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Abstract—Algorithms and protocols for opportunistic, delay
tolerant and wireless ad-hoc networks are designed and validated
by simulating the people interactions induced by the nodes
mobility. There are cases in which we are interested in simulating
just the first interaction between a pair of nodes, for instance
to assess the performance of a discovery or epidemic routing
protocol. In this cases nodes rapidly extinguish their utility hence
it is not convenient to simulate these scenarios using a fixed
amount of nodes. Thus we present a novel simulation methodol-
ogy that introduces the “open environment” where nodes enter,
can interact through meeting with other nodes and then exit,
keeping the focus on the environment rather than on what
happen before and after the nodes stay in the interesting area.
The proposed approach uses the statistical distribution extracted
from the real traces to reproduce directly the human interaction
pattern without going through the traditional random way point
approach. Meetings are simulated by a time-varying graph that
holds the state of the interactions in the environment, while
adapting to the statistics of single node to its history. We show
that even in a simple scenario, the epidemic infection, Markov
memory-less models have been fairly far from the interaction
scenarios that the method reproduces.

I. INTRODUCTION

Human mobility simulations play an important role for
a wide range of application scenarios in the fields of ad-
hoc and opportunistic networking where mobile nodes can
exchange data only when they are near enough to allow a
wireless communication. In fact, the standard way to validate
or assess the performance of systems, protocols and algorithms
relies on simulating the interactions of the people devices by
a “contact pattern” that describes when the communication
between two nodes is possible. Contact patterns are usually
derived from a mobility patterns that can be created in two
ways: i) by synthetic mobility models (such as the popular
random waypoint and its variant [1] [2] [3]) or ii) using real
mobility traces [4].

However there are some scenarios when we are interested
in simulating just the first interaction between a pair of nodes.
Suppose for instance that we are interested in the performance
assessment of a an epidemic routing protocol (such as [5])
where an information carried by an “infected” mobile node
is spread to all the nodes it encounters that in turn become
infected too and participate to the data dissemination process.
Clearly, in this case, simulation methods that use a fixed
number of nodes can not lead to an interesting stationary
situation because after a given time the 100% of the nodes
become infected. Indeed, as the nodes encountering process
goes on, nodes rapidly extinguish their utility for the simulation

purposes and they tend to be useless. 1 However if new nodes
continuously enter and exit from the simulated area, they
could balance this loss of utility introduced by the protocol
operations.

For this reason, in this work we present a novel simulation
methodology of contact patterns that introduces the concept of
“open environments”: a place where nodes enter, can interact
with other nodes and exit. By this interaction, nodes could
change the behavior of other nodes before exiting the system.
Even if nodes permanence in the environment could be very
short in time, and their interaction with other nodes could be
very marginal, they contribute in changing the overall system
information that could eventually converges to a non trivial
“environment steady state” (as will be presented and discussed
in V). In this way, the open environments can easily simulate
the transitory and steady state of dynamic place such as a
subway station or a city square, where we are more interested
in focusing on the state of the environment rather than on what
happen before and after the nodes stay in the interesting area.

Moreover in our approach we use the statistical distribution
extracted from the real traces to infer directly the human inter-
action patterns without simulating nodes movement. Contacts
are simulated by a time-varying graph that keeps track of the
previously encountered nodes. Based on that, an analytical
procedure is devised to make new encounters happen in a way
that each node in the system experiments new contacts with a
temporal distribution derived by a stationary Poisson process.
In this way we can tune the rate of the encounters as seen
by each node. With this methodology able to simulate a wide
range of collaborative protocols and algorithms based on the
popular assumption that each node meets other nodes with
a given rate and that the inter-meeting time is exponentially
distributed [6] [7] [8], [9], [10].

The main contributions of this works are: i) provide a novel
analytical framework to reproduce new nodes meeting pattern
according to statistic derived by mobility traces ii) describe
the simulation operations iii) provide insights on the interaction
procedures in the open environment through a simple epidemic
routing scenario.

