
Work In Progress
Reducing Average Retrieval Delay in DTN via

Partial Inter-data Coding
Giuseppe Bianchi, Lorenzo Bracciale

Università degli Studi di Roma - Tor Vergata
Dipartimento di Ingegneria Elettronica

Roma, Italy (name.surname@uniroma2.it)

Abstract—

I. INTRODUCTION

Erasure codes are great tools for improving performance
in several network communication scenarios. One popular
example are Digital fountains [1] that allow reliable and
efficient communication between two network nodes avoiding
the usage of ARQ, making this technique very appealing when
a back channel is unavailable or its usage is inconvenient as
in the case of video streaming over a wireless medium. In
Digital Fountains sources produce a potentially infinite number
of encoding packets generated from the K input packets (e.g.
a video file) so that a receiver can recover the whole original
data by decoding a collection of any amount of packet whose
size is typically slightly bigger than K. Digital fountains can
be obtained by means of several erasure codes such LT codes
or Raptor codes.

In these rateless codes encoding packets are typically gen-
erated by sum of d random input packets in a Galois Field
GF (q), where d is the degree of an encoding packet. The
distribution of encoding packet degrees plays a fundamental
role for decoding performance. For instance, LT encoders pro-
duce encoding packets by taking d random input packets and
summing them modulo 2, where d must be chosen according
to the Robust Soliton Distribution [3] so that the decoding
procedure is optimized. Growth codes [5] instead increase the
degree of codewords during time to the aim of maximizing the
probability that data produced by independent sources nodes
in a wireless sensor network can be recovered at any time by
a sink, preventing data loss due to sensors failure. However, to
the best of our knowledge, all the proposed approaches focus
their attention on transmission of all K input data packets to
a receiver, or, in the case of Growth codes, they relies upon a
kind of temporal coordination between nodes.

In this work we want investigate which is the best we
can do if we are interested in only one of the K different
data available and there is no coordination at all between the
sender and the receiver of the coded data. Being more formally,
suppose we have a sender producing a very large amount N of
codewords generated from K initial data packets and a receiver

that is interested only in one random input data. Receiver
collects a random amount of the produced codewords x < N
and wants to decode only the data it is interest in. Which is
the optimal degree distribution of the encoding packets for
minimizing the average decoding delay of receiver? And how
much this average delay can be decreased respect to a no-code
approach? In this paper we will try to give these questions an
answer.

A. DTN reference scenario

For what concern the application field, we presents a Delay
Tolerant Network (DTN) seen as distributed storage system,
where nodes are capacity constrained and there are K different
input data with equal popularity. Suppose we are interested
only in one single data over the K available and we wander
in the network1 encountering one random node each time T
until we can reconstruct the data we want. If each node can
store at most one single packet (or a linear combination of
some packets), which is the best distribution encoding packet
degree to the aim of minimizing the average time we can find
the data we are interested in?

II. RELATED WORK

A. Erasure Codes

Since their first use for network communication, erasure
codes come a long way.

Reed-Solomon [2] codes are perhaps the first code that can
be used -at least in theory- to create a ”digital fountain”. With
this term we refer to the tecnique allowing a sender to produce
a potentially unlimited number of encoding data packets from
initial K source data packets so that the decoders could
reconstruct the whole original data by receiving any collection
of N encoding packets slighly greater than K. However the
severe limitation on the number of distinct encoding symbols
together with the quadratic time require to decode, make Reed-
Solomon codes less attractive for this kind of usage.

In his foundational work, M. Luby [3] proposes the LT code,
a sparse random linear fountain code with a low complexity

1This model is often presented in literature under the name of random
encounter, [?]

decoding algorithm. LT codes are rateless codes that works
as follows: the encoder chooses a degree dn randomly and
according to a degree distribution ρ(d), then it produces a data
packet by taking dn distinct input packets and summing them
modulo 2. Decoding is performed by taking encoded packet of
degree 1. Those packets actually contain one unencoded input
packet so their decoding is trivial. Then the decoder subtracts
the found symbols in all the other packets with degree > 1
containing the previously decoded symbols. This could bring
some packets to degree 1 and so that can be decoded as well.
This procedure iterates till the amount of the received encoded
packets allows the full decoding of all the origin symbols. The
encoding and decoding computational cost scales as KlogK
where K is the file size. Luby found out a robust solution
distribution from which the encoder should take the degree of
emitted packets to optimizing the decoding procedure. This
lead to the desired ”digital fountain” result: if the encoded file
is composed by K data packet, a little decoding is possibile
until slightly more than K packets have been received, then
an avalanche of decoding takes place.

LT codes mean degree is logK in reason of the following
trade-off: a small degree packets assures rapid decoding but
large degree packets lead a better coverage of all the source
symbols in the decoded symbols. Raptor Codes [4] fill this
gap achiving a linear time encoding and decoding cost by
concatenating a LT code with an inner coded so that the
original file is coded with the inner code and then coded again
using the LT code with a very small average degree 3. During
LT decoding, when only a small part (e.g. 5%) misses, Raptor
Codes use the inner code to recover the missing part.

Growth Codes [5] are explicitly designed to increase data
”persistence” in wireless sensor network defined as the amount
of information that can be recovered from a sink at any point
of time. The reference scenario is a WSN where nodes at each
round exchange their sensed information with their nearby
nodes and a sink periodically polls its neighbours trying to
decoding as much encoding symbols it can. To this aim, at
each round, each network node decides what information it
must transmit and how the incoming information from its
neighbouring nodes are stored. The stored information and
the encoded packet can be a XOR between different input
symbols. The degree of encoding stored packets changes
during time, so that codewords in the network start with degree
one and grow over time as they travel through the network en-
route to the sink.

