.0.3 -t 100 -i 1'")
group ('N1') .exec('iperf -c 192.168.0.3 -t 100 -i 1")

wait 1
group ('N1') .startApplications
wait 30
Experiment.done
end

Figure 3: An example of network control program
written in OEDL.

whose properties allow to select the desired register and to
convert the register value in decimal notation. Examples
of parameters that can be collected by WMPdump are the
number of correctly received or failed preambles, the number
of CRC failurs, the contention window values.

4.3 Supporting a MAC cognitive cycle

To perform a functional analysis of the OMF primitives
available for developing control applications, we consider a
MAC cognitive cycle in which: i) the sensing phase is im-
plemented by collecting different data by means of the mon-
itoring applications deployed on the nodes; ii) the analy-
sis and reasoning phases are performed at the EC by ag-
gregating data and provide a network context estimate, iii)
the adaptation phase is finally achieved by reprogramming,
when needed, the MAC program on the controlled nodes.

Figure 3 shows a simple example of control applications,
enlightening the functional mapping between the OEDL in-
structions and the different phases of the MAC cognitive cy-
cle. The sensing phase is basically programmed by specify-
ing the monitoring applications and parameters to be loaded
on the network nodes (in our example, the WMPdump appli-
cation will track the contention window value of node N1).
The context estimation phase is programmed by defining
customized events (i.e. contexts) to be identified when some
specific conditions are met. For example, when the log of
the monitoring application shows that node N1 is using a
contention window higher than 31, an event is triggered for
indicating an high contention state for that node. The reac-
tion phase is programmed as a list of instructions (such as
the switching to a different XFSM) to be executed after the

corresponding event is triggered. Finally, the figure shows
the configuration of a network scenario when the OMF prim-
itives are used for their native role, i.e. for configuring an
experiment by specifying the traffic flows between the net-
work nodes.

S. MAC ADAPTATION EXAMPLES

We deployed four WMP-enabled nodes in a CREW’s testbed

in Ghent (Wilab2). Nodes, called Alixz;, with ¢ = 1,--- ,4
are equipped with the WMP prototype and MPs able to
monitor high level performance figures and card registers.
Node Alixs is configured to act as an Access Point because
of its central physical position (with nodes Alizs and Alizy,
close each other, on the left and node Aliz1 on the right).
For control purposes, nodes are wired to an independent
Ethernet network, where the EC, AM and the OML data
base also reside: we will show in the next section 5.3 how
wired connectivity can be restricted to the AP only (as in
real world conditions) and the remaining nodes can be reli-
ably controlled via wireless, using wireless MAC virtualiza-
tion.

Even if we rely on an experiment control framework, we
stress that our usage of the EC should not be confused with
the usual control of an actual experiment timeline (launch-
ing traffic flows, configuring wireless cards and MPs, etc).

7
6
A
g 5
=
= 4
3
£
5 3
3
= 2
=
1
0 1 1 1 1 1 1 1
20 40 60 80 100 120 140
Time [s]

Figure 4: Unbalanced throughput results between
Alir; and Alizs in case of capture effects.

l T T T T T T T T T Al 1 T T
0.9 - A2 il
08l -
07k -
06 |
05 L
04k
03t
02k
o1l

Probability

] H o I Y j PO = T S v
31 63 127 255 5111023 15 31 63 127 255 511
Contention Window

Rather, our scenario is that of an independent and autonomously Figure 5: Distribution of the contention window val-

evolving wireless network, but where dynamic MAC proto-
col adaptations are triggered by context change estimates ac-
cording to a centralized optimization logic. Both such opera-
tions are implemented in OEDL, by defining different events
and relevant actions.

5.1 Use case 1: performance adaptation

The example presented in this section (as well as the next
one in section 5.2) is naive, and the adaptation mechanism
used can be obviously improved. Its purpose is however
not to specifically propose an actual meaningful algorithm,
but rather to showcase how an adaptation strategy can be
supported and orchestrated by the control framework.

In WLANS, different channel conditions make such that
stations may experience a largely different throughput de-
spite using the same backoff settings. Fig. 4 shows that this
phenomenon also occurs in our actual deployment. When
node Aliz1, loaded with a greedy UDP data transfer (pay-
load size of 1470 bytes) towards the AP, starts transmitting,
it reaches maximum performance*. However, its through-
put drops down to about 2.4 Mbps when node Alixs starts
a similar UDP session, whereas Alix2’s throughput is about
4.2 Mbps. As the initial session was not meaningfully af-
fected by channel errors, this difference is likely caused by
channel capture by node Aliza, closer to the AP (upon col-
lision, the AP is able to correctly demodulate the stronger
Alizo signal).

