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Abstract

How to deliver data to, or collect data from the hundreds of thousands of sen-
sors and actuators integrated in “things” spread across virtually every smart citys
streets (garbage cans, storm drains, advertising panels, etc)? The answer to the
question is neither straightforward nor unique, given the scale of the issue, the
lack of a single administrative entity for such tiny devices (arguably run by a mul-
tiplicity of distinct and independent service providers), and the cost and power
concerns that their direct connectivity to the cellular network might pose. This
paper posits that one possible alternative consists in connecting such devices to
their data collection gateways using “oblivious data mules”, namely transport
fleets such as taxi cabs which (unlike most data mules considered in past work)
have no relation whatsoever with the smart city service providers, nor are re-
quired to follow any pre-established or optimized path, nor are willing to share
their LTE connectivity. We experimentally evaluate data collection and delivery
performance using real world traces gathered over a six month period in the city
of Rome. Results suggest that even relatively small fleets, such as an average of
about 120 vehicles, operating in parallel in a very large and irregular city such as
Rome, can achieve an 80% coverage of the downtown area in less than 24 hours.
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1. Introduction

Due to their extremely low costs, sensors and actuators can surely find their
places in a wide range of applications in the Smart City. We can easily imag-
ine, for instance, intelligent garbage cans that communicate their trash levels
to a central operative base, or notifications sent by storm drains when they are
clogged by leaves. These are only some of the multitude of examples in which
small sensors can be plugged into existing objects to enhance their functionality
or to improve productivity in general. However, this scenario presents the fol-
lowing two main challenges: i) how these sensors are powered; ii) how they can
communicate with third entities for configuration and data storing.

Recent studies [1] reveal that energy harvesting is now more than an aca-
demic utopia. For instance, drain systems could acquire energy from people
moving above them, while nodes installed on garbage cans could acquire energy
from people throwing their garbage away. Depending on the specific case, sensor
nodes can obtain energy in different manners (solar, piezoelectric, etc) that is, in
many cases, more than sufficient for sporadic data sensing. But is it also enough
for communication?

The amount of energy required for that issue could be critical although highly
dependent on the quality of the communication we need. Real-time communica-
tion could indeed be very expensive because of the need of a permanent infras-
tructure to be built to cover all the nodes. If, on the one hand, interconnecting
a fine-grained sensor network to the public internet or to other large scale IP
network infrastructures may seem trivial from a technological point of view, on
the other hand, it is undoubtedly difficult from both economic and administrative
points of view to either equip each sensor device with a SIM card or dissem-
inate over the entire city sensor gateways or femtocells managed by the same
administrative entity. A real “smart” city should therefore be able to exploit and
repurpose existing resources in order to minimize the infrastructure and manage-
ment impact. Moreover, if these sensors are extremely energy constrained, their
communication range can not be very large, hence complete coverage would also
be technologically unfeasible.

Data Mules
The problem is all but new. An interesting way to address this issue is to

introduce mobile nodes that act as “data mules” [2] and that completely cover
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the interested area by passing near the deployed nodes and performing actions
such as data collection or delivery. In fact, this solution provides a mobile data
infrastructure as a substitute for the fixed infrastructure, suitable for many delay
tolerant services [3] [4] [5] [6]. From an operating and administrative point
of view, if we have several different services (e.g. waste, street lighting etc.)
we need different management entities that control the mules, and assure that
the specific quality of service is met. Otherwise, a single management entity
(e.g. the municipality) could control and manage the mules on behalf of several
service operators, taking advantage of the statistical multiplexing of the vehicles
that moves in the city.
What happens if we do not want to place any controls on the mules?

Oblivious Data Mules
In this paper we do not want to use any type of managed infrastructure, nei-

ther fixed nor mobile, but rather rely on pure opportunistic connections between
vehicles and nodes. In this regard, the huge number of public, semi-public, or
private vehicles that circulate undoubtedly represents a unique opportunity for
Smart Cities: these nodes that move in the city every day could act as IoT mo-
bile nodes. Obviously, if all the vehicles in a city were involved, the quality of
the communication service offered would be optimal. Reaching a high consen-
sus in such an initiative is by no means easy in the short term. A more realistic
alternative is to consider that today there are several public services that involve
moving vehicles (buses, ambulances, mail delivery) - among these, the taxi ser-
vice is probably one of the most interesting because cabs cover an extensive area
of the city with somewhat random paths (with respect to buses that move only
on main streets) and work 24/7. As a matter of fact, they also provide a better
coverage of the part of the city that is more densely populated and that usually
corresponds to the place where we need to collect and send more data.