This work is organized as follow: in section II we com-
pare our methodology with the state of art, in section III
we introduce the concept of the open environment and the
mathematical frameworks behind the simulator that is describe

1A similar case arose when we want to simulate a discovering protocol on
a opportunistic network: after a given amount of time all the nodes in the
environment will be discovered.



in section IV. In section V we simulate the epidemic routing
scenarios using the proposed method and compare it with a
standard approach. Finally conclusions are drawn.

II. RELATED WORKS

A very popular way to validate distributed algorithms and
protocols that runs on mobile devices against real cases is to
use real human mobility traces that have been collected in
several experiments such as from the HAGGLE project [11]
or from MIT reality mining [12] and others [4].

However the performance results obtained in this way are
tightly bound to the particular environment where the traces are
logged and the relative acquisition techniques. Moreover, the
great part of these traces exhibits a very coarse granularity:
for example in [12] traces are obtained using a Bluetooth
scan every 5 minutes, and in [13] every 120s. This is a
consequence of the particular measurement technique adopted
that is typically based on periodic Bluetooth scans performed
on a set of hand-held devices. For this reason these traces
could not be suited when we are interested with very short
contact durations (e.g. ¡ 20s). This problem has been tackled
in [14] and overcome by using the IEEE 802.15.4 to records
the encounters.

Another viable solution is to use synthetic mobility model
in which the most popular is the Random Waypoint model that
works as follow: users are randomly created and moves inside
a given area (usually a square area or a torus for avoiding
border effects). Each user repeats these operation cyclically:
i) decides a random destination ii) moves toward this point
with a random velocity iii) reached the destination, waits of
a certain amount of time. If two terminals get close enough,
depending to the simulated radio technology, a meeting can
occur. Such kind of models is simple to implement and offers
a good control on the simulation parameters since it is devised
completely by the area, the speed statistics and waiting times.
However there is a debate on the ability of this methodology
in reproducing real human pattern [15].

Then there have been some efforts in adapting RWP to
reproduce the pattern derived from real mobility traces such
as [16], [1].

To asses the impact of connectivity pattern, the focus can
be moved from the mobility model to the connectivity model,
that focuses on the evolution of the emergent connectivity
graph that is changing over time as nodes move rather than
the geographical information over time [1].

The direct usage of statistics has been proposed in [17] and
in [18]: both works start from the generation of a fixed number
of nodes and then, applying two different methodologies, they
try to reproduce the connectivity patterns mimic the real traces
statistics. [17] applies these statistics to a time-varying graph
that models possible interactions among terminals in a specific
hot spots. On the contrary in [18] Tan et al. first generates the
number of meetings that each node experiences during the
simulation and after they generates these meetings according
to a target distribution. In any cases both methodologies can
be considered as classical and can not be used for reproducing
the statistics of the process of first interactions since they use
a closed environment where a fixed amount of nodes stands
for all the duration of the simulation.

Fig. 1. The simulated open environment, where nodes can enter and exit.
Inside the environment nodes interact each other when a meeting occurs.

III. DYNAMIC OPEN ENVIRONMENTS

A. Why the environment has to be open?

The open environment, depicted in figure 1, is a conceptual
place where nodes enter can interact through meetings with
other nodes in the environment and then exit. By interactions,
nodes could change the states (hence the behavior) of the other
nodes in the environment that in turn could interact with other
nodes before exiting the system. Even if the permanence of
the nodes in the system is very short, and their interaction
with other nodes very marginal, they contribute to the change
of the overall information contained in the environment that
could eventually converges to a steady state even if nodes does
not have enough time to converges to this state by their own.

To clarify, let consider for instance the case of a distributed
algorithm that runs on users smartphones and suppose that
we are interested of assessing performance of a discovery
protocol for the case of a subway scenario. Even if users
enter and exit from a subway train rapidly, they can interact
each other to share for instance the statistical characteristic of
the environment such as the distribution of the inter-meeting
times or the average contact duration. This information will
persist in the environment because we can suppose that, with
high probability, there are always users that are waiting for the
trains. Hence, when new users arrive, they can acquire this in-
formation and collectively upgrade it by active measurements.

