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THE ONE-OUT-OF-K RETRIEVAL PROBLEM AND LINEAR

NETWORK CODING

Abstract

In this paper we show how linear network coding can reduce the number of queries
needed to retrieve one specific message among k distinct ones replicated across a large
number of randomly accessed nodes storing one message each. Without network coding,
this would require k queries on average. After proving that no scheme can perform better
than a straightforward lower bound of 0.5k average queries, we propose and asymptotically
evaluate, using mean field arguments, a few example practical schemes, the best of which
attains 0.794k queries on average. The paper opens two complementary challenges: a
systematic analysis of practical schemes so as to identify the best performing ones and
design guideline strategies, as well as the need to identify tighter, nontrivial, lower bounds.

1. Introduction. This paper introduces a new problem, which we call one-out-
of-k retrieval. Suppose there are k distinct messages X = {x1, ..., xk}, where xi ∈
{0, 1}m ∀i ∈ [1, k] and i ∈ Z+. Such messages are assumed to be stored in a possibly
distributed repository, which we loosely refer to as sender. A receiver is interested
to learn all m bits of one specific target message, xr ∈ X, out of the k available
ones. For simplicity, in this paper, we will assume that the message xr of interest for
the receiver is uniformly drawn from the set of available messages. To retrieve such
message, the receiver is entitled to receive from the sender exactly one message, or
one linear combination of such messages, at every discrete amount of time ∆t which
we refer to as round. Clearly, if the received were able to specify, via an explicit
query to the sender (repository), the specifically desired message, one round would
trivially suffice to retrieve the message. Rather, the problem becomes interesting
when we further assume that i) the receiver cannot specify which message it desires,
and ii) the sender cannot store any memory of the past messages sent to a given
receiver.

This scenario can be practically encountered in several data dissemination prob-
lems. For instance, consider a Delay Tolerant Networks (DTN) where we have a
set of users that hold, in their finite memory storage, one message or a linear com-
bination of the available messages, and a receiver that is interested in one specific
message. In this scenario, the repository (sender) is the set of all nodes traveling
in the network, and a round is a physical encounter of the receiver with another
random user in the network. Clearly, if we assume lack of coordination among
nodes and random mobility of the target receiver, there is no way for the sender to
keep track and/or schedule a desired sequence of messages delivered to the receiver,
nor there is possibility for the user to retrieve the desired message by querying it

2010 Mathematics Subject Classification. Primary: 58F15, 58F17; Secondary: 53C35.
Key words and phrases. Delay Tolerant Network, Linear Network Coding, Fluid Approxima-

tions, Lower Bounds, Mean Field Arguments.
This research is supported by NSF award CCF-1217506 and by the Israel Science Foundation

(grant number 1696/14). Keren Censor-Hillel is a Shalon Fellow.

1

http://dx.doi.org/10.3934/xx.xx.xx.xx


2 G. BIANCHI, L. BRACCIALE,K. CENSOR-HILLEL, A. LINCOLN AND M. MÉDARD

explicitly (the message retrieved at each round is the one stored in the memory of
the encountered node).

In essence, the one-out-of-k retrieval problem investigated in this paper can be
modeled as a data retrieval process of xr ∈ X: at each round we randomly extract
(with replacement) a data from a set Y , until we disclose the value of xr. The
design question revolves around how to construct Y starting from the elements in
X in order to minimize the average retrieval delay (measured in number of round)
to fetch xr.
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Figure 1. Delay distribution for the case of k = 100 and three
different strategies: uncoded messages, fully coded messages, and
“all or nothing” (see Section 4)

One obvious approach is to set Y = X, i.e. at each round a message x is ran-
domly extracted from the set X = {x1, ..., xk}, and the retrieval process terminates
whenever x = xr. It is trivial to show that, with such strategy, owing to the as-
sumption of uniform distribution of the desired message xr, the average number
of rounds required to retrieve the desired message is equal to k. Another obvious
alternative approach is to set Y equal to all the possible linear combinations of all
the messages comprising the set X (in practice, use Random Linear Coding over a
large field). However, also in this case1, the average retrieval delay does not change
with respect to the first strategy (uncoded messages): as graphically shown in Fig-
ure 1, what differs with respect to the uncoded strategy is the distribution of the
retrieval delay, but the average remains the same.

Interestingly, as we will show in this work, there are coding strategies which
permit to reduce the average delay below k; in other words, we can construct specific
sets Y , modeled by the distribution of the number of message x ∈ X coded inside

1Assuming a large field, i.e. that the probability to receive two linearly dependent codewords
is negligible
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each element y ∈ Y (we call this degree distribution and formalize it in definition
2.1) that allow the receiver to learn xr with less than k interactions on average. For
instance, Figure 1 shows both delay distribution and relevant average for a strategy
which we will later on denote “all or nothing” and which involves an appropriate
mix between uncoded messages (the original messages X = {x1, ..., xk}) and “fully
coded” messages (the random linear combination of all the messages xi as defined
in Definition 4.2). With such strategy, not only the shape of the delay distribution
changes, but also its average reduces (specifically, it reduces to the value 0.86k, see
Theorem 4.3).