Decentralized Erasure Codes [6] are random linear codes
over a finite Galois field whose best application field in a
distributed storage. The reference scenario considers a sensor
network with k indipendent sources of data and n storage
nodes that can store at most one data packet or a linear
combination of those. The goal is to minimize the number
of data collection queries that a collector should issue towards
random nodes for retrieving all the k data pieces. Authors
demonstrates they can efficiently diffuse the data by prerouting
O(ln(k)) packets per data node to randomly selected storage
nodes. Despite previous cited works, here each data source

acts independently, but the collector is interested in all the
data.

B. DTN replication

Content replication is a strategy extensively used in several
data-centric networking fields [8], [9], [10]. The benefits of
copying a same data item in multiple storage points range from
fault tolerance and reliability to performance improvements.
In certain scenarios, such as Delay Tolerant Networks, data
replication across the moving terminals is at the core of most
proposed data access or data delivery solutions [11], [12], as
the likelihood that an user interested in a specific data item
”physically” meets only the single data producer becomes
rapidly negligible as the network size scales.

Which strategy should be employed for replicating data de-
pends on several system-specific aspect extensively addressed
in several research works, including coordination among nodes
and mobility patterns [13], [14], energy consumption and
scalability [15], storage capability of nodes [16], [17], interest
in the data by users [18], [19], performance metrics being
tackled, and so on.

In this work, rather than further extending the scope of such
prior works, we investigate a very basic, foundational, aspect:
how data should be best spread across network nodes. We
specifically seek to understand what can be done to reduce
the average data retrieval delay in the assumption that data
placement is a static, once-for-all, function (i.e. data not
freshly generated and no data forwarding across nodes), no
coordination among nodes is possible, no mobility predictions
are available, and user interests for data items are uniform.

III. PROBLEM STATEMENT, NOTATION, AND BASELINE
RESULTS

The elementary system model addressed in the reminder of
this work is formalized as follows.

Assume that a large (infinite) number of nodes are available.
Let us focus on one of such nodes, which we call the tagged
node. Such tagged node is assumed to encounter any other
new node at random, and the difference in time between two
consecutive encounters is assumed to be an independent and
identically distributed random variable which does not depend
on the previous encounters. We conveniently (and non restric-
tively) assume that the mean time between two consecutive
encounters is unitary, meaning that we normalize time and
delay measurements in terms of number of encounters.

Assume now that N distinct data items Ii (i ∈ 1 · · ·N) are
spread in the network. To avoid formal complications (which
do not change the nature of the problem tackled, but would
only make the presentation harder to follow), we assume that
each node carries exactly one data item. Obviously, since the
number of nodes is assumed to be much larger than the number
of data items, these items are replicated over multiple nodes.
It is convenient to model the way data items are spread in the
network through the probability distribution ψi that a data item
is found over a randomly chosen node. For instance, uniform
distribution of the N data items in the network implies that,

for each data item Ii, the probability that such item is found
on a randomly encountered node is ψi = 1/N .

An important remark is that, in spreading data items,
we do assume worst case conditions of lack of correlation
between items’ placement on nodes and encountered nodes.
More precisely, we assume that the probability to encounter
a node carrying a given data item does not depend on the
previous encounters, i.e. that the probability distribution ψi is
constant over time and holds for any newly encountered node
irrespective of the past history.

In such a scenario, we are interested in quantifying the
average retrieval delay E[D] which characterizes a given
spreading distribution of the data items. This metric, in prin-
ciple, further depends on the interest of the tagged node for
specific data items. If we denote with ηi (with i ∈ 1 · · ·N and∑
ηi = 1) the probability that the tagged node is interested

in, and hence generates a request for, the data item Ii, the
average retrieval delay is expressed as the weighted average

E[D] =

N∑
i=1

ηiE[D(Ii)]

where E[D(Ii)] is defined as the delay elapsing between the
instant of time a tagged node becomes interested in retrieving
the data item Ii, and the time that such specific data item
is actually retrieved. In the assumption of uniform interest,
ηi = 1/N and hence

E[D] =

N∑
i=1

E[D(Ii)]

N

A. Average Retrieval Delay for replicated data items

As shown in what follows, under the above assumptions,
the average retrieval delay achievable if we replicate data
items over nodes cannot be lower than N , the total number
of available data items. In fact, let us first compute such
performance metric in the assumption of uniform spreading
of data items across nodes. In this case, the average delay
E[D(Ii)] does not depend on the specific data item i chosen.
Since the probability to encounter a node carrying exactly
the data item i looked for is 1/N , the average number of
encounters elapsing before such data is retrieved is the mean
of the geometric distribution with probability 1/N , i.e.,

E[D] =

N∑
i=1

E[D(Ii)]

N
= E[D(Ii)] =

=

∞∑
k=1

k ·
(
1− 1

N

)k−1

· 1
N

= N

Furthermore, it is straightforward to prove that2 any non
uniform spreading of the data items yield a result worse than

2Owing to the assumption of uniform interests; otherwise the best spreading
distribution would result to be different from the uniform one, and specifically
would be the one proportional to the square root of the interest probability.

