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Abstract In this paper we show how linear network coding can reduce the
number of queries needed to retrieve one specific message among k distinct
ones replicated across a large number of randomly accessed nodes storing one
message each. Without network coding, this would require k queries on aver-
age. After proving that no scheme can perform better than a straightforward
lower bound of 0.5k average queries, we propose and asymptotically evalu-
ate, using mean field arguments, a few example practical schemes, the best of
which attains 0.82k queries on average. The paper opens two complementary
challenges: a systematic analysis of practical schemes so as to identify the
best performing ones and design guideline strategies, as well as the need to
identify tighter, non trivial, lower bounds.
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1 Introduction
This paper introduces a new problem, that we call one-out-of-k retrieval. This
problem, in its abstract form, can be stated as follows. Assume k distinct
messages are replicated across a large (infinite) number of nodes storing one
message each; a client, wishing to retrieve one specific target message among
such k ones, has no means to a priori know on which nodes the target message
is stored, nor can control or enforce the order in which nodes will be queried.
How many queries, on average, are needed to retrieve the target message?

This scenario is practically encountered in Delay Tolerant Networks (DTN).
In such networks, data replication across the moving terminals is at the core
of most proposed data access or data delivery solutions, as the likelihood that
an user interested in a specific data item ”physically” meets only the single
data producer becomes rapidly negligible as the network size scales.
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Moreover, a distinguishing aspect of DTNs is that data exchange among
two moving devices can occur only when the devices get in proximity each
other, so that a short-range wireless connection (e.g. Bluetooth or WLAN)
can be established. In such scenario, the time needed to download a data
content from a neighbour device can be order of seconds, and, assuming a
given average inter-contact time, the retrieval time is dominated by (and can
be measured in terms of) the number of contacts elapsed before a device
storing a looked for data item is encountered.

Contribution
Perhaps surprising even when k = 2 naive schemes take an average of

2 encounters but can be improved to ≈ 1.828. This observation has been
apparently neglected by network coding research, which has mainly focused
on retrieving and decoding all the data blocks/items instead of a specific one,
and has used uncoded data messages or small combinations of data items (e.g.
Luby codes) for improving the decoding complexity, but still in the context of
decoding all the data rather than one specifically targeted item. It opens the
room for a plethora of novel questions: is this apparent average retrieval gain
vanishing away with a larger number of items or has an asymptotic nature?
How much can we gain? And with which practical constructions?

Goal of this work is to raise the attention of the network coding commu-
nity on such problem, as well as provide some preliminary steps towards its
understanding. This work is unique in that we bound the minimum time to
receive one out of k messages, as opposed to bounding the time to receive all
k messages. More specifically, in the paper, after proving a straightforward
lower bound of 0.5k (annex Appendix 4 [3]), we propose some initial example
schemes, which involve mixing coded messages that are formed from linear
combinations of different numbers of messages. From the perspective of en-
gineering coding schemes, mixing message coding types is a contribution of
this work.

Moreover, we provide a general methodology to analyze such schemes. We
specifically show how to apply mean field arguments to derive the asymptotic
performance of the proposed approaches. We concretely apply our methodol-
ogy to two example schemes, the best of which attains 0.82k. Definitely, there
is still room for gain as our research so far has not yet targeted exhaustive-
ness; however, the fact that all the schemes proposed are largely above the
straightforward 0.5k lower bound suggests that much tighter lower bounds
may be found.

Previous Work
Previous work network coding in DTNs has not considered the problem

of solving for one out of k messages. In our model the protocol does not
allow for the receiver to request the specific information it wants and nor
do we treat it as wanting all information. For instance, LT codes [8] are
designed with the different goal of optimizing the decoding procedures. Many
papers [4], [6], [10], [7] investigate routing protocols in DTNs. These papers
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attempt to decode all messages , as opposed to just one of k. Yoon and Hass
consider application of linear network coding to DTNs but, unlike this paper,
investigate the case of sparse networks [9].

2 Network Model and Problem Statement
There are k messages X = {x1, ..., xk}, each of which is a can be represented
by a binary vector of length m bits. There is a receiver node, r, which wants
to know the contents of the one message, we will call this message xr. The
receiver, r, travels throughout the network and will receive messages from
the nodes it contacts in close proximity. We model this as r bumping into
contacting a random node, which transmits its output. These contacts can’t
be ordered so messages may be repeated and r can not query for a particular
message. In each round, the receiver node r receives exactly one coded mes-
sage y from one of the transmitting nodes. The nodes in the DTN can store
linear combinations of messages over some field Ff . These linear combina-
tions are stored with header data that specifies which messages were summed
with what multiplicative constants.