Contribution
Most network coding research has focused on retrieving and decoding all the

messages in a set, instead of one specific message of the set. If the goal is to retrieve
the whole set of k messages, and only one message per round can be retrieved,
there is obviously no strategy that permits to reduce the retrieval delay below k
rounds (and perhaps for this reason this problem has been mostly neglected in the
literature). Conversely, when the goal changes, and becomes that of retrieving one
specific message in the set, in principle delay could reduce to as little as a single
round (assuming the possibility to query the desired message). The natural question
(duly addressed in this paper) is the extent to which the retrieval delay can be
reduced using only network coding strategies, i.e. without having the possibility to
perform selective queries from the receiver side, or to schedule message transmissions
on the sender side, as previously discussed.

In this paper, we first show that such an average delay reduction can be attained
via proper network coding techniques. Indeed, the trivial example shown in section
2.1, for k = 2 has the goal to show that concrete coding schemes with average delay
strictly below k do indeed exist. This raises some questions: how much reduction
in average numbers of messages from Y can we gain? And with which practical
constructions?

We then present a straightforward lower bound of 0.5k for the average number of
rounds required for obtaining the message by the receiver. Furthermore, we propose
some initial example schemes where the selection of the probability distribution
over Y results in a lower average number of requests than the naive average of
k messages needed from the set Y . We then provide a general methodology to
analyze such schemes. We specifically show how to apply mean field arguments
to derive the asymptotic performance of the proposed approaches. We concretely
apply the methodology to three example schemes, the best of which attains an
average of 0.794k rounds of communication. The distance between the performance
of our best scheme and the loose bound opens new interesting theoretical questions:
how to tighten the lower bound and/or how to approach it via improved coding
strategies?

Related Work
Previous work on network coding in DTNs has not considered the problem of

decoding one out of k messages. For instance, LT codes [11] are designed with the
different goal of optimizing the decoding procedures. Many papers [14], [13], [16],
[2], and [5] investigate routing protocols in DTNs. It has been proved in [16], [5] that
Random Linear Nework Coding (RLNC) shows substantial performance advantage
over simple replication as it copes with the coupon collection problem. However,
most of these papers attempt to decode all the messages, as opposed to just one of
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k, or start from different hypothesis. For instance [6] presents a scenario where a
data collector, who can appear anywhere in the network, querying any k randomly
displaced storage nodes, can retrieve all the k data packets of interest. Conversely,
despite the similarity on the scenario, we are not interested in collecting all the
data, but just one out of k data, by querying -on average- the minimum number of
storage nodes. This difference leads us to investigate a different analytic approach
as the problem does not appear anymore in the form of a classic erasure channel
coding problem.

Authors of [5] addressed the problem of rumor mongering with network coding:
in their problem statement there is a network where each node holds some messages
and at each round each node communicates with a random other node with the goal
of diffusing the information. They show that using Random Linear Coding can
increase the time it takes for all the nodes in the network obtain all the messages.
In this paper’s model we have that each node is interested in only one message.

In [16] uses Random Linear Coding on a Delay Tolerant Network. The goal
in [16] is also similar to this one: reduce the average message distribution delay.
Moreover, we are interested in one-out-of-k packets, while in [16], authors tackle the
problem of delivery several packets from different sources to different destinations
that can be somehow considered as similar. However, the goal of [16] is to decide
how the sources should encode the packet to improve unicast communication. In [16]
the authors consider combining all the packets in their buffers, or only the packets
destined to the same destination, or only the packets belonging to the same source-
destination pair. In other words, [16] analyze the dynamic of a network where each
node should decide which operation to perform at each time slot. Instead we focus
on the distribution over sent messages. We optimize the initial state, as opposed to
improving the diffusion protocols.

A similar difference can be found also in [4] where authors use fountain coding
for improving the delay of spreading a message in a DTN.

The paper [10] presents a protocol, called E-NCP, for data dissemination in
DTNs that exploits network coding. In particular, the authors of [10] investigated
the information-theoretic optimum number of data transmissions and a protocol
able to approach to this limit.

This paper is similar to the network coding Spray and Wait work [13], where
the authors diffuse some coded data in the network (called a spray phase) and than
wait for each node data collection (called a wait phase).

Several other works, such as [15] or [8], are also focused on protocol design
as well: in [8] authors show a collection protocols for sensor networks based on
Random Linear Coding, while in [15] the authors show how network coding can
help in designing more efficient DTN data diffusion for a collection of protocols
that, if compared to epidemic routing, exhibit an higher degree of reliability of
packet delivery because of a better nodes buffers usage.

