
1

The sleepy bird catches more worms:
revisiting energy efficient neighbor discovery

Lorenzo Bracciale, Pierpaolo Loreti, Giuseppe Bianchi
University of Rome “Tor Vergata” Rome, Italy

{lorenzo.bracciale,pierpaolo.loreti,giuseppe.bianchi}@uniroma2.it

Abstract—Neighbor discovery is a primary enabling ability for many emerging mobile applications. Due to its significant impact on
the energy budget of battery equipped devices, energy preserving solutions have been investigated for a long time, often introducing
duty cycling. Ultimately, these solutions settle for trade-offs between energy and performance, leaving the final decision on how much
energy to allocate to neighbor discovery in the hands of application developers or system engineers. In other words, someone must
decide if an improvement in the quality of the discovery (e.g. better discovery latency) is worth an increase in energy consumption.
In this paper, we devise a different approach in order to answer the following basic question: how many contacts can a smartphone
discover using its battery energy budget?
The answer clearly depends on the adopted discovery algorithm, on the mobility conditions and on the stochastic characteristics of the
encounters. However, we demonstrate that there is a natural optimum duty cycle that maximizes the number of discovered contacts
in almost every real application scenario. This optimum is natural in the sense that it does not depend on any system level parameter
or performance requirements. It depends uniquely on the stochastic characteristics of the meeting process between the nodes. We
present an analytic analysis and devise a practical algorithm that dynamically adapts the duty cycle length to the time-varying context,
without the need to make assumptions on (or predict) the distribution of the contact duration. The findings presented in the paper are
validated against data coming from real human mobility traces and implemented on a mobile application.

Index Terms—Neighbor Discovery, Opportunistic Networks, Energy Saving, Mobile Network, Android, Duty Cycle, Loose synchroniza-
tion

F

1 INTRODUCTION

Using their commodity short range wireless interfaces, such
as Wi-Fi or Bluetooth, smartphones can communicate with
each other and with other devices in their proximity, realizing
so-called opportunistic mobile networks or enabling location
based services such as [1]. Despite the increasing interest
in proximity communications due to the absence of any
infrastructure requirements, there are several limiting factors
that prevent a real diffusion of this technology. Among these
is the high energy cost needed to discover neighbor nodes [2].

The neighbor discovery problem has been investigated for a
long time, both in sensor and mobile networks. In particular,
in this work we focus on discovering new contacts, i.e.
discovering nodes for the first time. In fact, after a pair of
nodes has discovered each other they can schedule periodic
communication (re-discovery) through a rendez-vous protocol
such as [3]. The problem basically consists in finding neigh-
bors reachable though a short range wireless technology (e.g.
Wi-Fi, Bluetooth or IEEE 802.15.4) in a way that is efficient
in terms of some metrics such as discovery latency, missing
probability and power consumption.

Yet devising a good and energy efficient discovery protocol
is not an easy task and the main reason is very basic: discover-
ing neighbors requires polling the environment but polling for
rare events has never been a good choice, especially in terms
of energy efficiency. Indeed, periodically checking for the
presence of new nodes can be an extremely energy consuming

operation. Moreover, the result is useless most of the time
because “interesting” encounters (e.g. another node with the
same app installed) might take place very rarely.

As pointed out in several works [4], keeping the radio
interface active to catch discovery probes, greatly impacts the
energy budget of battery-powered devices.

To overcome this limitation, a popular approach involves
the introduction of a duty cycle, so that a mobile phone’s
radio interface can be activated for a short period of time to
probe for neighbor devices, and then be switched off for a
relatively long period to save energy. The rationale of putting
the radio interface to sleep is clear if we look at the statistics of
contact duration in real world cases (for instance by analyzing
some real world traces coming from the MIT reality mining
[5] or from the HAGGLE project [6]). Here, we find that the
relevant parameters time scale (e.g. meeting duration, inter-
meeting time) are far greater than the actual communication
needs for discovery.