Moreover, many taxi fleets have started using external ICT services for ride
dispatching since they already have almost all the needed hardware and equip-
ment on board; they are ideal candidates as oblivious data mules.

It is important to stress that the mules are truly “oblivious” since we do not
want to force the cars to follow planned paths, nor to vary driving habits, and
neither to share their internet connection if they do not want to. The mules have
to be equipped with the technology needed to communicate with the devices of
the IoT, a storage capacity, and a commodity internet connection (optional).

Hence, in the scenario we propose, these cars move independently from the
position of sensor nodes but according to customers’ demands, ready to get/push
data but rather incidentally and opportunistically collect and distribute the data.
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We can thus provide a temporary and fine-grained coverage of the territory with-
out big expenses.

Contributions
In this paper we evaluate the feasibility and the performance of a scenario

where we have no guarantees on and no requisites for the data communication
service.

However, we will show how we can provide some statistical guarantee that
will be good enough to enhance many specific services, given that the commu-
nication is provided almost “for free”, boosting the IoT with new capacity.

In detail, the main contributions of this paper are:

• Assessing the technological feasibility and system performance of an in-
frastructure for sensor data gathering/dissemination composed of a rela-
tively small taxi fleet used as data mules: we base our analyses on a real
experiment that has been conducted in Rome, Italy, that represents the
longest data collection available (6 months) with the finest sample rate (7
sec). To the best of our knowledge, this work is the first ever to validate
data mule applications with real world mobility traces.

• Identifying the performance metrics related to the proposed service sce-
nario, analysing the range of validity of the analysis with the aim of assess-
ing the statistical guarantees that we can provide for this service scenario
and how they vary in time.

• Evaluating different service scenarios for data dissemination and gathering
from the data mules to the IoT nodes and vice-versa.

• Analysing some energy optimization techniques to show how the perfor-
mance metrics are affected by a windowed and adaptive duty cycle.

In the remainder of this paper we will show that we can provide statistical
guarantees to enhance many specific services, given that communication is pro-
vided almost “for free”, boosting the IoT with new capacity. To the best of our
knowledge, this work is the first to ever validate data mule applications with real
world mobility traces.
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2. Application scenario

2.1. Data Mules
We imagine a scenario where a small fleet of taxi cabs moves inside a city

doing their job: waiting for rides in the car parks, picking up and shuttling cus-
tomers. The taxi cabs are equipped with: an on-board terminal that integrates
different wireless technologies to communicate the surrounding environment
(WiFi, ZigBee, Bluetooth, RFID, etc.); a buffering capacity; and an optional
internet connection. These terminals could be ordinary tablets or smartphones,
equipped with a radio interface suitable for low power communication 1

Moreover, we suppose that special areas in the city (for taxi cabs the most
natural choice is to use their parking lots) can act as hotspots that provide internet
access in case we do not have or we do not want to use the on-board internet
connection. In this case we can move the data via the store-carry-forward routing
technique.

Figure 1: Proposed scenario: taxi cabs incidentally exchange data with the nodes when they pass
nearby.

The taxi cabs are our “data mules” that obliviously become part of the IoT
opportunistically exchanging data with the sensor/actuator nodes deployed all
over the smart city. As depicted in figure 1, while the taxi cabs move around in
the city according to customers’ requests and typical roaming routines, they in-
cidentally cross the coverage area of active nodes with which they can exchange
small quantities of data. Once the data is acquired from a node, it can be instan-
taneously sent to a main server via the on-board internet connection, or buffered

1Bluetooth Low Energy is already supported as a built-in functionality in Android 4.3 and
on IOS 6 devices. IEEE 802.15.4 radio interface could be provided via sim cards [7] or with
external adaptors.
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and then delivered via hotspots, realizing a data gathering service. In turn, the
on-board terminals could receive data from the internet or the hotspots and then
diffuse that data to all the nodes the vehicle encounters, realizing a data diffusion
service.