By contrast, in this work we investigate the optimal deployment strategy for dis-
placing data inside a network in order to make a user retrieve one-out-of-k messages
with the minimum number of interaction possible. We neglect the real diffusion pro-
tocol operations and several other details (such as the impact of the coding vectors
size, tackled in [8]) hence focusing more on the coding structure and on the theoret-
ical fundamentals than on the practical implementation and the adaptive network
protocol rules.
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2. Network Model and Problem Statement. In this paper model there are k
messages X = {x1, ..., xk}, each of which can be represented by a binary vector of
length m bits. There is a receiver node, r, which wants to know the contents of
one message, denoted xr. In each round, the receiver node r receives exactly one
coded message, y ∈ Y , chosen over a given distribution on the set Y . The goal is
to construct distributions over the set Y that result in an efficient decoding time
for the message xr. The messages y ∈ Y are limited to be linear combinations of
messages over some large field Ff .

As a simplification hypothesis, in this paper the field is assumed to be large
enough so that probability of having two different codewords with the same linear
combination (collision) is negligible. Moreover the size of the additional informa-
tion needed for transmitting the coefficients of the random linear combinations is
neglected with respect of the size of the messages.

The physical interpretation in the DTN scenario is the following: suppose having
a set of nodes inside an area each of which can store a linear combination y ∈ Y
of some data X. Then suppose having a receiver node that move inside the area,
searching for a specific data xr ∈ X not known a priori. The receiver gets informa-
tion from other nodes it contacts in close proximity acquiring a new codeword, and
it contact exactly one new node every round. We want to deploy the codewords to
all the nodes in the network to minimize the time required by the received to get
the data it wants.

Definition 2.1. The type (or degree) of a coded message is the number of messages
linearly combined in that data message.

These linear combinations are stored with header data that specifies which mes-
sages were summed with what multiplicative constants.

Definition 2.2. Solving for message xj means determining allm bits in the message
xj .

Definition 2.3. The one-out-of-k retrieval problem is a problem of determining
what coding scheme produces the lowest expected time for r to solve for xr, where
a coding scheme is the proportion p1, p2, . . . , pk of the codeword degrees distributed
in the network.

In other words, we want to find p1, . . . , pk that minimize the time for retrieving
only one message, given that the receiver collects at each round an uncoded mes-
sage with probability p1, a “pair” (codeword with degree 2) with probability p2, a
“triplet” with probability p3, etc.

Thus, Y is the set of all linear combinations of the k messages in X. Each coded
message, y ∈ Y , is a linear combination of n messages and has a probability pn

(k
n)

of

being sent to the receiver.

2.1. A trivial example: the case k = 2. Consider the simple case where we have
only two kinds of different messages that we call A and B. If we do not use coding
(p1 = 1, p2 = 0) it is trivial to show that the average time spent by the receiver for
collecting A (or equivalently B) is 2. Similarly, if all nodes carry a random linear
combination of both A and B (p1 = 0, p2 = 1) the expected retrieval time is exactly
2 encounters, so once again the average is 2. Now, let AB be the random linear
combination of A and B so that at each encounter the receiver can collect A with
probability p/2, B with probability p/2, and AB with probability 1− p.

If we are interested in A (equivalently, B), the following cases occur:
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• A is retrieved in 1 round if and only if the received message is A (probability
p/2);

• A is retrieved in 2 rounds if and only if the received message was not A, and
either:

– the first message was AB, in this case any further message (i.e., either A,
B, or AB) provides the second linear equation needed to determine A;

– the first message was B and the second message is either A or AB;
• A is retrieved in 3 rounds (and, more generally, in i rounds) if and only if the

two previous messages (more generally, i− 1) were B, and the last encounter
is either A or AB;

The average delay to retrieve message A (equivalently, item B) is thus expressed as:

Delay = 1 · p
2

+ 2 ·
(

(1− p) · 1 +
p

2
·
(

(1− p) +
p

2

))
+

+

∞∑
i=3

i ·
(p

2

)i−1

·
(

(1− p) +
p

2

)
After algebraic simplifications, we obtain:

Delay = 1− p+
1

1− p/2

It is trivial to show that when p = 2 −
√

2 the expected time to retrieve A is
minimized and equals to 2

√
2− 1 ≈ 1.828, i.e., about 9% lower than both previous

cases. Hence this problem is solved adopting the coding scheme p1 = 2−
√

2, p2 =√
2− 1. The delay versus p is shown in Figure 2.
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Figure 2. Average retrieval delay for the case of k = 2
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2.2. Lower bound. As will be clear, finding a tight lower bound for the one-out-
of-k is far from being trivial. However, a simple and straightforward lower bound of
k/2 can be easily achieved in the following way. If we consider k different messages,
there exists no coding scheme that allows to decode a generic message before k/2
rounds on average.

Theorem 2.4. A lower bound for the one-out-of-k retrieval problem is 1
2k.

Proof. Let us consider the process of decoding all the k messages, where the delay
of retrieving the first message is D(x1) and for the i-th message is D(xi).

Letting P (i = r) be the probability of retrieving the i-th message, the average
retrieving delay of a generic message xr is:

E[D(xr)] =

k∑
i=1

P (i = r)E[D(xi)]

Given that at each round at most one message can be retrieved, all the k messages
are retrieved within at least k rounds, so the average number of rounds to retrieve
the i-th message is greater than i.