Definition 1. Solving for message xj means determining all the m bits in
the message xj .

The problem is determining what coding scheme produces the lowest ex-
pected time for r to solve for xr where a coding scheme is a set of linear
combinations of messages Y = y1, y2, ... and the associated proportion of
transmitting nodes on which these linear combinations are stored p1, p2....
For an example of this analysis performed for k = 2 look at annex Appendix
1 [3].

3 Methodology
The major hurdle emerging in the evaluation of practical algorithms consists
in the need to determine whether the so far received set of messages is suffi-
cient to decode the target one-out-of-k message. Since messages are retrieved
at random, differently coded messages are collected (e.g. uncoded messages,
linear combination of two messages, linear combination of all k messages,
and so on depending on the construction), and the set of collected messages
depend on time, thius requires us to model a chosen strategy as a transient
stochastic process, which usually exhibits a non trivial space state.

To at least in part circumvent such stochastic modeling complexity, the
methodology employed hereafter consists in three steps: i) model a proposed
coding strategy via a a discrete time (vector) stochastic process; this is ar-
guably the most complex step, as discussed later on; ii) approximate its tran-
sient solution with the deterministic (“mean”) trajectory specified by the
drift (vector) differential equation of a conveniently rescaled stochastic pro-
cess, and iii) derive the average number of queries needed to retrieve the tar-
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get message from a relevant probability distribution, in turns derived from
the knowledge of the drift equation solutions. Approximation (ii) above is
motivated by by the fact that practical values of k are relatively large. It
consists in casting to our needs mean field techniques widely established in
the literature since [5], which which have been successfully applied to a wide
set of problems [1, 2], and which guarantee asymptotic convergence to exact
results for finite state space systems under mild assumptions, see e.g., [2].
Our own results will indeed show a very accurate matching with simulation
even for relatively small values of k, as low as some tens.

More formally, let’s assume a discrete time scale, clocked by message ar-
rivals, i.e., time n ∈ {1, 2, · · · } is defined as the time of arrival of the n-th
element. Let us now identify a model for the receiver state. This is a critical
step (as will appear in the construction examples discussed appendix 5 [3]), as
the relation between receiver state and the different “types” of messages col-
lected (and how many) is in general not trivial and specific for every scheme
considered; For instance, the reception of two different “types” of message,
say a linear combination of messages A and B (later on called “pair”), and
a message A (later on called “singleton”) yields the decoding of message B,
and suggests to use as state variables the number of message “types” result-
ing after decoding, in this case the two singletons A and B, rather than the
actually received message types (a pair an a singleton).

In most generality, the status of the receiver at an arbitrary discrete time
n is summarized by means of a state vector:

ψ̄(n) = {ψ1(n), ψ2(n), · · · } (1)

where ψi(n) is defined as the number of messages of “type” i stored by the
receiver at time n.

Under the assumption of independent random messages being retrieved at
each time step, and appropriate choice of the space state, ψ̄(n) introduced
in (1) is a discrete-time Markov chain. Let us now now write the relevant
time-dependent state transition probabilities as functions of the vector state
components normalized with respect to k, i.e.:

P
{
ψ̄(n+ 1)|ψ̄(n)

}
= fψ̄(n+1)

(
ψ̄(n)

k

)
(2)

The conditional expectation, namely the drift of the considered Markov chain,
is readily given by the vector

E
[
ψ̄(n+ 1)− ψ̄(n)|ψ̄(n)

]
=

∑
v̄∈all states

(
v̄ − ψ̄(n)

)
fv̄

(
ψ̄(n)

k

)
= d̄

(
ψ̄(n)

k

)
,

(3)
where we conveniently express the state vector components as normalized
with respect to k. We now introduce a new stochastic process which is a
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doubly-rescaled version of (1) in terms of both state (normalized with respect
to k, i.e., a density process [1]) as well as time (also normalized with respect
to k, i.e. t = n/k):

σ̄(t) =
ψ̄ (t · k)

k

The conditional expectation (3) is readily rewritten for the rescaled process
as:

E [k · σ̄(t+ 1/k)− k · σ̄(t)|σ̄(t)] =
E [σ̄(t+ 1/k)− σ̄(t)|σ̄(t)]

1/k
= d̄ (σ̄(t)) (4)

For large k, and under quite general assumptions (it suffices the drift d̄(.) to
be a Lipschitz vector field [2]), the density process σ̄(t) converges in proba-
bility to a deterministic trajectory, computed by solving the system of differ-
ential equations obtained by replacing the left side of equation (4) with the
derivative σ̄′(t):

σ̄′(t) = d̄ (σ̄(t)) (5)

at last, from the knowledge of σ̄(t), the average number of messages needed
to decode the target message is readily computed.