2.2. Pervasive nodes and services
We imagine that these sensors/actuators (hereafter called smart city nodes,

or just nodes for brevity) are not internally powered and should acquire their
energy from external sources via photovoltaic, piezoelectric or other energy har-
vesting solutions. Consequently, nodes are severely energy constrained. They
can perform raw sensing and can sometimes communicate with their wireless
technology; yet they can also suddenly run out of power.

The offered communication service is therefore definitely best effort, but has
the great advantage that nodes can be very inexpensive and do not imply any ex-
tra fees (e.g. monthly SIM card costs or battery recharging/substitution), hence
they can be plugged on top of other existing solutions to enhance existing ser-
vices, even if only partially.

Examples of these services are:

• Smart waste collection: each garbage bin communicates its filling level
to a central system that can optimize the collection routes and times

• Street lights: lights can be programmed to vary their on-off cycling ac-
cording specific policies (e.g. daylight, fog, special events)

• Storm drains: storm drains can communicate their operating status to
their maintainers, to signal overflow or obstruction (e.g. by leaves)

and many more. If we look at the communication needs of these services,
they need small amounts of data every once in a while, also also tolerating sig-
nificant delays. This is a very important issue that we exploit in proposing a
different model of delay tolerant, opportunistic communications that do not re-
quire any fixed communication or power infrastructure, representing one of the
prominent factors that today really prevent these services from being installed in
every city. It is worth noting that in this work we do not consider unicast data
communication, event if this is theoretically supported by the proposed applica-
tion scenario.
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3. Evaluation methodology

We evaluated the performance of the system using real traces, collected by
periodically logging the time and positions of 320 cars of a taxi fleet driving in
the city of Rome, Italy, for a period of 6 months. A one month window of these
traces are available at the public wireless data archive Crawdad [8].

Scenario
We limit our analysis to the center of Rome, where the density of the taxi

cabs is relevant.
Taxi drivers work 24/7 on shifts so that on average 120 drivers are working at
the same time.
We consider an area of 8km x 8km whose bounds are given by the coordinate
pairs (41.856, 12.442) (41.928, 12.5387).
This scenario is characterized by very narrow and congested roads, high traffic
volume, and slow speed, as usually happens in city centers.
For the sake of simplicity, the area has been analysed using a 200x200 grid where
a single grid cell covers a square area of 40x40m. We assume that when a taxi
cab enters a cell, it can communicate with all the nodes available in that cell.

This assumption is reasonable if we take into account that:

1 low power wireless technologies like 802.15.4 and Bluetooth Low Energy
have a coverage range in the order of 10m 30m in free space (although
it depends greatly on several factors, such as antenna and operating fre-
quency)

2 considering square coverage areas is actually a pejorative assumption, as
we are clearly ignoring possible overlapping

3 the number of sensors considered is actually reasonable if we think of real
possible applications (e.g. sensor for traffic lights, street lights, garbage
cans, storm drains, etc.).

Around 6% of the grid cells can never be reached by the taxi cabs. According
to visual inspections, these areas usually correspond to areas where the taxi cabs
are not allowed to enter, such as public gardens, rivers, cemeteries, rail stations,
and big private areas.

For vehicle-to-vehicle and vehicle-to-hotspot communications, we assume a
coverage range of 250m that we consider a reasonable value for the 802.11a/b
and 802.11p standards.

7



Trace acquisition and filtering
Each driver has a tablet device with the Android OS and an app that sends

the GPS position every 7 seconds towards a server.
On the application side, the position is updated using the getLastKnownLoca-
tion method of the LocationManager Android object and is filtered against its
precision, using the getAccuracy() function. This function returns the estimated
accuracy in meters with 68% of probability. A sample is accepted only if its
accuracy is less than 20m and discarded otherwise.