Finally, considering P (i = r) = 1/k due to the uniform choice of the selected
message over all the k messages, we have:

E[D(xr)] ≥
k∑
i=1

1

k
i =

k

2
+

1

2

That for large k approaches k/2.

3. Methodology. Determining whether the set of received messages fully specifies
the target one-out-of-k message, is the major difficulty. Since messages are retrieved
at random, differently coded messages are collected (e.g. uncoded messages, linear
combination of two messages, linear combination of all k messages, and so on de-
pending on the construction). The set of collected messages also depends on time,
requiring a transient stochastic process to model a chosen strategy, which usually
exhibits a non-trivial space state.

To avoid such stochastic modeling complexity, the methodology employed here-
after consists of three steps: i) model a proposed coding strategy via a discrete
time (vector) stochastic process; this is arguably the most complex step, as dis-
cussed later on; ii) approximate the proposed coding strategy’s transient solution
with the deterministic mean trajectory specified by the drift (vector) differential
equation of a conveniently rescaled stochastic process, and iii) derive the average
number of queries needed to retrieve the target message from a relevant probability
distribution, which is derived from the knowledge of the drift equation solutions.

The approximation in step (ii) above is motivated by the fact that practical
values of k are relatively large. It consists of using mean field techniques widely
established in the literature since [9], which have been successfully applied to a
variety of problems [1, 3], and which guarantee asymptotic convergence to exact
results for finite state space systems under mild assumptions (see e.g., [3]). This
paper’s results show a very accurate matching with simulation even for relatively
small values of k.

Details and a simple example of the proposed methodology are presented bellow.
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3.1. Explanation of Details. Let us assume a discrete time scale, clocked by
message arrivals, i.e., time n ∈ {1, 2, · · · } is defined as the time of arrival of the n-
th element. Let us now identify a model for the receiver state. This is a critical step
(as will appear in the construction examples discussed later on), as the relation
between receiver state and the different “types” of messages collected (and how
many) is in general not trivial and specific for every scheme considered; for instance,
the reception of two different “types” of coded message, say a linear combination of
messages A and B (called “pair”), and an uncoded message A (called “singleton”)
yields the decoding of message B, and suggests to use as state variables the number
of message “types” resulting after decoding, in this case the two singletons A and
B, rather than the actually received message types (a pair an a singleton).

In most generality, the status of the receiver at an arbitrary discrete time n,
n = 1, 2, . . ., is summarized by means of a state vector:

ψ(n) = {ψ1(n), ψ2(n), · · · } (1)

where ψi(n) is defined as the number of messages of “type” i stored by the receiver
at time n.

Under the assumption of independent random messages being retrieved at each
time step, and appropriate choice of the space state, ψ(n) introduced in (1) is a
discrete-time Markov chain. Let us write the relevant time-dependent state transi-
tion probabilities as functions f(·) of the vector state components normalized with
respect to k, i.e.:

P
{
ψ(n+ 1)|ψ(n)

}
= fψ(n+1)

(
ψ(n)

k

)
(2)

The conditional expectation, namely the drift d̄(·) of the considered Markov chain,
is readily given by the vector

E
[
ψ(n+ 1)− ψ(n)|ψ(n)

]
=
∑
v̄

(
v̄ − ψ(n)

)
fv̄

(
ψ(n)

k

)
= d̄

(
ψ(n)

k

)
, (3)

where we conveniently express the state vector components as normalized with
respect to k. We now introduce a new stochastic process which is a doubly-rescaled
version of (1) in terms of both state (normalized with respect to k, i.e., a density
process [1]) as well as time (also normalized with respect to k, i.e. t = n/k):

σ̄(t) =
ψ (t · k)

k

The conditional expectation (3) is readily rewritten for the rescaled process as:

E [k · σ̄(t+ 1/k)− k · σ̄(t)|σ̄(t)] =
E [σ̄(t+ 1/k)− σ̄(t)|σ̄(t)]

1/k
= d̄ (σ̄(t)) (4)

For large k, and under quite general assumptions (it suffices the drift d̄(.) to be
a Lipschitz vector field [3]), the density process σ̄(t) converges in probability to a
deterministic trajectory, computed by solving the system of differential equations
obtained by replacing the left hand side of equation (4) with the derivative σ̄′(t):

σ̄′(t) = d̄ (σ̄(t)) . (5)

The average number of messages needed to decode the target message can be readily
computed from the knowledge of σ̄(t).
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3.2. Example. In order to clarify this approach, we present a trivial example.

Let us consider the simplest possible case of all messages being uncoded (single-
tons).

The first step is to define a convenient state space. In this case, the obvious
state variable is the number S(n) of distinct singletons received at time n. The
process S(n) is a discrete time Markov chain, with the only non null transition
probabilities being P {S(n+ 1) = S(n)|S(n)} = S(n)/k (probability that the new
retrieved singleton message is already stored), and P {S(n+ 1) = S(n) + 1|S(n)} =
1− S(n)/k (probability that the retrieved message is a new one). Hence, the drift
of the chain is given by E [S(n+ 1)− S(n)|S(n)] = 1− S(n)/k.