N . Indeed, if we assume that every item i is found over a
randomly chosen node with probability ψi,

E[D] =
1

N

N∑
i=1

E[D(Ii)] =

=
1

N

N∑
i=1

∞∑
k=1

k · (1− ψi)
k−1 · ψi =

1

N

N∑
i=1

1

ψi

which is minimized (e.g. through usual Lagrange multipliers,
and recalling that the constraint

∑N
i=1 ψi = 1 holds) when

ψi = 1/N for all i.

B. Average Retrieval Delay for Random Linear Coded data
items

From the above discussion, it appears that no spreading pol-
icy directly enforced on the original data items can outperform
the average retrieval delay bound N . The natural next step is
thus to consider whether such limit can be overcome by using
coded combinations of the original data items.

Indeed, techniques based on Random Linear Coding (RLC)
of stored data have been shown in the past to achieve per-
formance improvements in some specific distributed storage
settings [20]. We recall that RLC is a coding scheme where
every element is envisioned as a vector in a Galois Field Fq

of size q. A possible idea could be to store in each node,
instead of the original data items Ii, some linear combination
of such data. More specifically, we call RLC replica (or, in
short, coded replica), a linear combination

Rj =

N∑
i=1

βj,iIi

where the coefficients βj,i are randomly drawn from the field
Fq with uniform probability 1/q.

However, as indeed well expected3, this operation is not
deemed to provide any performance improvement on the
average retrieval delay. In fact, in the best case assumption
that all linear combinations of the coded replicas found at any
encountered node are independent each other, the original data
item Ii will be decoded only when N coded replicas will be
received, i.e. only when N nodes will be encountered (we
recall our assumption that every node can carry a single data
item, which in this case means a single coded replica - in favor
to RLC we neglect to account for the fact that a coded replica
requires some extra storage capability, namely N · log2(q) bits
for keeping track of the β coefficients, than an uncoded data
item).

Note that, in term of delay performance, there are other
reasons to promote RLC. A first potential advantage is that
the tagged node, after N encounters, will have the ability

3note that most work done in RLC, including [20], assume that a requested
message is subdivided into m chunks and coding is done among those chunks,
i.e., the application scenario is that of intra-data coding. Our inter-data coding
scenario is instead different: we code different data items together, and we
seek to retrieve just one requested item (versus the case of all the chunks
forming a message) among those combined through coding.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

C
D

F
 r

e
tr

ie
v
a

l
d

e
la

y

#encounters

mean of all uncoded and all RLC coded
mean of mixed

all uncoded
all RLC coded

mixed

Fig. 1. Comparison of the retrieval delay Cumulative Distribution Functions
for the cases of uncoded items (labeled as uniform), RLC-coded items (labeled
as RLC), and a mixed strategy, discussed next, where we have both coded
and uncoded items. N=100.

to retrieve all the N data items at once, and not only the
specifically requested item. Moreover, since any data item
will be retrieved after exactly N encounters, the variance of
the delay, and hence the delay distribution tail (i.e., the peak
delay) largely decreases with respect to the uncoded case.
This is highlighted in Figure 1, which compares the Cumula-
tive Distribution Function of the retrieval delay, measured in
number of encountered nodes, for N = 100 data items, and
for the cases of uncoded (previous section - curve labeled as
”uniform”) and coded replicas (curve labeled as RLC). We
postpone the discussion of the curve labeled as ”mixed” to
section IV-A. As the figure shows, in the case of uncoded
replicas, even if a data is retrieved in less than 100 encounters
in more than 60% of the overall cases, and even if the average
retrieval delay is in both cases equal to 100, the probability that
a data will be retrieved after 200 or more encounters remains
greater than 10%.

However, besides these advantages which may be consid-
ered useful in specific scenarios, we remark once again that
such plain application of RLC is unable to reduce the average
retrieval delay.

IV. PARTIAL INTER-DATA CODING

A. Motivation and Intuition

Let us reconsider figure 1. This figure can be in fact
re-interpreted in a different manner, and specifically as the
probability that a given percentage of the whole data items
are received after a given number of encounters.

Clearly, in the case of coded replicas, no data item can be
decoded until N linearly independent replicas are collected,
and in this case all data items, hence including the one
specifically requested, can be decoded at once. In the case of
uncoded replicas instead, each encountered node may either
carry a new, not yet previously encountered, data item, or carry
a duplicated, already collected, data.

Conversely, in the case of uncoded items, the probability
to receive a new data item decreases with the number of
encounters (as quantified by the decrement in the slope of
the curve plotted in figure 1). More specifically, at the first
encounter, the tagged node will find a new item with proba-
bility 1 (as no additional items were earlier collected), which
implies that the tagged node will have collected one N th of all
the available items in the network (this being the y-axis value
in the plot corresponding to the x-axis value 1). During the
second encounter, the probability that a new item is encounter
is no more one, but decreases to (N−1)/N , as there is an 1/N
chance that the next encountered node will carry the formerly
collected data. And so on. The overall result is that the ”rate”
at which new items are encountered greatly decreases as time
elapses. In the unlucky extreme situation that N − 1 distinct
items were encountered, but the specific item looked for was
not in this set, the remaining average time to meet the looked
for item is still N (by memoryless of the encounter process).