Context gathering. This unfairness is detected by in-
structing the node MPs to periodically send throughput
measurement samples to the EC. When a significant and
stable difference in throughput is detected (a threshold per-
centage), the EC starts a closer investigation by sending a
command to the WMPdump application for gathering the

4Considering overhead, the measured 6.7 Mbps with PHY
rate of 11 Mbps is aligned with the expected saturation
throughput for a single station in ideal channel conditions.

ues of Alix, and Alixzzs in case of capture effects.

contention windows distribution in 1000 transmission at-
tempts (Fig. 5, left). The EC analyzes the data (an al-
ternative cause could be the lower traffic generated by a
station), notes the large amount of retransmissions by node
Alizq versus the minimum contention window value used
by Alizs in more than 95% of the cases, and diagnoses a
channel capture situation, i.e., a new context.

MAC adaptation. The (trivial) implemented adapta-
tion strategy consists in commanding the station with lower
throughput to reduce the minimum contention window. Note
that even if this is a simple change in parameters which could
be actually supported by 802.11 drivers, in our proof of con-
cept experiment we have actually implemented this as a full
change of the MAC protocol stack, i.e. the EC delivers to
Alizy a brand new XFSM (re)implementing the DCF pro-
tocol with CWyin = 15, and sends an activate command.
A more clever adaptation algorithm based on a more struc-
tural MAC stack change (e.g. from DCF to TDMA [21])
would of course use a different XFSM, but would be con-
trolled and executed in the same manner as above. In Fig.
4, the switch command is sent at about time 110, as shown
by the improved fairness (contention window statistics after
the MAC protocol change are shown in Fig. 5, right).

5.2 Use case 2: topology adaptation

As a second use case, we integrated the Direct Link Setup
(DLS) scenario described in [5] in the OMF control frame-
work. We recall that DLS is an 802.11 protocol amend-
ment devised to prevent the “triangular” routing and the
relevant halve of capacity mandated by the original 802.11
standard, which forces two stations associated to a same AP
to mutually communicate through the AP itself. DLS stan-
dardization has neither been easy nor fast (it was originally

Alix2-Alix4

Throughput [Mbps]

o B N W A~ 00O N
T
!

1 1 1 1 1 1 1 1
20 30 40 50 60 70 80 90 100
Time [s]

=
o

Figure 6: Throughput before/after DLS.

-50

-55

-60 [

-65

SNR [dB]

-70

75 ‘ ‘| ‘ 1 1 1 1
0 500 1000 1500 2000 2500 3000

Packet sample

Figure 7: SNR samples monitored by node Alizy

introduced in 802.11e and further extended in the 802.11z-
2010 amendment), as it is not nearly a trivial protocol since
it has to deal with possible hidden terminal scenarios. In
our deployment we set up a traffic flow from Alizs to Alixy
which are in radio visibility. As shown in Fig. 6, the average
throughput measured under standard DCF is lower than 1.5
Mbps, being the transmission rate in the AP-Aliz4 link set
to 2 Mbps.

Context gathering. To understand the traffic scenario,
the EC activates a tcpdump application on the AP. When an
internal traffic flow between two mobile stations is revealed,
the EC starts a closer analysis by also activating the tcp-
dump application on the destination node. The application
is configured for filtering from DS and to DS frames and
tracking the SNR values of each captured frame. An exam-
ple of the resulting trace is shown in Fig. 7, where the from
DS frames before the 1000-th sample are obviously sent by
the AP, while the to DS ones are sent by Alixzs. The EC
analyzes the data to understand if the two mobile nodes are
visible or not, and detects that a direct link can be activated.

MAC adaptation. The direct link XFSM (available in
the EC repository) is sent by the EC to both the mobile
nodes with a different configuration parameter representing
the MAC address of the peer node. After loading the pro-
gram, the EC sends the switch commands to the new MAC
protocol stack. According to our implementation, Alize is
now able to send frames to Alix4 by pretending to be the
AP. Fig. 6 shows the throughput improvements due to the
protocol switch, while the SNR trace shows that the from
DS frames are now sent by node Alixs.