The second step consists of rescaling the process, and write, for the resulting
density process s(t) = S(tk)/k, the differential drift equation s′(t) = 1 − s(t).
Since, at time t = 0, no messages are received, the differential equation shall be
solved with the initial condition s(0) = 0, which yields s(t) = 1− e−t.

Finally, in order to derive the average number of messages needed to retrieve
a randomly chosen target message, we note that s(t) is the fraction of messages
retrieved at time t, and hence can be interpreted as the cumulative probability
distribution function of the random variable X representing the retrieval (rescaled)
time. Thus, E[X] =

∫∞
0

[1− s(t)] dt =
∫∞

0
e−tdt = 1. Rescaling back to the original

discrete time scale, we get the final result of k average messages needed to retrieve
the target one.

4. Practical Example Cases. In order to understand the asymptotic nature of
the gain, and show how the proposed methodology can be concretely applied we
show two example constructions. In both cases, we compare analytical results with
simulation.

All-or-nothing scheme. This scheme is extremely simple in terms of states, permits a
simple analysis, and can be used as a reference to gauge the improvements brought
about by more complex schemes. The all-or-nothing scheme comprises only two
possible types of messages, defined below.

Definition 4.1. A singleton is a message xi for i ∈ [1, k] sent in plain text.

Definition 4.2. A fully coded message is a random linear combination
∑k
i=1 αixi

of all k messages over a large field size F, with αi ∈ F.

We assume that all messages xi, with i ∈ [1, k], are equiprobable. Under this
assumption, the all-or-nothing scheme is characterized by a single parameter p,
where p is the singleton reception probability and 1− p is the complementary fully
coded message reception probability. The state space thus comprises two state
variables: i) the number of singletons received at a given time, and ii) the number
of fully coded messages received at the same time.

Theorem 4.3. The all-or-nothing scheme achieves the best possible performance
of 0.86k; which corresponds to the value p ≈ 0.626412.

Proof. Using the methodology presented above, let us define the following two den-
sity processes:

• s(t) ∈ (0, 1) is the fraction of singletons accumulated until time t;
• d(t) ∈ (0, 1) is the fraction of fully coded messages accumulated until time t.
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In this case, the drift differential equation reduces to two independent ordinary
differential equations. Let us denote by p the ratio of the singletons to the total
number of messages. Hence the probability that we extract a singleton in a round.
For the case of singletons, operating in a similar way to the example in Section 3.1,
the average increment in the n+ 1-th step is:

E[S(n+ 1)S(n)|S(n)] = p(1− S(n)/k)

that is, we have an increment if a singleton arrives (probability p) and if that
singleton does not hit the previous collected singletons (probability S(n)/k). By
rescaling the process as described in Section 3.1 we obtain:

s′(t) = p (1− s(t)) (6)

which, when solved with initial conditions s(0) = 0, yields

s(t) = 1− e−pt. (7)

For the case of fully coded messages, we have for each small ∆t the average
amount of fully coded messages received is constant and equal to (1− p), hence:

d′(t) = (1− p) with d(0) = 0. (8)

Therefore
d(t) = (1− p)t. (9)

We now note that a target message is decoded when either the corresponding
singleton is received, or when the number of received singletons plus the number of
fully coded messages is equal to the total number k of distinct messages. In terms
of density processes, this latter condition is expressed by the equation

s(t) + d(t) = 1, which gives 1− e−pt + (1− p)t = 1. (10)

Let we call t∗ the solution of the previous transcendental equation. Then we can
express t∗ in closed form as

t∗ =
W ( p

1−p )

p
(11)

by introducing the Lambert W function defined as the solution W of the tran-
scendental equation g(W ) = WeW .

Finally, the average number of messages E[X] needed to decode the target mes-
sage can be computed as usual by integrating the Complementary Cumulative Den-
sity Function (CCDF) of the probability of retrieving the target message at time t
in the interval [0,∞). The CCDF of the retrieval time D(xr) is given by:

P (D(xr) > t) =

{
1− s(t) if t ≤ t∗

0 otherwise

Indeed, for t ≤ t∗ only the singletons count, while the contribution of the fully
coded message received is given at time t = t∗ where all the remaining un-decoded
messages will be decoded at once.

By combining equations 7 and 11, the resulting expression of average delay is
than:

E[X] =

∫ t∗

0

1− s(τ)dτ =
1− e−W( p

1−p )

p
(12)

This expression is minimized when p = 0.626412, and yields a minimum (nor-
malized) number of retrieved messages E[X] = 0.859884.
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Figure 3. Average retrieval delay varying the number of messages:
mean field approximation vs simulation.