Now, all this discussion could appear irrelevant in the
case of uncoded replicas, as any received information prior
to the actual looked for data item is not used (indeed, in
practice it obviously does not require to be stored). But
such considerations suggest that if we were able to devise a
mechanism capable of using such prior received information
(whose rate of reception is high at the start of the retrieval
process, and gradually decreases with time), and, at the same
time, avoiding to incur in the long delays emerging from the
tail of such distribution, we could achieve delay performance
gains.

It hence becomes straightforward to conclude that such
mechanism is trivially accomplished by simply combining un-
coded replicas, distributed on a fraction of nodes, with coded
replicas, distributed on the remaining nodes (and eventually
combining only a subset of data items among all available
ones, as the formal definition provided in the next section will
permit, for greater generality). This is readily understood by
the example illustrated in figure 2. N = 4 data items (A, B,
C, D) are spread in the network. A tagged node looking for
item D first encounters a coded combination of the four items,
and then encounters two nodes carrying items A and B. At the
fourth encounter, the tagged node will be able to retrieve item
D either if i) the encountered node carries D, or ii) the new
node carries a (linearly independent) coded combination of
all four items, or iii) the new node carries C. In the last two
cases, in fact, the tagged node succeeds to gather four linearly
independent combinations (an uncoded item being a special
case of combination) of the data items.

This operation has a key advantage over a ”pure” RLC
operation: the tagged node does not necessarily need to always
wait for N encounters, as the specifically requested item may
be received in uncoded form earlier. At the same time, it
has the disadvantage that more than N encounters might be
needed, as the probability to encounter a node carrying an al-
ready received item is not anymore negligible. But, as we will
quantify in the following sections, the overall balance yields an
improvement in the average retrieval delay for the requested

Fig. 2. After having encountered a coded instance combining all four
available items, and three nodes carrying items A, B, and C, a tagged node
can decode item D.

item. The curve labeled as ”mixed” in figure 1 quantitatively
backs up such insight. It shows the CDF of the retrieval
time for a requested item among N = 100 available items,
when 37.2% of the nodes4 carry a RLC combination of the
100 items, and the remaining ones carry uncoded items (this
strategy is later on named ”All or Nothing”). From the figure
we note that the probability of retrieving the target item in less
than 100 encounters is relatively high (e.g. after 50 encounters,
an item is retrieved in almost 30% of the cases) even if lower
than the case of uncoded items, as, in addition to duplicated
receptions, some encountered nodes carry RLC combinations
which cannot be immediately exploited. Moreover, as long as
about 110 encounters are made, the probability of retrieving
the target item abruptly increase, as the number of collected
linearly independent combination permits decoding of all the
items, thus including the target one.

B. Proposed Approach: general case

In most generality, we call Partial Inter-Data Coding any
approach which makes use of partially combined data items,
thus including also the case of uncoded items (i.e. items whose
combination is composed by themselves only). We formally
define such class of approaches as follows.
• each node carries exactly one data instance.
• each data instance is the random linear coding of a

number k ∈ 1 · · ·N original data items; we call coding
degree of each instance with the number k of combined
data.

• a coding degree k = 1 is permitted (actually, recom-
mended, see below); in this special case the data instance
coincides with an uncoded original data item.

• we formally define a Partial Inter-Data coding strategy
through the vector [Pg(1), Pg(2), · · · , Pg(N)] which rep-
resents the probability that an encountered node carries a
data instance of given coding degree 1 · · ·N ; obviously∑N

i=1 Pg(i) = 1.

4This value is the asymptotically optimal one, and will be derived in section
IV-E.

• we call ”average-delay-optimal partial coding strategy”
the one characterized by the probability vector which
minimizes the average retrieval delay.

Determining such optimal strategy appears feasible only
for very small values of N . For instance, in the case N =
2, such derivation is straightforward. For compact notation,
let us define the probability Pg(1) that a node carries an
uncoded item (say A or B) as p. Hence, p/2 is the probability
to encounter a node carrying item A (equivalently, B), and
1− p is the probability to encounter a node carrying a coded
combination of A and B, hereafter referred to as AB. If the
tagged node is interested in data item A (equivalently, B), the
following cases occur:

• A is retrieved in 1 encounter is and only if the en-
countered node carries the item A in uncoded form
(probability p/2);

• A is retrieved in 2 encounters if and only if the first
encounter was not A, and either:

– the first encounter was AB, in this case any second
encounter (i.e., either A, B, or AB) provides the
second linear equation needed to determine A;

– the first encounter was B and the second encounter is
either A (in this case A would be received in uncoded
form) or AB (in this case A would be determined
through decoding);

• A is retrieved in 3 encounters (and, more generally, in
i encounters) if and only if the two previous encounters
(more generally, i− 1) were B, and the last encounter is
either A or AB;

The average delay to retrieve item A (equivalently, item B) is
thus expressed as:

Delay = 1 · p
2
+ 2 ·

(
(1− p) · 1 + p

2
·
(
(1− p) + p

2

))
+

+

∞∑
i=3

i ·
(p
2

)i−1
·
(
(1− p) + p

2

)
After algebraic simplifications, we obtain

Delay = 1− p+ 1

1− p/2

The delay versus p is shown in figure 3. As expected,
if p = 0 (all coded instances) or p = 1 (all uncoded
replicas), the average retrieval delay results equal to the value
2. However, the curve of the shows a minimum, which holds
when p = 2 −

√
2 ≈ 0.586, and which corresponds to a

minimum average retrieval delay equal to 2
√
2 − 1 ≈ 1.828,

indeed about 9% lower than the delay achieved by any of the
baseline techniques.