This technique is usually difficult to optimize because most
encounters are almost unpredictable. Indeed, in general, nodes
move inside environments whose statistics are unknown or
only partially known (either in terms of statistical parameters
or in terms of the overall distribution involved) and vary
dramatically over time.

Natural optimization
In literature, several trade-offs emerge if we consider on

the one hand the energy consumed for neighbor discovery
and on the other all related performance metrics such as the

2

probability of missing a contact [7] [8] [4], or the discovery
latency [9]. According to this model of operation, the choice
of the right amount of energy to dedicate to the discovery
process is handed on to the application or system developers.
In this paper we tackle the same problem under a new
perspective. We investigate if it is worth using a given amount
of energy, in order to discover the greatest number of contacts
with a fixed energy budget (e.g. one battery charge of a
commercial smartphone).

From this new perspective there arises a natural trade-off
and a consequent optimum point, which, so far, to the best
of our knowledge, is undiscovered. “Natural” in the sense
that if we consider the case of “always on” (when the radio
interface is always in the active state), the absolute number
of contacts that we can discover will be severely limited by
the duration of our battery which would last only a few hours
due to this extensive usage. On the other hand, if we consider
the opposite “always off” case (when the radio interface is
always turned off), our battery lasts several hours but as a
matter of fact we will not be able to discover any contacts.
By introducing a duty cycle we can move between these two
borderline cases and possibly find an optimum value with
which we can discover the maximum number of contacts for
a given energy budget. As will be explained later on in this
work, in practical cases this often happens because contact
duration follows a “human time scale” (order of seconds) so
nodes can sleep for significant periods of time [10] [11].

We point out that maximizing the total number of discov-
erable contacts with a battery charge is particularly relevant
in several practical cases such as the many (cumbersome)
delay tolerant applications. An example of these applications
is the opportunistic file sharing service since, given that every
node has the same probability of having interesting data
to share, more is better. In these scenarios, the extremely
long periods needed to provide the service and the lack of
synchronous interaction with users (unattended mode), can
lead to neglecting any optimization of discovery times and
of the probability of missing a specific contact. At the very
end, what really matters is only the overall number of different
nodes encountered before the mobile phone battery runs out
of power.

Contributions
The main contributions of this work are the following:
• we formalize the problem of the maximum number of

discoverable peers with an energy budget.
• we quantify the performance of a duty cycle based

discovery protocol using the default synchronization ca-
pability of modern smartphones.

• we analyze the problem under different mobility hypothe-
ses, investigating the presence of an optimum point. Then
we provide a closed form solution for some mobility
patterns and validate it using data coming from real
mobility traces.

• we design a simple algorithm that exploits our theoretical
findings to dynamically adapt the duty cycle to changing
environments. All this with no assumption on the dis-
tribution of contact duration times, which is the main
statistical distribution involved in the optimization.

• we demonstrate the feasibility of the solution through an
open source application for smartphones.

The paper is organized as follows. Section 2 presents the
reference scenario. Section 3 presents a novel theoretical
approach to optimize the duty cycle to discover the maximum
amount of contacts with an energy budget. In section 4 we
propose a distributed adaptive algorithm called “CATNAP”
and in section 5 we assess the related performance using
models based on empirical human mobility traces. In section
6 we present a proof-of-concept implementation on Android
devices. A review of the related works is reported in section
7. Finally, conclusions are drawn.

2 SYSTEM MODEL

2.1 Synchronous duty cycle

Let us assume that all nodes in the network are synchronized
and that they periodically turn their wireless interfaces on and
off. During the on period all the devices can discover their
neighbors by sending and receiving presence data packets.
Each node stays on for Ton seconds for each cycle. During
the off period, a node can neither transmit nor receive packets.
A node remains in this state for Toff seconds. This behavior
is represented in figure 1.

Fig. 1. Each node periodically turns the Wi-Fi interface
on and off, implementing a duty cycle to save energy, with
human time-scale

The system period is then T = Ton + Toff , hence the duty
cycle is d = Ton/T .