In order to verify the correctness of the analysis, Figure 3-a shows that simula-
tions vary the number of messages from k = 2 to k = 70. Note that the theoretical
results have an asymptotic nature, hence the choice of running simulations with
small values of k. Every point in the figure is the delay to retrieve a data message
averaged on 50000 samples. Even though the proposed methodology obtains an
exact solution only for large values of k, already after k = 20 the error is below 1%.
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Pairs-only scheme. This scheme shows how the state space can become extremely
complex (actually an infinite set of state variables) even when considering an ap-
parently very simple approach. Moreover, it can be solved using an alternative
methodology, because its emerging decoding structure can be cast as an Erdös-
Rényi random graph; thus it permits us to verify that the methodology, despite
being extended to the case of infinite state variables (hence violating the assump-
tions in [3]), nevertheless yields the same results derived in the relevant random
graph literature [7].

As the name suggests, the pairs-only scheme includes only one type of coded
message, namely the random linear combination of two randomly chosen messages.
This type of message is called pair and is formally defined as follows.

Definition 4.4. A pair is a random linear combination of two randomly chosen
messages over a field of large size F in the form {(αxi + βxj)|i 6= j and i, j ∈ [1, k]}
where α, β ∈ F.

In analyzing this scheme, the difficulty lies in defining an appropriate state space.
Once this is done, the remaining analysis reduces to the conceptually straightfor-
ward application of the methodology. The state space definition and justification is
presented in Section 5, along with the proof of the following theorem:

Theorem 4.5. The pairs-only scheme achieves a performance of π2

12 k ≈ 0.8224k.

These results confirm those found in random graphs literature. However, the
approach can be extended to coding schemes which cannot be directly cast as a
random graph problem, such as, the combination of singletons and pairs, which
yields a performance slightly below 0.8k (we postpone analysis to a later extended
version of this work). Comparison with simulation results averaged over 50.000
realizations is reported in Figure 3-b. Again, results show that convergence to the
asymptotic result is very fast, with an error lower than 1% for k > 20.

5. Pairs. To avoid an overly long presentation, we directly operate over re-scaled
state variables, i.e., densities (the transformation from discrete state variables to
densities being readily performed as in the example presented in Section 3.2).

Since pairs are selected at random, the tracking of all the possible combination
of messages would yield state space explosion. To circumvent such issue, we resort
to the following convenient definition of an infinite, but numerable, set of state
variables si(t), where

• s1(t) is the fraction of messages (normalized with respect to k), which, at
(normalized) time t, do not belong to any so far received pair;

• s2(t) is the fraction of messages which are covered by one and only one pair;
• s3(t) is the fraction of messages which belong to a group of three messages

”connected” by two pairs2;
• and, in most generality, si(t) is the fraction of messages which belong to a

group of i messages ”connected” by i− 1 pairs.

For an illustrative example, assume the node has so far received the pairs AB,
AC, AD, EF, FG, HI, and JK. According to the definition, we have 1 group of 4
”connected” messages (A, B, C, D), 1 group of three connected messages (E,F,G),
two groups of two connected messages (H,I) and (J,K), and all remaining messages

2 we define x messages as “connected” by y pairs if each message is coded in at least one of
the y pairs
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not yet covered by any pair. Being k the total number of distinct messages, the
state representation for the above example would be: {s1(t) = 1 − 11/k, s2(t) =
4/k, s3(t) = 3/k, s4(t) = 4/k, s5(t) = 0, · · · }. Note that si(t) ·k/i yields the number
of groups having cardinality i.

Suppose now that a pair AI is received: as a result, the two groups (A,B,C,D)
and (H,I) merge in a new group of cardinality 6. This corresponds to the transition
to the following state: {s1(t) = 1− 11/k, s2(t) = 2/k, s3(t) = 3/k, s4(t) = 0, s5(t) =
0, s6(t) = 6/k, · · · }.

For k → ∞, the probability that a pair arrives in an already formed group of
finite size vanishes; as such, a state transition can occur only because two different
groups are merged via a random pair arrival. We can thus write the drift differential
equations as follows:

s′1(t) = −2s1(t)

s′2(t) = 2
[
−2s2(t) + s1(t)2

]
s′3(t) = 3 [−2s3(t) + s1(t)s2(t) + s2(t)s1(t)]

s′4(t) = 4
[
−2s4(t) + s1(t)s3(t) + s2(t)2 + s3(t)s1(t)

]
· · · = · · ·

s′i(t) = i

−2si(t) +

i−1∑
j=1

sj(t)si−j(t)


· · · = · · ·

(13)