Extending such analysis to larger values of N is very
complex as i) the number of optimization variables (the vector
probabilities) linearly increase, and, especiall, ii) the number
of possible partial combinations of items, and the need to track
the corresponding encounters, do explode.

 1.82

 1.84

 1.86

 1.88

 1.9

 1.92

 1.94

 1.96

 1.98

 2

 0 0.2 0.4 0.6 0.8 1

E
[D

]

p

Fig. 3. Average retrieval delay in the case of N = 2 versus the probability
p of encountering an uncoded instance

C. Special case: All or Nothing

Since the analysis of the general case appears extremely
complex, to gain some further performance insights, we con-
sider a special case, simplified, partial coding strategy which
we refer to as ”All or Nothing”. In this approach, we assume
that every node can store only two types of instances:
• uncoded data instances, with probability p = Pg(1);
• data instances achieved by random linear coding of all

the N data items, with probability q = 1− p = Pg(N)

In other words, we assume that nodes do not carry combina-
tions of a subset of the N items, but can only carry either
coded combinations of all the N data, or no combinations,
i.e. uncoded data items.

this approach can be envisioned as a worst-case, upper
bound, scenario of the performance achievable by the more
general partial coding approach. In what follows, we first show
that this approach can be somewhat easily analyzed. Second,
and most interestingly, we show that the performance gains of
such a simple approach are of asymptotic nature, and yield a
14% average retrieval delay reduction.

D. Average delay performance evaluation

The ”All or Nothing” approach can be modeled through a
relatively simple Markov Chain, depicted in figure 4, where the
state of the chain is completely defined by the pair (Nu, Nc)
of collected distinct uncoded (Nu) and fully coded (Nc) data
instances.

The Markov process shall be studied as a transient process
and the chain is represented in figure 4. The initial condition is
that the tagged node does not store any data instance, i.e. the
initial state of the chain is (0, 0). The process ends whenever
either an uncoded version of the seeked data item is receives,
or the sum of the distinct uncoded instances plus the collected
coded instances reaches the value N (as in this case decoding
may occur through N linear independent equations). As such,
this chain is conveniently analyzed as an absorption process,

Fig. 4. Markov Chain model for the ”all or nothing” partial coding
approach. For improved readability, the absorption state ”requested data item
encountered/decoded” is not represented in the picture. That state is connected
to all the other states with a probability that is the 1 complement of the sum
of all the outgoing transition probabilities from each state. The average delay
from the initial state (0, 0) to the absorption state represents the desired ”all
or nothing” average delay.

where we assume that the absorption state models the case
when the requested data item is retrieved.

The Markov chain evolves as follows. If we assume it to
be in the state (i, j), with i+ j < N − 1, the following state
transition probabilities hold (see also figure 4):
• with probability p/N the next encountered node carries

the requested data item in uncoded version, hence the
process ends;

• with probability p ·i/N the next encountered node carries
an uncoded data instance already received in the past,
hence the process remains in state (i, j);

• with probability p · (N − i− 1)/N the next encountered
node carries a new uncoded data instance which is not the
one looked for and it is new with respect to those already
received, hence the process moves in state (i+ 1, j);

• with probability q = 1 − p the next encountered node
carries a coded instance, hence the process moves in state
(i, j + 1).

Conversely, if we assume the chain to be in state (i, j) with
i+ j = N − 1, then
• with probability p · (N − i)/N + q the next encountered

node carries either the requested data item in uncoded
version, or a new uncoded data item, or a coded instance;
since in the last two cases N linear combinations equa-
tions are now available, the process ends;

• with probability p ·i/N the next encountered node carries
an uncoded data instance already received in the past,
hence the process remains in state (i, j);

We can now define the function Dk(i), with 0 ≤ k ≤ N−1
and 0 ≤ i ≤ k, which represents the average delay elapsing
between the chain being in state (i, k − i) and the absorption
state being reached. Note that the index k represents the

Fig. 5. A cycle is divided in sub cycles of different duration; Each sub cycle
ends when a new uncoded instance is received. The cycle ends when the sum
of distinct coded and uncoded collected instances reaches the value N .

number of linearly independent combination received, i.e.
the sum of distinct uncoded and coded instances collected.
Obviously, if N − 1 distinct instances are collected, the time
to absorption is 1 step, except in the case an already collected
uncoded instance is encountered, case which happens with
probability p · i/N . In formulae,

DN−1(i) = 1 + p
i

N
DN−1(i)→ DN−1(i) =

1

1− p · i/N

Through similar considerations, it is possible to recursively
express the delay function Dk(i), for the case k < N − 1, as:

Dk(i) = 1+p
i

N
Dk(i)+qDk+1(i)+p

N − i− 1

N
Dk+1(i+1)

which can be rewritten as

Dk(i) =
1 + qDk+1(i) + pN−i−1

N Dk+1(i+ 1)

1− p · i/N

Finally, we note that the average retrieval delay looked for
is provided by D0(0). Once the probability p is provided (and
hence also q = 1 − p), such delay can be numerically found
starting from the values DN−1(i), i ∈ (0, N − 1), and going
backward using the above recursion.

E. Asymptotic Delay Analysis

The computation of the above recursion is very efficient,
once the configuration parameter (the probability p or its com-
plement q = 1−p) is numerically provided as input. However,
the above recursion fails to explicitly provide insights on the
asymptotic behavior of the proposed system operation. Indeed,
a key question we wish to address is whether the emerging
gain in the average delay consistently stands as the number of
data items increase, and what is the resulting trend.