Thus the purpose of this simulation methodology is to
provide the tools to analyze the overall state of an environment
created by the interactions of the nodes that flow rapidly
through it.

To define the open environment, we need to characterize
the flow of the nodes and the interactions between them.

B. The node flow

The flow of nodes in the environment is specified by the
distribution of inter-arrivals time and by the distribution of the
time of nodes permanence in the system. To easy characterize
the arrival process, we considered a Poisson process: the inter-
arrivals time of new nodes in the environment are exponentially
distributed with rate λe. We assume that the nodes remain in
the environment for a certain time that can be constant or
exponentially distributed with mean 1/µe.

Thus, at the steady state we have on average Ne = λe/µe

nodes in the environment (the popular Little result). We point
out that the number of node in the environment is a key
performance parameter in many scenarios.



C. Node’s interactions

Reproducing the inter-meeting time process is more tricky
since we need to simulate that each node in the environment
meets new nodes with an exponentially distributed inter meet-
ing time with parameter λu.

This is a very popular analytical assumption [6] [7].

We point out that literature studies such as [8], [9], [10],
proved that inter-contact time distribution between two pairs
of node can be assumed as exponential. In particular [8] have
analyzed several popular real world traces showing that 85%
of the pair distributions fit an exponential law according to χ2

test.

Moreover both [9], [10], have demonstrated that is not in
contrast with the well known heavy tailed distribution (with or
without the exponential cut-off) of the aggregated inter meet-
ing time. Simulating such hypothesis is not straightforward if
we use the RWP because it does not offer a direct control on
the encounters as seen by each node.

However, a simple generation of inter-meeting times as
exponential random variable with a constant mean will not
result in a correct behavior because: i) each encounter involves
two nodes ii) a node should meet only new nodes (i.e. nodes
that are not met before with that node) given that we are not
interested in multiple encounters of the same pair of nodes but
just in unique contacts.

To address this problem, we keep track of the encounters
in the simulation by a time-varying graph where nodes are the
nodes in the environment and edges, with cardinality L, are the
“possible meetings”, i.e. the meetings between two nodes that
did not met before. The information contained in this graph
and the markovian propriety of the encounter process allows
designing the following two step procedure to pinpoint when
the next meeting occurs and which nodes will be involved.

First we generate a set of exponentially distributed random
variables, one for each link in the graph. Each of these
variables has a parameter λi calculated as explained below.
Then we select the minimum of those realizations that specifies
the time of the next meeting and the nodes involved (the ones
incident with the associated link).

Given that the minimum of a set of exponentially dis-
tributed random variables with parameter λ1, ..., λk is another
exponential random variable with parameter λ∗ = λ1+...+λk,
we impose that the sum of λi for all the edges incident to a
generic node must be λu, for all the nodes in the environments.
In other words, we extract one exponential random value
per link in a way that each node sees an exponential RV
with parameter λu even if some of its connections have been
previously removed. To calculate all the λi we need to solve
the following system of equations:

Λn = AΛl

where:

• Λn is a vector of dimension N (nodes in the environ-
ment) with all the elements equal to λu 2

2The proposed solution can also works for the case where each node see a
different λu, simulating nodes that moves faster and ones that moves slower

• Λl is a vector of the links in the graph, with dimension
N(N − 1)/2 ≥ L and where the i-th element λi
represents the parameter of the RV associated to the
i-th link.

• A is a matrix with dimensions N ×L and defined as:

ai,j =

{
1, if the node j-th is an endpoint for the link i-th
0, otherwise

(1)

Solving the system of equation by matrix inversion, we
obtain the values for the vector Λl and then we generate
a set of exponential random variables whose parameters are
taken from Λl. By taking the minimum values, we define
the time when the next meeting will occurs and the nodes
involved in that encounter. This procedure must be repeated
i) when a node enters the environment because the possible
meeting list must be updated; ii) when a node exits from
the environment because all the possible meeting with that
node must be removed; iii) when a meeting occurs because
the selected link is removed.