In order to better clarify, we present a trivial example in appendix 5 [3].

4 Practical Example Cases
In order to understand the asymptotic nature of the gain, and show how the
proposed methodology can be concretely applied, in this section, with no
pretense of systematic exploration, we show two example constructions. In
both cases, we compare analytical results with simulation.

All-or-nothing scheme
This scheme is selected as it is extremely simple in terms of states, permits
a simple analysys, and can be used as a reference to gauge the improve-
ments brought about by more complex schemes. The all-or-nothing scheme
comprises only two possible types of messages, defined below.

Definition 2. A singleton is a message xi for i ∈ [1, k] sent in plain text.

Definition 3. A fully coded message is a random linear combination
∑k
i=1 αixi

of all k messages over a large field size F, with αi ∈ F.

We assume that all messages xi, with i ∈ [1, k], are equiprobable. Under this
assumption, the all-or-nothing scheme is characterized by a single parameter
p, the singleton reception probability, whereas 1 − p is the complementary
probability that a node receives a fully coded message. The state space thus
comprises two state variables: i) the number of singletons received at a given
time, and ii) the number of fully coded messages received at the same time.

Theorem 1. The all-or-nothing scheme achieves a best possible performance
of 0.86k; this corresponds to the value p ≈ 0.6264.
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Fig. 1 Average retrieval delay varying the number of messages: analysis vs simulation.

The proof is in annex Appendix 2 [3]. In order to verify the correctness of
the analysis, Figure 1-a shows simulations varying the number of messages
from k=2 to k=70. Note that the theoretical results have an asyptotic nature,
hence our choice of running simulations with small small values of k. Every
point in the figure is the delay to retrieve a data message averaged on 50000
samples. Even if the proposed methodology attains an exact solution for large
values of k, already after k=20 the error is below 1%.

Pairs-only scheme
This scheme is selected as it shows how the space state can become extremely
complex (actually an infinite set of state variables) even when considering an
apparently very simple approach. Moreover, it is chosen because it could
be solved using an alternative methodology. Indeed its emerging decoding
structure can be cast as an Erdos-Renyi random graph; thus it permits us to
verify that our methodology, despite being extended to the case of inifinite
state variables (hence violating the assumptions in [2]), nevertheless yields
the same results derived in the relevant random graph literature.

As the name suggests, the pairs-only scheme includes only one type of
coded message, namely the random linear combination of two randomly cho-
sen messages. This type of message is called pair and is formally defined as
follows.

Definition 4. A pair is a random linear combination of two randomly chosen
messages over a large field size in the form {(αxi+βxj)|i 6= j and i, j ∈ [1, k]}
where α, β ∈ F and F is a large field.

In analyzing this scheme, the real hurdle is to define an appropriate state
space; once this is done, the remaining analysis reduces to the conceptually
straightforward application of our methodology (although some non trivial
calculus will be actually needed to solve the drift differential system, as de-
tailed in the annex Appendix 3 [3]). State space definition and justification
is presented in annex Appendix 3 [3], along with the proof of the following
theorem:



The one-out-of-k retrieval problem and Linear Network Coding 7

Theorem 2. The pairs-only scheme achieves a performance of π
2

12 k ≈ 0.8224k.

Our results, obtained with a different approach, indeed confirm those found
in random graphs literature. However, our approach can be extended to cod-
ing schemes which cannot be directly cast as a random graph problem, such
as, for instance, the combination of singletons and pairs (which yields a per-
formance slightly below 0.8k, but which we postpone, for space reasons, to an
extended version of this work). Comparison with simulation results averaged
over 50.000 realizations is reported in Figure 1-b. Again, results show that
convergence to the asymptotic result is very fast, with an error lower than
1% already at k > 20.

5 Conclusion
In this paper we explore solutions efficient solutions to one-out-of-k retrieval.
This paper proves a lower bound of 0.5k and upper bound of 0.8224k on
the number of coded messages needed on average to solve for the message of
interest. It appears from current simulation results that the true minimum
value for one-out-of-k retrieval will be higher than 0.5k. The machinery given
in Section 3 can be used to analyze various proposed schemes to produce up-
per bounds. A proposed extension of this paper an upper bound of lower than
0.8 would be presented. In general tightening the lower and upper bounds is
an open problem. Generalizing one-out-of-k retrieval to m-out-of-k retrieval
is another interesting extension.
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