To face this issue we propose the following approximate
expected-value analysis. Rather than focusing on a specifically
requested data item, it appears convenient to start by modeling
a ”full” cycle which concludes when all the N data items can
be decoded. This cycle can be described as composed of a
number of sub cycles. As illustrated in figure 5, a sub cycle
terminates whenever a new uncoded data item is received.
During a sub cycle, two other types of events may occur: i)

reception of zero or more coded instances, and ii) reception
of zero or more duplicated uncoded items.

Let us now focus on the special case of the whole cycle
concluding with the reception of an uncoded item. With this
assumption which will be later on removed, we circumvent
the need to consider the last sub cycle as a special case
one, as the cycle could terminate with the reception of a
coded instance (yielding the N -th, final, linearly independent
equation needed) instead of an uncoded instance as per our
definition of sub cycle.

Let a be the number of sub cycles composing such a whole
cycle, and let us number sub-cycles starting from the index 0.
We define:

• Ti: expected duration of sub cycle 0 ≤ i ≤ a− 1;
• Di =

∑i
k=0 Tk: expected time elapsing between the start

of the process and the end of sub cycle 0 ≤ i ≤ a− 1. It
follows that, according to this notation, the whole cycle
duration is Da−1.

The average duration of the i-th sub cycle is readily de-
termined as the average time elapsing between the end of
the former sub cycle (if any) and the time in which a new
uncoded instance is encountered. Since this event occurs with
probability p · (N − i)/N depending only on the considered
sub cycle i, Ti is expressed as:

Ti =
N

(N − i)p
. (1)

If we assume that a, namely the overall number of sub
cycles composing a whole cycle, were known, we could derive
the average retrieval delay for a specifically considered data
item as follows:

E[D] =

∑a−1
k=0Dk + (N − a)Da−1

N
(2)

This equation takes into account that the data item specifically
requested by the tagged node can be either received in uncoded
form at the end of each deployed sub cycle (this occurs with
probability 1/N that the uncoded instance terminating a sub
cycle is the requested one among the N available), or it can
be retrieved (along with all the other N − a items not yet
available in uncoded form) through decoding at the end of the
whole cycle, i.e., after the occurrence of all the a sub cycles.

Equation (2) can be effectively simplified as follows:

E[D] =

∑a−1
k=0Dk + (N − a)Da−1

N
=

=
1

N

a−1∑
k=0

k∑
i=0

Ti + (N − a)
a−1∑
j=0

Tj

 =

=
1

N

a−1∑
j=0

(a− j)Tj + (N − a)
a−1∑
j=0

Tj

 =

=
1

N

a−1∑
j=0

(N − j)Tj =

=
1

N

a−1∑
i=0

(N − j) N

(N − j)p
=

=
a

p
=

a

1− q

(3)

To complete the analysis, we now need to find the value a
which is then used in equation 3 to determine the average
retrieval delay. For this purpose, we recall that q is the
probability that an encountered node carries a coded instance.
This probability is constant with time, i.e., it does not depend
on the considered sub cycle. As such, during a whole cycle
lasting Da−1 encounters, the average number Ca of collected
uncoded instances is trivially given by

Ca = qDa−1

. Da−1 can be computed as:

Da−1 =

a−1∑
i=0

Ti =

a−1∑
i=0

N

(N − i)p
=
N

p
(HN −HN−a) (4)

where Hn is the well known Harmonic Number arising from
the truncation of the Harmonic series to the index n, i.e.:

Hn =

n∑
k=1

1

k

Recalling that q = 1− p, we therefore conclude that

Ca = qDa−1 = N
q

1− q
(HN −HN−a)

We are now ready to take the final step for deriving a. By
removing the starting assumption of a being an integer value,
and by extending the definition of the Harmonic Number to
non integer values5, we can compute the average number
of sub-cycles that compose a full cycle by solving, in the
unknown a, the following congruency equation:

a+Ca = N → a+N
q

1− q
(HN −HN−a) = N (5)

This equality follows from the fact that a full cycle ends
whenever the number of uncoded instances received (namely,

5The analytic extension of the Harmonic numbers is

Hz = γ +
Γ

′
(z + 1)

Γ(z + 1)

Being γ = 0.57721 the Euler-Mascheroni constant, and Γ(z) the Gamma
Function.

a) plus the number of coded instances received (namely,
Ca) equals the total number of needed instances N . As are
specifically interested in asymptotic insights, i.e. when the
number of data items becomes large (N → ∞), we can
approximate the Harmonic Number Hi with ln i + γ, being
γ = 0.57721 the Euler-Mascheroni constant. Equation (5) can
thus be rewritten as follows:

N − a
N

=
q

1− q

(
ln

N

N − a

)
(6)

This non linear equation specifies an implicit function a(q)
which relates the value a to the configuration parameter q.
Such function can be explicited by exploiting the Lambert W
function6, as:

a(q) = N

[
1−
W(1−qq)

1−q
q

]
(7)

Finally, owing to equation 3, we conclude that the delay versus
the parameter q is given by

E[D] =
N

1− q

[
1−
W(1−qq)

1−q
q

]
Taking the derivative with respect to q, and equating to zero,
we ultimately obtain that the delay is minimized when the
parameter q is set to the value q∗ which satisfies the following
equation (independent of N):

q−1+W
(
1− q
q

)[
2q − 1 + (1 + q)W

(
1− q
q

)]
= 0 (8)

Although not very handy, this equation can be solved nu-
merically, and admits a solution when q = q∗ = 0.373588.
This corresponds to an optimal retrieval delay for the ”All
or Nothing” partial coding approach given by E∗[D] =
0.85988N , i.e., a reduction of about 14% with respect to the
delay attainable by the baseline approaches.