5.3 Use case 3: control network isolation

As a last example, we consider an adaptation problem in
case of coexistence between the control and data networks,
i.e. when the AP acts as a control message relay between

Ping Delay [ms]

1 1
0 10 20 30 40 50 60 70
Request Number

Figure 8: Ping delay measured from the AP to Alix,
without/with virtual control interfaces.

-50 T T T T T

60 - + + T
] m] -]
Ly om - pn +.- I#+++-...+#+++ﬁ—t.-+ ty +-
T o0 Lt m T L L = T
= - - 7 + + u
Z
& 80 T
90 Data A|!X2 + -
Data Alix1
Control Alix2 =)))

-100
2.1875 2.18755 2.1876 2.18765 2.1877 2.18775 2.1878
Timestamp

Figure 9: SNR samples monitored by the AP after
activation of the virtual control interface.

the EC and the mobile nodes. The virtualization primitives
of the WMP architecture can be exploited for isolating the
control network, thus guaranteeing that control messages
are correctly delivered to different nodes within some pre-
dictable time boundaries and that the measurement points
can send back the monitored parameters by exploiting a
guaranteed bandwidth. Indeed, the WMP nodes can load
two different state machines on the controlled nodes (one
for the data network and one for the control network) to be
alternatively paused in a different portion of the beacon in-
terval. Since all the nodes receive the AP beacon to keep the
association, the time intervals in which they will transport
data or control data will result synchronized.

Context gathering. To monitor the network capacity
available for the control network, the EC (periodically or
upon a specific signaling need) activates a ping application
from the AP to the node to be controlled, whose delay re-
sults are sent back to the EC. Fig. 8 shows an example
of delay measurements in case of greedy background traf-
fic from nodes Aliz1 and Alizs to the AP. If the average
delay or delay jitter is too high, the EC detects insufficient
resources for the control network and triggers an adaptation.

MAC adaptation. If no virtual interface is configured
on the nodes, the EC creates a dedicated interface for the
control network and sends two DCF programs with a forced
pause state, configured for being active in different portions
of the beacon frame. If the virtual interface is already on, the
EC sends a novel configuration parameter for (temporarily)
increasing the portion of the beacon interval allocated to
the control network. Fig. 8 shows the reduction of the ping
delay when a third of a 50ms beacon interval is allocated to
the virtual control interface (set up after 20 ping samples).
Fig. 9 also visualizes the SNR values captures at the AP,

when a greedy transfer of control information is started from
Aliza to the AP (with the previous background data traffic
from Alizo and Alizs). The figure clearly shows the time-
based division between the control and data frames.

6. CONCLUSIONS

We believe that the ability to formally describe and in-
stantly deploy custom wireless MAC stacks as eXtensible Fi-
nite State Machines, which orchestrate the execution of ven-
dor’s implemented radio primitives and signals, may obsolete
existing one-size-fits-all standardized MAC protocols and
pave the road towards multiple context-specific MAC proto-
cols, optimized for niche scenarios and conditions. Backward
compatibility is not anymore a necessary requirement (sta-
tions which need to interact would install and run a same
specific protocol), but reduce to the need to agree on which
actions, events and conditions (i.e., which API) should be
supported by the vendors’ cards.

This paper has further investigated control frameworks
which may candidate to support and manage context-specific
MAC protocol deployment and runtime adaptation. We
specifically integrated our MAC programming abstractions
into OMF, a control framework originally designed for the
different purpose of controling the execution of testbed ex-
periments, and showed how simple estimates of the network
context can drive MAC protocol adaptations. A promising
research direction consists in exploiting our MAC program-
ming abstraction in the design of fully automated cognitive
systems able to to smartly adapt (or even automatically re-
program) the channel access operation to mutating environ-
ments and traffic conditions.

Acknowledgments

This work has been carried out in the frame of the EU
FP7-CREW project, contract number 258301. We thank
Domenico Garlisi, Fabrizio Giuliano, Pierluigi Gallo and
Francesco Gringoli for their support in the design and de-
velopment of the WMP prototype development.

7. REFERENCES

[1] C. Partridge, “Realizing the future of wireless data
communications,” Commun. of the ACM, vol. 54,
no. 9, pp. 62-68, 2011.

[2] M. El-Sayed, A. Mukhopadhyay, C. Urrutia-Valdés,
and Z. J. Zhao, “Mobile data explosion: Monetizing
the opportunity through dynamic policies and QoS
pipes,” Bell Labs Tech. J., vol. 16(2), pp. 79-99, 2011.