We subsequently filter the collected traces to mitigate some localization er-
rors. In particular, analysing the traces we notice some “oddities” that we rec-
ognize because the distance between two subsequent points is greater than 125m
which corresponds to a speed above 64km/h, a reasonable upper bound consid-
ering that the downtown speed limit is 50km/h. These oddities usually occur
when the drivers are in a part of the city where the GPS service quality is poor
(e.g. tunnels, tall buildings, etc.). In these cases we distinguish the duration of
the anomaly: less than or greater than 42s (i.e. 6 points). In the former case we
simply discard the “bad” samples. In the latter case (and if the anomaly does
not last too long, i.e. less than 8 minutes), we correct the trace by introducing
artificial samples according to the short path between the endpoints of the gap.
For this task we use the Open Streetmap database. Finally, if the gap is greater
than 8 minutes, we consider it a service interruption (lunch break, end of shift,
etc.) and take no action.

After the data filtering described above, the position gathered by the android
devices are assumed to be deterministically exact.

Statistical parameters of the evaluated traces
We took a bigger sample of five months (October 2013 to February 2014) to

derive the statistical parameters resulting from the traces; the most important of
which are related to speed and coverage.

Speed: During the day, taxi drivers can either move while serving customers
(we call these movements “rides”) or stay in parking lots if they are idle. To
obtain the driving speed, we analyse 37327 rides (also outside the reference area)
and obtain an average car speed of 31.9 km/h. The mean waiting time is 600s.
The CDF of the average speed for each ride is shown in figure 2. As we can see,
there are few cabs that move with an average speed greater than 50 km/h. This is
a reasonable average speed considering stop times (e.g. traffic lights) and traffic
congestion for the urban scenario presented. We point out that the speed limit
in downtown is 50km/h. To quantify the time a node has to communicate with
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a cab, we analyse the average speed as seen by each cell. The empirical CDF of
that measurement is shown in Figure 3 where we can see that more than 95% of
the cells are crossed with an average speed less than 60km/h implying an average
permanence of 2.4s in 95% of the cells, more than enough to allow simple data
communication.
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Figure 2: CDF of the average speed for each considered ride
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Figure 3: CDF of the average speed on each grid cell

Coverage: Figure 4 shows the presence of cars in the different parts of the
reference area. In particular, for each cell, the overlay shows the average prob-
ability that there is at least one car in a reference period of 10 minutes up to 24
hours. If we consider the 6 hour period (figure 4d) we have a high probability
that the cabs cover almost the entire area except for some zones not covered by
the road network. When we consider a smaller reference period, 1 hour (figure
4b), the probability is greater than 0.8 only in the very center of the area and
along the main roads. If we further shorten the period to 10 minutes, as repre-
sented in figure 4a, most of the area has a probability less than 0.2. To provide
a baseline, figure 5 shows the same distribution for a synthetic trace where cars
move according to a random waypoint mobility model, whose parameters (wait
time and speed) are set to the same average values of the real traces. Compar-
ing figures 4c and 5, we see how different the random waypoint model is from
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(a) 10 minutes (b) 1 hour (c) 3 hours

(d) 6 hours (e) 12 hours (f) 24 hours

Figure 4: Probability that at least one car enters a cell varying the reference period using real
traces. The grey scale overlay represents the probability from 0 to 1 with steps of 0.1: a darker
area means a greater probability

reality: in fact, a random waypoint produces an almost complete coverage of the
city after just half hour.

Validity
Throughout this paper we often present empirical probability distributions

averaged for a month. It is worth asking if this data is a representative sam-
ple and if the analysis has a more general validity with respect to the analysed
case. Indeed, statistics related to the taxi service vary dramatically according to
a plethora of different factors such as the specific street topology of the city, the
traffic, the weather, the month of the year, day or night time, working or non-
working day, and many others. For instance, the demand of taxi cabs in Rome
almost doubles during the summer with respect to the winter because of tourism.
Notwithstanding, if we take a closer look at the statistical variability for a given
city and for the considered sample, we notice some recurrent patterns.