F. Validation

For validation purposes, figure 6 compares, for N in the
range 10 to 100, and for the optimal q = q∗ probability, the
All or Nothing average retrieval delay results as provided by i)
the exact recursive computation of the average delay (section
IV-D), ii) its approximate asymptotic computation (section IV-
E), and iii) the results obtained through simulation. Not only,
as expected, the recursive computation matches the simulation
results (this matching confirms that the proposed markov chain
approach is rigorous), but also no difference can be noticed in
the approximate asymptotic computation. This suggests that
the asymptotic analysis is also an excellent approximation for
relatively small values of N .

6We recall that the Lambert W function is defined as the solution for the
trascendent equation z = W(z)eW(z). It can be specifically shown that an
equation in the form x = −c lnx, indeed the form of equation (6) once we
set x = (N−a)/N and c = q/(1−q), can be espressed through the Lambert
W function as x = cW(1/c). Equation (7) now readily follows via algebraic
manipulation.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 10 20 30 40 50 60 70 80 90 100

E
[D

]

N

all-or-nothing average
all-or-nothing asymptotic

simulation

Fig. 6. Comparison of the results obtained by the exact recursive approach,
the asymptotic approximation, and simulation.

 13

 13.5

 14

 14.5

 15

 15.5

 16

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
[D

]

Uncoded replica probability

Pg(N)=0
Pg(N)=0.1
Pg(N)=0.2

Fig. 7. Average retrieval delay for a partial coding strategy with further
uses instances coding pairs of items. N = 16 data items. Three considered
cases: Pg(N) = 0, 0.1, 0.2. The probability Pg(1) of collecting an uncoded
item is reported in the x-axis; the probability of collecting a pair is given by
Pg(2) = 1− Pg(N)− Pg(1).

V. FURTHER DELAY IMPROVEMENTS

The ”All or Nothing” partial coding approach introduced
in section IV-C is a special case of partial coding. As such,
techniques which additionally exploit coded combinations of a
subset of data items might further reduce the average retrieval
delay. Unfortunately, finding a lower bound valid for the
general case appears to be an extremely challenging issue.
In this section, we thus limit to show, through simulation, to
what extent delay may be improved vith a simple extension
of the partial coding strategy, where in addition to uncoded
and fully coded instances, we also consider instances which
combine randomly chosen pairs of items. This strategy, using
the notation introduced in section IV-B, is described by a
probability vector [Pg(1), Pg(2), 0, · · · , 0, Pg(N)] which has
only three non null entries, two of them being independent
(the third being the complement to 1).

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

E
[D

]

N

all uncoded
all-or-nothing

pairs

Fig. 8. Average retrieval delay varying N for the extended strategy involving
coded pairs; Results for the uncoded baseline case and the All or Nothing
approach are further plotted for comparison.

In what follow for reasons of space we focus on a sin-
gle scenario of N = 16 items. The results presented are
averaged over 105 different retrieval cycles. To gain some
insights on how to set the configuration parameters for such
strategy further involving the coding of pairs, figure 7 fixes
the probability Pg(N) of encountering a node carrying a
coded instance to the values 0, 0.1, and0.2, and varies the
probability Pg(1) of receiving an uncoded instance. First,
the figure shows that, as expected, adding pairs improves
performance with respect to the ”All or Nothing” approach
(whose perfomance are provided in correspondence to the
rightmost point in every curve). Second, the figure shows that
the lowest delay performance are achieved by the configuration
[0.3, 0.6, 0, · · · , 0, 0.1]. This optimum configuration point is
quite far from the optimal parameters determined for the ”All
or Nothing” approach. For instance, here, only 10% of the
instances should be fully coded, whereas in the All or Nothing
approach optimal conditions were achieved by 37.3% of coded
instances. This suggests that the identification of the optimal
mix for a partial coding strategy requires a specific per-strategy
separate study, and general rules are not easily inferred.

Finally, figure 8 aims at quantifying the delay improvements
provided by the introduction of pairs. For reference purposes
the figure also plots the results for the baseline strategy of no
coding at all (in this case the average delay is equal to N), and
the optimized performance for the All or Nothing approach.
Results for the extended strategy using pairs are computed
using the above optimized configuration [0.3, 0.6, 0, · · · , 0, 0.1]
(although note that such optimization was carried out for the
specific case N = 16). A linear trend appears to emerge also
for the extended strategy. For the case N = 16 the delay gain
is about 18.1% with respect to the uncoded reference case.
The improvement with respect to the 14% gain of the All or
Nothing case, even if not major, is nevertheless non negligible.

VI. CONCLUSIVE REMARKS

The main conclusion that can be drawn from this work is
that there is margin to improve the average retrieval delay
performance in a DTN beyond that accomplished by naive data
replication of ”pure” network coding techniques. Specifically,
the new class of data placement approaches here introduced,
called partial inter-data coding, appears capable to improve
such average delay even in networks where no mobility
predictions or data forwarding schemes are employed. Results,
derived for a simple partial coding strategy called ”All or
Nothing”, show asymptotic average delay improvements of
14%, and preliminary results for more sophisticated strategies
suggest that there is supplementary margin for improvement.