[3] J. Zander and P. Mihonen, “Riding the data tsunami
in the cloud: myths and challenges in future wireless
access,” Commun. Magazine, IEEE, vol. 51(3), pp.
145-151, 2013.

[4] 1. Tinnirello, G. Bianchi, P. Gallo, D. Garlisi,

F. Giuliano, and F. Gringoli, “Wireless MAC
processors: Programming MAC protocols on
commodity hardware,” in IEEE INFOCOM 12, 2012,
pp. 1269-1277.

[5] G. Bianchi, P. Gallo, D. Garlisi, F. Giuliano,

F. Gringoli, and I. Tinnirello, “MAClets: active MAC
protocols over hard-coded devices,” in 8th ACM
CoNext ’12, 2012, pp. 229-240.

[6] T. Rakotoarivelo, M. Ott, G. Jourjon, and I. Seskar,
“Omf: a control and management framework for
networking testbeds,” ACM SIGOPS Oper. Sys.
Review, vol. 43, no. 4, pp. 54-59, 2010.

[7] J. Mitola IIT and G. Q. Maguire Jr, “Cognitive radio:
making software radios more personal,” Personal
Commun., IEEE, vol. 6, no. 4, pp. 13—18, 1999.

[8] V. Bose, D. Wetherall, and J. Guttag, “Next century
challenges: Radioactive networks,” in 5th ACM/IEEE
Mobicom 99, 1999, pp. 242-248.

[9] GNURadio open-source software development kit,
http://gnuradio.org/redmine/projects/gnuradio/wiki.

[10] A. Khattab, J. Camp, C. Hunter, P. Murphy,

A. Sabharwal, and E. W. Knightly, “Warp: a flexible
platform for clean-slate wireless medium access
protocol design,” SIGMOBILE Mob. Comput.
Commun. Rev., vol. 12, no. 1, pp. 56-58, 2008.

[11] USRP - the Universal Software Radio Peripheral,
http://www.ettus.com.

[12] K. Tan, H. Liu, J. Zhang, Y. Zhang, J. Fang, and
G. M. Voelker, “Sora: high-performance software radio
using general-purpose multi-core processors,”
Commaun. of the ACM, vol. 54(1), pp. 99-107, 2011.

[13] M. C. Ng, K. E. Fleming, M. Vutukuru, S. Gross,
Arvind, and H. Balakrishnan, “Airblue: a system for
cross-layer wireless protocol development,” in 6th
ACM/IEEE ANCS °10, 2010, pp. 4:1-4:11.

[14] G. Nychis, T. Hottelier, Z. Yang, S. Seshan, and
P. Steenkiste, “Enabling mac protocol
implementations on software-defined radios,” in 6th
USENIX symp. on Networked systems design and
implementation, 2009, pp. 91-105.

[15] X. Zhang, J. Ansari, G. Yang, and P. Mahonen,
“Trump: Supporting efficient realization of protocols
for cognitive radio networks,” in IEEE DySPAN’11,
2011, pp. 476-487.

[16] F. V. Gallego, J. Alonso-Zarate, C. Liss, and
C. Verikoukis, “OpenMAC: a new reconfigurable
experimental platform for energy-efficient medium
access control protocols,” IET Science, Measurement
& Technology, vol. 6, no. 3, pp. 139-148, 2012.

[17] N. McKeown, T. Anderson, H. Balakrishnan,

G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner, “Openflow: enabling innovation in campus
networks,” ACM SIGCOMM Comp. Commun.
Review, vol. 38, no. 2, pp. 69-74, 2008.

[18] ETSI, “Network functions virtualisation - white
paper,” portal.etsi.org/NFV/NFV_White_Paper.pdf
oct. 2012.

[19] Wireless MAC processor home page
http://wmp.tti.unipa.it - documentation:
https://github.com/ict-flavia/wireless-mac-
processor /blob/master /doc/wmp-document.pdf.

[20] M. Ott, I. Seskar, R. Siraccusa, and M. Singh, “Orbit
testbed software architecture: Supporting experiments
as a service,” in I1st IEEFE Tridentcom, 2005, pp.
136-145.

[21] L. Tinnirello and P. Gallo, “Supporting a
Pseudo-TDMA Access Scheme in Mesh Wireless
Networks,” in International Workshop on Wireless
Access Flexibility, WiFlex 2013, 2013.