These equations are readily explained as follows. Let us first focus on the set of
messages so far not yet covered by any pair, i.e. those accounted by the state variable
s1(t). Let us also remark that, owing to the normalization, s1(t) also corresponds to
the probability to pick one of such messages as a component of an arriving pair. A
state transition involving s1 thus comprises two possible cases: i) with probability
s1(t)2, an arriving pair removes two of such messages and add them to the group of
non overlapping pairs, namely those accounted in the state variable s2, or ii) with
probability 2s1(t) ·(1−s1(t)) only one of the messages is removed. This corresponds
to a negative drift for the state variable s1(t) given by the average state variable
decrement:

s′1(t) = −2 · s1(t)2 − 2s1(t)(1− s1(t)) = −2s1(t),

as stated by the first equation in the above system.
Let us now focus on the set of messages accounted by the state s2(t). We recall

that these are messages covered by exactly one pair. On one hand, s2(t) can increase,
with the addition of two new messages, only when an arriving pair covers two
messages belonging to the set s1 (this occurs with probability s1(t)2 as discussed
above). On the other hand, it decreases of i) four messages, whenever a new arriving
pair ”hits” two messages in the set s2 (hence ”connects” the two pre-existing pairs
forming a 4-messages group, this event has probability s2(t)2), or ii) connects one
pair in s2 with a message outside the set s2, this event occurs with probability
2s2(t) · (1−s2(t)). By averaging the resulting state variations, we obtain the second
drift equation. The remaining equations are derived via identical considerations.

It only remains to solve this differential system, using initial conditions s1(0) = 1,
si(0) = 0,∀i > 1. This is a purely calculus problem, not anymore related to this
specific modeling problem, that can be addressed as follows. First, we note that
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equations can be solved recursively, starting from the top. The following set of
solutions is readily obtained:

s1(t) = e−2t

s2(t) = 2e−4tt

s3(t) = 6e−6tt2

s4(t) =
64

3
e−8tt3

s5(t) =
250

3
e−10tt4

s6(t) =
1728

5
e−12tt5

· · · (14)

Where the general solution pattern for i = 1, 2, . . . can be easily determined, besides
a multiplicative constant Ci, as:

si(t) = Cie
−2itti−1 (15)

Given that we are interested in the sum of all the si(t) we can easily recognize
that:

∞∑
i=1

si(t) = t−1
∞∑
i=1

Ci
(
e2tt−1

)−i
= t−1Cz

(
e2tt−1

)
(16)

where Cz(e
2tt−1) is the Z-Trasform [12] of sequence Ci calculated in the point e2tt−1.

By combining eq. (13) and eq. (15) we obtain:

Cie
−2itti−2(i− 1− 2it) =

−2iCie
−2itti−1 + e−2itti−2i

i−1∑
j=1

CjCi−j

After algebraic simplifications, the latter becomes:

Ci(i− 1) = i
i−1∑
j=1

CjCi−j

We can transform this equation using the Z-Transform on i, so that:

− Cz − zC ′z = −z(C2
z )′

and finally:

Cz = 2zCzC
′
z − zC ′z

Solving the above differential equation in z we have:

Cz = −1

2
W

(
−2e−P

z

)
(17)

where W is the Lambert Function and P is a constant.
If we Z-antitransform the last expression, and after that we set the constant P
(knowing that C1 = 1), we have:

Ci =
(2i)i−1

i!
(18)
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Ci assumes the following values : 1, 2, 6, 64/3, 250/3, 1728/5, 67228/45, 2097152/315,
1062882/35, 80000000/567 . . .
We can then express si(t) as:

si(t) =
(2i)i−1

i!
ti−1e−2it

The average delay is readily obtained by integrating in the interval [0,∞) the
probability that we do not have decoded the target message (CCDF). The CCDF
corresponds to

∑∞
i=1 si(t) that is the fraction of message not yet decoded at time

t. Thus, we can finally calculate the average delay E[D] as:

E[D] =

∞∑
i=1

∫ ∞
t=0

si(t) =

∞∑
i=1

1

2i2
=
π2

12

This is equal to 0.822467k.

If we analyse the timeline of decoding process by observing the behavior of the
CDF (or equivalently of the CCDF), we can notice a sharp threshold (correspond-
ing to the receiving of k/2 pairs, i.e. t = k/2) that separates a phase in which
the decoding of messages is negligible from a phase in which it is significant, as
represented in Figure 4. Indeed, this problem can also be modelled as a random
graph with k vertices where we randomly add edges upon receiving a new code-
word. When we have a cycle we can decode all the messages corresponding to the
vertices connected by the cycle. Initially, if the number of vertices is very large,
the probability of having a cycle is negligible. However, as Erdős pointed out in his
seminal paper [7], after that vertices reach a degree c = 1 there is the emerging of a
“giant component” whose size in the supercritical part (i.e. c > 1) is ∼ y(c)k where
y is the solution of e−cy = 1− y.

6. Hybrid approach: singletons and pairs. By using the same methodology,
we consider an hybrid approach where we mix singletons and pairs. We denote by
p the ratio of the number of singletons divided by the total number of messages,
hence q = 1− p represents the probability that the arriving codeword is a pair.

As in the previous case, we define a set of state variables si(t) such that:

• s1(t) is the fraction of of messages (normalized with respect to k) which, at
(normalized) time t, do not belong to any received pair or singleton;

• s2(t) is the fraction of messages which are covered by one and only one pair;
• s3(t) is the fraction of messages which belong to a group of three messages

“connected” by two pairs; and, in most generality, si(t) is the fraction of
messages which belong to a group of i messages “connected” by i− 1 pairs

Next, we find the optimum combination that corresponds to the optimum value
of p that minimizes the expected retrieval delay.