Figure 6 compares the percentage of covered cells for a given time, consid-
ering a measurement period of one non-workday, one workday, and the weekly
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Figure 5: Probability that at least one car enters a cell in 30 minutes using a random waypoint
mobility model

average. As we can see, for this performance metric, the differences are not very
relevant, but if we take two working days (figure 7) the gap between the two
curves becomes negligible. This calls for a statistical guarantee that we can pro-
vide to the proposed service model by considering an appropriate data analysis
that must take into account only a few macroscopic factors, such as the average
behaviour of a taxi fleet during summer/winter or work/non-work days.
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Figure 6: Percentage of covered cells for a given time, varying the measurement interval

Discussion
As a final remark, we point out that we limit our analysis to the downtown

area: one could object that this scenario will not be applicable in rural or scarcely
populated metropolitan areas. This is undoubtedly true. However, we consider
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Figure 7: Percentage of covered cells for a given time, for two different working days

that the places (and duration) where more vehicles move, often correspond to
the places where more data is produced/consumed and where communication is
(relatively) more urgent. This consideration holds also if we look at the differ-
ent zones of the same metropolitan area. Moreover, if we consider for instance
special events like local fairs or public performances, we find that a greater num-
ber of taxi cabs in that zone corresponds to an increased need of communication
among “things”; for instance to signal the trash can load levels so they are filled
more rapidly. The result is that the oblivious data mule solution could also pro-
vide a kind of automatic adaptation to bring more capacity where and when it is
needed.

4. System performance

We assess the performance of data dissemination and data gathering services
using a period of one month from the real traces presented above. In the last part
of this section we analyse some optimizations of energy requirements for such
services and provide some insights on the trade-off between performance and
energy requirements.

4.1. Data dissemination
To show the performance of the data dissemination process, we imagine that

new data will arrive at a given time and need to be passed on to some nodes in the
city. This data could be for instance an update of the interval of time specifying
when street lamps should turn on and off, or a firmware update to reconfigure
outdoor advertisements and road signs. To assess the performance of this system
we imagine two different scenarios:
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• Online: All vehicles are connected to the internet so all cars get the data as
soon as it is available and the diffusion process to the nodes starts immedi-
ately. In this case users need to be cooperative in the sense that they should
share their internet connection, but this will not influence their paths.

• Hotspot: There are some online hotspots so only when a car enters cov-
erage range can it get the data we want to diffuse. Once the car gets the
data, a simple epidemic routing algorithm will come into play and the data
is passed to every other taxi cab that passes within 250m from a vehicle
carrying the data. We simulate the presence of hotspots in four places in
the city corresponding to four important taxi parking lots. This solution
does not require internet connection sharing among drivers.

The simulation was realised with a software simulator specifically imple-
mented for this work. We underline that both scenarios assume the following: (i)
no particular propagation model for the wireless communication between sen-
sors and vehicles was considered, (ii) to remain independent from the particular
sensor network technology, the pairing delay was ignored.

We remark that the delay achieved in the latter case by the epidemic diffusion
represents a lower bound on the achievable delay. However, as the data grows,
it could present severe scalability issues. Different DTN routing protocols could
attain similar results without incurring in a similar data explosion, for instance
by recurring to utility metrics and controlled replication (e.g. [9]) although an
accurate analysis of these routing strategies is beyond the scope of this paper.

We simulate 4 different data diffusion occurences starting at different times
of the day (6.00 a.m., 10.00 a.m., 2.00 p.m., and 6.00 p.m.) for every one of
the 30 days. In figure 8 we plot the probability that a cell is reached by the data
before a given time to provide insight on the data diffusion delay. As we can see,
in 24 hours we can provide a coverage of 80% of the cells, whereas the difference
in terms of delay among the two scenarios is not so relevant in the long run.

4.2. Data gathering
In the data gathering scenario we are interested in collecting a set of data

generated by the smart city nodes. This scenario differs from the previous one
because we have multiple and disparate data, generated by each cell whereas in
the data diffusion scenario we have a single data message to be diffused to all
cells.
In particular we are interested in the gathering performance in terms of data
retrieval delay that is the time elapsed between when the data is produced inside
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Figure 8: Number of reached cells varying the diffusion time

the cell and when it is available online.
We consider the online scenarios presented above and measure the time between
when the data is produced by a cell and when it is collected by a car. We repeated
each experiment 30 times for all the 40,000 cells. Figure 9 shows the empirical
cdf of the average retrieval delay. In the figure we also present only the values
corresponding to the cells that can be reached by data mules in the reference
month ( 94%). As we can see, more than half the data produced is gathered
within one day, and after 2 days more than 90% are successful collections.