Using this solution we succeed in simulating a stationary
stochastic environment where each node meets other nodes
with an exponential inter meeting time with mean 1/λu.
The encounters duration last D seconds where D is a RV
distributed according to a generic cdf FD(t). For example,
the distribution of duration can be a uniform, exponential or
Pareto.

IV. SIMULATING AN OPEN ENVIRONMENT

A. The simulator architecture

The simulator is implemented in python and depends on
the mathematical library Numpy that is used for the inversion
of the matrix. The simulator is event based and is organized
into the following classes:

• The Simulator represents the main class that provides
a configuration interface and is used for control the
execution.

• The Calendar handles the simulation scheduling and
provide methods to manage an ordered list of events

• The Event is a scheduled action that runs at a particular
time; examples of events are the arrival and departure
of nodes in the environment, meetings among nodes,
measurements.

• The Open Environment provides the operations to
manage the encounters among nodes and integrates
all the statistical models.

• The Node is the entity that enters into the environ-
ment and interacts with other nodes and consequently
changes its own state. The Node can also include the
protocols that have to be simulated when a contact
occur.

The following events are modeled in the simulator: the start
of simulation, a node entering the environment, a node exiting
the environment, the start of interactions, the start of a meeting,



the end of a meeting and the end the simulation. Moreover the
simulator includes some special measuring events that are used
to periodically monitor relevant parameters.

B. The simulator operations

The main goal of the simulator is to reproduce the en-
vironment as described above, and to test how the proposed
algorithm performs. In particular, the simulator:

• Reproduce the process of users that enter and exit the
environment

• Reproduce the process of users that “physically” meet
each other inside the environment

Arrival and departure events from the open environment of all
nodes are generated at the beginning of the simulation and
added to the calendar. The generation of the meeting starts
after a certain time T0 defined by the simulator configuration:
the first meeting event is generated at time T1 = T0+∆1 using
the procedure illustrated in Section III for the calculation of ∆1

and repeated for finding the subsequent ∆ when the possible
meeting graph is updated because of that meeting. We point
out that each ∆ is a exponential RV hence the memoryless
propriety allows an event to be cancelled. In fact the procedure
is repeated also when graph changes because nodes enter and
exit to/from the open environment.

If the matrix A is singular we generate the next meeting
randomly extracting a link with rate λu ∗Ne/2. This fallback
procedure should happen very rarely (or never happen at all)
if the simulator configuration parameters are properly set (e.g.
λe > λu otherwise graph edges are pruned too fast and the
associated the matrix A become singular).

Each time there is a meeting event the meeting duration
is calculated generating a RV according to the specified
distribution. If a departure event occurs for a node that has
an on going meeting, the node is removed from the graph to
avoid its selection in new meetings but a new departure time
is computed for that node just after the end of the meeting
in order to preserve the statistical distribution of the contact
duration.

C. Insights

In Figure 2, each node tries to estimate the mean inter-
contact rate λ̂u for new contacts and we plot the mean absolute
error |λu − λ̂u|. As we can see, the more the time nodes
stay in the environment (whose mean is 1/µe), the smaller
is the error that could be also significantly different from
the “real” value if the nodes do not have enough samples
to reduce the variance of the estimated parameter. This is a
challenging and interesting scenario that simulates the case of
a fast environment against which we could validate several
distributed algorithms whose goal could be to make nodes
cooperate for a global estimation given that they can not
estimate environment parameters individually. Given that we
simulate just the new contacts (i.e. encounters with nodes
without repetitions), we must remove a pair of nodes from
the possible contacts graph. In figure 3 we show the number
of possible contacts among node on the total number of pair
available N(N − 1)/2. As we can see the average available
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Fig. 2. Mean absolute error of the mean λu as seen by nodes, varying new
contact rate λu and the mean time inside the environment 1/µe

encounters selectable by the simulator decrease as the λu
grows, forcing each node to select a biased list of nodes. This
is needed to preserve the stochastic proprieties on the nodes
that must encounters only new nodes with rate λu.
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V. APPLICATION SCENARIO

As said, the proposed simulator could be effectively used
in several scenarios where we are interested in studying the
effects on some distributed algorithm in a open environment.
In this section we present a very simple scenario where we use
the simulator for evaluating the persistence of an information
that is spread with simple epidemic routing algorithm similar
to [5].