We start defining the drift equations as follows:
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Figure 4. Behavior of the CCDF of the average retrieval de-
lay with a pair-only scheme, corresponding to the expression∑∞
i=1 si(t). Before t = 1/2 we decode very few messages, after

that threshold we start decoding a consistently fraction of mes-
sages.

s′1(t) = −ps1(t)− 2qs1(t)2 − 2qs1(t) [1− s1(t)]

s′2(t) = −2ps2(t)− q
{

4s2(t)2 + 4s2(t) [1− s2(t)]
}

+

2qs1(t)2

s′3(t) = −3ps3(t)− q
{

6s3(t)2 + 6s3(t) [1− s3(t)]
}

+

3q [s1(t)s2(t) + s2(t)s1(t)]

· · · (19)

These equations describe the behavior of the state variables during the time,
when a new singleton or a new pair arrives.

For instance s1(t): i) decreases by one data message when a degree-1 message
arrives (this happens with probability p) and hits the fraction of uncovered messages
(this happens with probability s(t)) ii) decreases by two data messages when a
pair arrives (probability q) and both the elements of that pair hit the fraction of
uncovered messages (probability s1(t)2), or iii) decreases by one data message when
a pair arrives and only one of its element hits s1(t) (this happens with probability
2s1(t)(1− s1(t)) ).

Similarly s2(t): i) decrease by two data messages if a singleton arrives on a
already collected pair (probability ps2(t)) because we have enough information to
reconstruct both the messages encoded in that pair; otherwise, if we get a pair, we
can have two different case: ii-a) a pair connects two other collected pairs and then
we decrease s2(t) by four data messages or ii-b) a pair connects one collected pair
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with another element (probability 2s2(t)(1− s2(t))) then we decrease s2(t) by two
data message; finally we increase s2(t) by two messages if a new pair hits on two
previously unassigned elements (probability s1(t)2 ).

By setting the initial conditions s1(0) = 1 and si(0) = 0,∀i > 1, we can recur-
sively solve the equations 19, obtaining the following set of solutions:

s1(t) = e(−2+p)t

s2(t) = −2e2(−2+p)t(−1 + p)t

s3(t) = 6e3(−2+p)t(−1 + p)2t2

· · · (20)

Then we can easily derive the generic form of the i-th state variable as:

si(t) =
(2i)i−1

i!
e−i(2−p)t [(1− p)t]i−1

(21)

where we derive the coefficients as described in Section 5.
Finally, we can compute the average retrieval delay by integrating the time in

the interval [0,∞) and summing over all the components i in [1,∞). The result is:

E[D] =

∞∑
i=1

∫ ∞
t=0

si(t)

=
Li2

(
2(p−1)
p−2

)
2(1− p)

(22)

Where Li2 is the polylogarithm function of order 2.
Minimizing E[D] with respect to p we find out the optimal mix for p = 0.155474

that corresponds to an average retrieval delay of E[D] = 0.793933k

7. Conclusion. In this work we introduce a problem called one-out-of-k retrieval,
and we show how network coding techniques can help in reducing the average re-
trieval delay for a desired message out of a set of k available ones. We specifi-
cally prove a straightforward lower bound of 0.5k and we propose practical coding
constructions, the best of which asymptotically reaches an average delay equal to
0.794k. The significant gap between the lower bound and the performance of the
considered approaches calls for the need to identify tighter lower bounds or improved
strategies, a challenging foundational problem which we leave to future work.

Many interesting avenues for investigation consist in relaxing the quite strict
assumptions employed in this work. Indeed, mainly motivated by the desire to un-
derstand the basic foundational issues emerging in the one-out-of-k retrieval, the
system model considered in this paper is very simplistic and abstract, and can be
generalized in many directions and/or more closely cast to more specific network
scenarios. First, this model assumes that exactly one message can be retrieved at
each round, whereas, for instance in a concrete DTN setting, a way more realistic
assumption is to permit nodes to store and exchange multiple messages, as well as to
relay messages among nodes. Furthermore, we have assumed independent retrieval
rounds whereas in a realistic settings either message relaying as well as contacts
among nodes may entail some sort of graph structure which can be exploited using
approaches similar to [16], although cast into our different one-out-of-k retrieval
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problem. Moreover, we assumed no memory or correlation in the retrieval of mes-
sages: by permitting (some level of) scheduling of the delivered messages, results
are deemed to significantly improve; for instance, the 0.5k bound can be practically
achieved by scheduling the delivery of messages in a strict sequence.

Finally, a complementary interesting research direction consists in retaining the
basic system model, but generalizing it to account for a non uniform probability
distribution of the receiver’s interests, to better fit with more realistic content re-
trieval scenarios where popularity of content is is far from being uniform. Also,
moving from the one-out-of-k retrieval to the m-out-of-k retrieval could be another
interesting extension.
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