Even if from a strictly numerical point of view the data gathering analysis
proves that almost complete city coverage with a limited number of vehicles is
possible. It is important to note that we are not considering the temporal validity
of the disseminated data, which might expire after a time window that depends
on the particular application. Such an analysis is beyond the scope of this work.
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Figure 9: CDF of the data retrieval delay

4.3. Energy consumption optimization
To further improve energy saving in the deployed nodes, we present some

optimizations with their performance results. All optimizations rely on the as-
sumption that nodes could move from an active state, in which they are available
for data transmission/reception, and a sleeping state in which they are not. The
ratio of power consumption of these two states, usually in the order of 105 with
current technology, justifies the need of such optimization. This assumption con-
forms to the most common energy models available in literature, even the ones
that minimize wireless sensor life expectance [10].

Duty cycling
In the first scenario we introduce a constant duty cycle of the nodes so that

they periodically cycle between two states ON and OFF for times that are re-
spectively TON and TOFF . To uniquely determine the behaviour of the duty
cycle d = TON/(TON + TOFF ), we set TON = 0.1s, an interval of time that
we consider sufficient to exchange small data messages between a node and the
nearby data mule. Then we consider a successful data transmission if a car is in
a cell during an ON period.

In figure 10 we plot the retrieval delay varying the duty cycle, considering
only the online scenario for clarity. In the figure we present only the values
corresponding to the cells that can be reached by data mules in the reference
month ( 94%). For duty cycle values greater than 10% we have the same average
delay of 9 hours. Indeed, d ≥ 0.1 means the node is active every second and
due to the granularity of the real trace, it is equal to having no duty cycle. If we
decrease the duty cycle to 1% we double the delay that passes from 20 to 40 hours
on average, obtaining a reduction of 1/10 of the energy required by a single node.
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This figure clearly demonstrates how we can balance communication delay with
required energy.
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Figure 10: CDF of the retrieval delay, varying the duty cycle of the nodes

Windowing
In the second scenario, we consider a continuous interval of time (window)

in which nodes are active after the data is produced. Figure 11 shows the cdf
of the average retrieval delay varying the window. This scenario is interesting if
we consider that data and energy are produced at the same time. For instance,
by throwing garbage in a can we can produce a small amount of energy that is
enough for a node to be active for a given period. The analysis shows that 73%
of the nodes can be reached if they stay active for only 24 hours. An activity
window of 24 hours seems a reasonable choice since after such a period the
week average cell coverage is about 85% (as showed in Figure 6).
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Figure 11: Average retrieval probability, varying the length of the active period (window) of
the nodes. We highlight a slope change of around 6 hours for all possible duty circles which is
reasonable and is related to the cell coverage time shown in Figure 4
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Combining the two approaches
Figure 12 shows the combination of the two presented approaches. In this

case, nodes are available for communication with data mules in their vicinity
only if i) they are in their active period of the duty cycle, and ii) for up to windows
length hours after data generation. As we can see, both factors dramatically
impact the percentage of cells covered by the data gathering service. However,
if we look at energy consumption, it is by introducing duty cycles that we can
achieve consistent savings with relatively small performance degradation.
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Figure 12: Average retrieval probability, varying the length of the active period (window) and
the duty cycles of the nodes

5. Related works

Mobile nodes
The idea of mobile nodes configured to store, carry, and forward information,

was first considered in the research field of sparse/partitioned ad-hoc networking,
where a node’s mobility is intrinsic in the network [11].

Subsequently, mobile nodes have also been considered for sparse wireless
sensor networks to cope with the limitation in the energy budget, thus allowing
the use of short range communication technologies. In this regard, all literature
can be classified according to the assumptions made on node mobility. In [2]
the mobile nodes (namely data mules) are assumed to move randomly in a two-
dimensional square area to evaluate the basic performance of a data gathering
application. The same conclusions regarding the performance of the sensor/data
mule connections (for both discovery and data transfer), in terms of energy effi-
ciency, are reported in [12] or in [13]. Other works assume that node mobility is
predictable or even controllable. In [14] message ferries are used for proactive
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data delivery in sparse networks exploiting the predictability of node movement.
Some works such as [4], [5], and [6] focused on the optimization of the com-
plex problem of controlling/planning node mobility with optimal or suboptimal
techniques.