The algorithm works as follow:

• Each node can be in one of two states: Infected and
Not Infected

• When an infected node encounters a not infected node,
the last one becomes infected with probability α

• Initially, just one node is infected



The simulated environment mimics an high dynamic environ-
ment (such as the subway station or a crowded street) with the
following parameters:

• Nodes enter in the environment with rate λe

• Nodes stay in the environment with average 1/µe

• Each node encounters new nodes with rate λu

• All the random variables are distributed according to
an exponential distribution

Figure 4 shows the ratio of infected nodes during the
70000 seconds of simulation time, varying α = [1, 0.3, 0.1].
The parameters of the simulation are λe = 1/45s−1, µe =
1/1800s−1, λu = 1/60s−1 while the encounter duration does
not affect the result of the simulation.
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Even in this simple case, the presented results present a
significant difference from the case when each node encounters
any other nodes with a given rate λ.
This latter case is far easy to simulate because it suffices to
periodically extract a pair of nodes every time T distributed as
an exponential random variable with rate 2λ/N where N is the
number of node in the system at a given time. Indeed, if every
node should experiment a new encounter with rate λ, every
possible encounter (that are N(N−1)/2) can be represented as
an exponential random variable Xi with rate λ/(N−1). Then,
using the memoryless propriety of the exponential distribution,
we can write a discrete event simulator where we periodically
generate a RV with rate equals to min(X1 · · ·XN(N−1)/2)
that corresponds, for the propriety of exponential random
variable, to the rate 2λ/N . However this case can be easily
investigated also without any simulator, and directly by means
of an analytical approach. For this reason and to pinpoint the
difference between these two cases we models it with a two-
dimentional Markov chain depicted in figure 5.

Each state of the chain is described by the tuple (n,m)
where n are the node in the environment and m are the number
of infected nodes. A transition occurs when:

• new node enter in the environment. This happens event
with rate λe.

• nodes exit from the environment. Each node stay in
the environment for a time distributed as a RV with
mean 1/µe
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Fig. 5. Bi-dimentional Markov chain representing the infection process in
the simulated open environment.

• new node has been infected. These are the vertical
transitions that are related to the encountering rate
where the relation is αλu

m(n−m)
n−1 and is obtained

by the above-mentioned ratio of encounter selection
2λu/n times the probability that the encounter in-
volves an infected and a non infected node that is
2m(n−m)
n(n−1) .

We deliberately impose that if there is only one node in the
environment, it must be an infected node. We did this to avoid
the presence of an absorbing state and for studying the steady
state of the process. Figure 6 shows the difference in terms of
infected nodes between this approach and the simulated one.
Despite in both cases a node experiment encounters with rate
λu, as we can see the discrepancy of the results are far from
being marginal for an average network with 40 nodes.
Hence, encountering just new nodes with a fixed statistic is
more difficult to achieve either analytically because of the
memory of the already encountered nodes, and via simulations,
as explained in section IV, however it is worth for all the case
in which we must reproduce such analytical assumptions.

VI. CONCLUSIONS

In this work we presented a methodology for simulating
contacts among nodes that satisfies this general constraint: each
node must encounter a new nodes every time T that is a random
variable distributed according to an exponential distribution
with mean 1/λu. For doing so, we had to simulate an “open
environment” that is an environment where nodes enter and
exit while insides the environment nodes meet each other so
that the given statistic assumption is preserved.

We provided the mathematical procedure for contact selec-
tions as well as the details on the simulator implementation and
architecture. With the proposed methodology we can simulate
fast mobility in small or large environments and study the
evolution of the environment characteristic that can converge
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to a steady state also if nodes do not because they can stay in
the environment just for a small amount of time. This scenario
together with the well-defined stochastic proprieties of nodes
encounters pave the way to assess performance of distributed
algorithms such as distributed tolerant network routings and
discovery algorithms.
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