Our work further poses a very challenging foundational
question: to what extent the average delay can be improved if
we persist in not assuming any coordination among nodes? We
easily infer that such a theoretical lower bound cannot exceed
the 50% gain, namely the asymptotic gain attainable in the
ideal case of perfect coordination of all the nodes’ encounters
(proof omitted for reasons of space). However, our preliminary
simulation results (in the order of about 20% gain) somehow
imply that such a lower bound is likely to be far from 50%.
And finding a tight lower bound appears to be a widely open,
not easy to address, issue.

REFERENCES

[1] M.Mizenmacher. Digital Fountains: A Survey and Look Forward. Infor-
mation Theory Workshop, 2004.

[2] I.S. Reed and G. Solomon. Polynomial codes over certain finite fields.
Jouranl of the Society for Industrial and Applied Mathematics, 8:300-
304, June 1960.

[3] Luby. M. ”LT codes”. Proc. 43rd Ann. IEEE Symp. on Foundations of
Computer Science, 16-19 November 2002, pp 271-282.

[4] Shokrollahi A. : ”Raptor codes”. Technical Report, Laboratoire
d’algorithmique, Ecole Polytechnique Fdrale de Lausanne, Lausanne,
Switzerland 2003.

[5] A. Kamra , V. Misra , J. Feldman , D. Rubenstein, Growth codes:
maximizing sensor network data persistence, Proceedings of the 2006
conference on Applications, technologies, architectures, and protocols
for computer communications, September 11-15, 2006, Pisa, Italy

[6] A. G. Dimakis, V. Prabhakaran, and K. Ramchandran. Ubiquitous access
to distributed data in large-scale sensor networks through decentralized
erasure codes. In IPSN, Apr. 2005.

[7] M. Luby, M. Mitzenmacher, M.A. Shokrollahi, D. Spielman. Efficient
erasure correction codes. IEEE Transaction on Information Theory,
47(2):569-584, February 27, 2001

[8] P. Rodriguez, S. M. Tan, C. Gkantsidis, ”On the feasibility of com-
mercial, legal P2P content distribution”, ACM SIGCOMM Computer
Communication Review 36(1):75-78, 2006.

[9] N. Laoutaris, P. Rodriguez, L. Massoulie, ”ECHOS: Edge Capacity
Hosting Overlays of Nano Data Centers”, ACM SIGCOMM Computer
Communication Review 38(1):51-54, 2008.

[10] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. Briggs, R.
Braynard, ”Networking named content”, Proc. 5th ACM International
Conference on Emerging Networking Experiments and Technologies
(CoNEXT 2009), Rome, Italy, December 2009, pp. 1-12.

[11] J. Reich, A. Chaintreau, ”Replication schemes for opportunistic net-
works with impatient users”, Proc 47th annual Allerton conference on
Communication, control, and computing (Allerton 2009), Monticello,
Illinois, USA, 2009, pp. 1446-1451.

[12] Y. Jiao, Z. Jin, Y. Shu, ”Data Dissemination in Delay and Disruption
Tolerant Networks Based on Content Classification”, Proc. 5th Interna-
tional Conference on Mobile Ad-hoc and Sensor Networks (MSN 2009),
Fujian, Dec. 2009, pp. 366-370.

[13] G. Sandulescu, S. Nadjm-Tehrani, ”Optimising Replication versus Re-
dundancy in Window-Aware Opportunistic Routing”, Proc. 3rd Int.
Conf. on Communication Theory, Reliability, and Quality of Service
(CTRQ 2010), June 2010, pp. 192-201.

[14] Y. Ishimaru, W. Sun, K. Yasumoto, M. Ito, ”DTN-based Delivery of
Word-of-Mouth Information with Priority and Deadline”, Proc. 5th Int.
Conf. on Mobile Computing and Ubiquitous Networking (ICMU2010),
April 2010, pp. 179-185.

[15] A. Derhab, N. Badache, ”Data Replication Protocols for Mobile Ad-Hoc
Networks: A Survey and Taxonomy”, IEEE Communications Surveys
and Tutorial, Vol.11 No. 2, 2009.

[16] Q. Ayub, S. Rashid, ”T-Drop: An optimal buffer management policy to
improve QOS in DTN routing protocols”, Journal of computing, Volume
2, Issue 10, October 2010.

[17] Y. K. Ip, W. C. Lau, O. C. Yue, ”Forwarding and Replication Strategies
for DTN with Resource Constraints”, IEEE 65th Vehicular Technology
Conference (VTC2007-Spring), April 2007, pp 1260-1264.

[18] G. Sollazzo, M. Musolesi, C. Mascolo, ”TACO-DTN: a time-aware
content-based dissemination system for delay tolerant networks”, Proc.
1st international MobiSys workshop on Mobile opportunistic networking
(MobiOpp 2007), San Juan, Puerto Rico, 2007, pp. 83-90.

[19] R. J. D’Souza, J. Jose, ”Routing Approaches in Delay Tolerant Net-
works”, Int. Journal of Computer Applications, Volume 1, No. 17, 2010.

[20] S. Acedanski, S. Deb, M. Medard, R. Koetter, ”How Good is Random
Linear Coding Based Distributed Networked Storage?” in Proc. of 1st
Workshop on Network Coding, Riva del Garda, Italy, Apr. 2005.