As briefly mentioned above, we consider uncontrolled vehicles moving around
the city as mobile nodes. We demonstrate, in the remainder of this paper, the typ-
ical movement of a car is a key aspect, since it is not uniform - neither spatially
nor in velocity.

VANET and Smart Cities
The integration of VANETs in smart cities is considered under several dif-

ferent aspects. The VANET can be seen as an opportunity for sensing data from
the surrounding environment in order to assist navigation, pollution control, and
traffic management as grasped by [15]. Similarly, some works considered the
interaction that the VANET can have with the surrounding environment through
wireless sensor networks. The work proposed in [16] derives the optimal senor
placement along the road to obtain full coverage for navigation support. The
work in [17] describes and evaluates a driving safety application exploiting an
integrated roadside sensor network.

In [18] the interaction between domestic WiFi networks and VANET tech-
nologies is considered. In this work cars are user to exchange information with
a given access point using the beacon channel.

Other works consider the urban environment only as a constraint to the mo-
bility model as in various optimization or architecture works (for example [19]
and [20]).

Synthetic traces and mobility models for VANET
The assessment of VANET protocols is typically performed combining two

different evaluation approaches: i) generating vehicle movements in the inter-
ested area using a mobility simulator; ii) simulating communication among
nearby vehicles with a network simulator (e.g. with NS2). In the most sim-
ple case, VANET protocols are validated using only synthetic movement traces
(produced by mobility simulators). In this case, cars can exchange data if their
distance is below a given threshold, which depends on many factors and cor-
responds to the specific wireless technology, such as 802.11b/g/a or the more
recent 802.11p [21]. A realistic mobility model should include several aspects
of real mobility (such as one way streets, traffic lights, obstacles, weather condi-
tions, drivers’ behavior, etc.) that are complex to model and to take into account.
For this reason, several simulators have been developed.
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IMPORTANT framework [22] is one of the earlier simulators for MANET
protocols. It combines several mobility models including the naive random way-
point (RWP) algorithm, RPGM model for group mobility, the Freeway mobil-
ity model that considers a single high speed street, and the Manhattan mobility
model where vehicles move on a grid. From any of these models, the simulator
can produce a connectivity graph that can be used to assess the performances of
different routing protocols. As pointed out by the authors, RWP presents several
limitations because it neglects the temporal, the spatial, and the geographical de-
pendencies of the vehicles. Notwithstanding, it is still the “most commonly used
mobility model in the MANET research community”.

VanetMobiSim [23] [24] is an extension to the CANU Mobility Simulation
Environment (CanuMobiSim), for vehicular mobility. VanetMobiSim can import
maps from the US Census Bureau TIGER/Line database, or randomly generate
them using Voronoi tesselation. This simulator goes in the direction of simulat-
ing a near-to-reality scenario, hence it offers support for many mobility features
such as multi-lane roads, separate directional flows, differentiated speed con-
straints and traffic signs at intersections. For this reason, it must be tuned using
several complex parameters, often hard to quantify.

TRANSIM [25] is an integrated set of tools developed to analyze regional
transportation systems. It integrates several aspects of mobility, including the
simulated behavior of public transportation and many algorithms to reproduce
the regional population to match real population demography. It uses cellular
automata to simulate interactions among vehicles. Another alternative is SUMO
[26], an open source mobility simulator that uses a Gipps-model to simulate the
main features of traffic flow, while taking into account a wide range of editable
features such as traffic lights etc.

Due to the complexity of these simulators, researchers often resort to simpler
models such as the naive Random Waypoint, or Random Waypoint City Model
[27] that includes city maps, or STRAW [28], that adds vehicular congestion
and simplified traffic control mechanisms. All these models could be enriched
by adding more parameters (see [29] for a complete survey), paying the price of
adding greater intricacy to the already complex environment.

In [30] the authors analyze the different impacts of the features introduced
to simulate urban mobility and draw the conclusion that some features, such as
waiting at intersections, affects simulation results more significantly than others,
such as multiple lanes or coordinated traffic lights.
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Real traces for VANET
Some works use real traces [31] to study the storage capability of VANET

[32] or the dynamics of network topologies [33]. Usually, these real traces are
provided by tracking public transportation vehicles. Among them, the traces
obtained by tracking taxi cabs are particularly important with respect to the ones
obtained by tracking buses, because the former better explore the status of city
streets. In this field, the most used public domain traces available in literature
are the GPS traces of 533 taxis collected in 20 days in the San Francisco Bay
area, USA [34] and the traces of 13,799 taxi cabs collected in 9 days in the city
of Shenzhen, China.

In this paper we present an analysis in the city of Rome that presents a dif-
ferent topology compared to Shenzhen and the San Francisco Bay area (near)
grid topology. Another alternative is to use other traces available from public
services (eg. NOKIA Sports Tracker) and acquired by logging mobile phone po-
sitions. The down side is that these traces present only some time segments and
are therefore not suitable for an extensive analysis. Moreover, there is no guar-
antee that the samples in the trace refer to vehicles and not pedestrians, trains,
etc.

In [35], authors infer traffic volumes though data collected by a taxi fleet,
explorating current patterns and conditions both from historical and real-time
collected data. To this aim, authors performed a large scale experiment with
more than 16000 taxi fleet in the Singapore city. Possible usage are for traffic
visualization, analysis and urban planning. Differently from this work, authors
of [35] focused more on traffic visualization, analysis and urban planning rather
than opportunistic communication with the sensors of a smart city, as we did.
However, that work confirm that taxi distributions are rapidly converging, that
is, taxi will randomly visit locations based on the random nature of the pas-
sengers’ destinations. This is a further confirmation of the proposed taxi-based
application scenario represents a good choice.

CarTel is a MIT project that helps applications easily collect, process, deliver,
analyze, and visualize data from sensors located on mobile units (mobile phones
and in-car embedded devices). In particular, this project has a network subsystem
with a component called CafNet (carry and forward network) [36] that realize a
delay-tolerant networking for mobile data muling. More in details, it uses a
combination of WiFi, Bluetooth, and cellular connectivity, using whatever mode
is available and working well at any time. Our project instead has the different
goal to validate the feasibility of a sensor network data collection scenario.

More recently, [37] uses a 450 GB dataset of 14000 taxicabs to infer pas-
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senger arriving moments by interactions of vacant taxicabs, and infer passenger
demand by a customized online training with both historical and real-time data.
Once again the focus is different as a more focused on a big data methodology
and modeling.

Due to the road topology of Rome, and its traffic conditions, which are far
from either the realistic mobility traces in modern simulators and the real mo-
bility traces acquired in cities like San Francisco and Shenzen (which are com-
patible with simple grid topology assumptions), the evaluated scenario and the
proposed traces extend the testing cases available for validating the performance
of the VANET protocols.

6. Conclusions and future works

In this work we assessed the feasibility of a data mule application in which
about 320 taxi cabs are used as mobile nodes to gather and disseminate data
from/to a large number of sensors deployed in the city of Rome. We showed that
we can provide some statistical guarantee to enhance many specific services,
given that communication is provided almost “for free”, boosting the IoT with
new capacity. To the best of our knowledge, this work is the first to ever validate
data mule applications with real world mobility traces.

More specifically, we identified a set of performance metrics and evaluated
different service scenarios for data dissemination and gathering from data mules
to IoT nodes and vice-versa. We based our analyses on a real experiment that
was conducted in Rome, Italy, representing the longest (6 months) data collec-
tion available with the finest sample rate (7 sec). We further focus on energy
saving strategies by analyzing energy optimization techniques to show how per-
formance metrics are affected by windowing and adaptive duty cycles.

Possible future works include: (i) extending the experiment campaign to
other cities to understand how different city topologies affect system perfor-
mance; (ii) improving the statistical analysis by showing the variability of the
statistical guarantees provided by this work; (iii) considering mobile node fleets
with different sizes, comparing the results and analyzing how this can affect over-
all performance; (iv) implementing an actual application for commercial tablets
equipped with low energy bluetooth and running a real world trial to assess the
system performance on the field; (v) generating experimental evidence stressing
data communication between sensors and mules in different weather conditions
and considering the pairing delay.
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