Generally speaking, each node can have its own values of
Ton and Toff . We will discuss this case in section 4. In this
section and in the next, for the sake of simplicity, we will
assume that every node has the same values of Ton and Toff
and that they are synchronized with one another.

We point out that the global synchronization hypothesis
is far from being unrealistic. Indeed, by default, modern
smartphones periodically make use of NTP to synchronize
against a reference time server1. This brings about a global
coarse grain synchronization. A more in-depth discussion on
this topic can be found in [11] and [12].

1. From Android 4.0 on, the time update via NTP (or NITZ) is implemented
natively by the service “Network Time Update”. In addition, by analyzing the
source code of Android, we can see that the resync is performed every 24
hours. https://github.com/android

3

2.2 The duty cycle gain
Before going any further, we want to briefly demonstrate the
extent of the gain of introducing a duty cycle approach by
measuring the battery duration on real smartphones.

If we focus on Wi-Fi, we find many literature studies that
evaluate the energy consumption accountable to the different
parts of the stack (e.g. [13]). However, from a practical point of
view, the real impact of the power consumption of the radio
interface on a smartphone battery is difficult to assess as it
varies dramatically with hardware (phone, battery), software
(e.g. vendor specific rom/patches) and time (batteries are
subject to wear and tear).

For this reason we resort to a measurement technique
that can be included in custom applications 2. The proposed
measurement methodology leverages the battery level provided
by the operating system which clearly does not provide the
same precision of a professional measurement tool such as a
power analyzer.

We evaluated the battery drain process of some Android
smartphones. A custom app, every period T : i) turns on the
Wi-Fi interface; ii) configures the Wi-Fi interface in ad-hoc
mode; iii) sends one UDP packet per second for Ton = 5s
containing the battery level; iv) sleeps for Toff = T − Ton.
We kept the phone in standby mode with the screen turned
off without activating any power locks during the OFF time
(neither the CPU lock nor the Wi-Fi interface lock).

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

B
a
tt

er
y

le
ve

l

Time (hours)

Always ON

T=25

T=55

T=115

Always OFF

Fig. 2. Battery drain process while keeping the wireless
interface always on, always off, or modulating between
T=25s, T=55s, T=115s

Figure 2 presents the results of the battery duration of an
Android Galaxy Nexus for the following cases: i) always on:
The Wi-Fi radio interface is always kept on. This is our refer-
ence lower bound for battery duration time. ii) always off : The
Wi-Fi radio interface is always kept off. This is our reference
upper bound for battery duration time (in this case the battery
level is logged in a local file). iii) Toff=15s,25s,55s,115s.

Figure 2 shows that even with a high duty cycle of 20%
(T=25s), battery duration is doubled if compared to the always
on case. In particular, from experiments we confirm that what

2. The app’s source code is here https://github.com/netgroup/dtn-energy

really makes the battery last longer is the amount of time the
phone is in sleeping state, whereas, for instance, the amount
of data transmitted when the phones are in the ON state does
not significantly impact energy consumption 3.

For this reason we model the battery drain process with two
coefficients α and β that represent the percentage of battery
drain per second during, respectively, the ON and the OFF
states.
For instance, in the case reported in figure 2 we have α =
2.17× 10−3 and β = 1.39× 10−4 (percentage/second).

Therefore, we can express power consumption during a
cycle T as E(T) = αTon + βToff .

2.3 Problem statement

We want to set the value of Ton and Toff to maximize the
number of new contacts discovered using the synchronous
discovery protocol described so far.

Despite the apparent technological simplicity, the tuning of
these parameters is far from trivial:

Ton : Given that synchronization between nodes is not perfect,
node wake-up times could be slightly shifted. For this
reason, Ton should be set long enough to allow different
mobile nodes to stay awake at the same time. This
depends on mobile phone clock drifts, on the precision of
the synchronization mechanism 4 and on the time needed
to activate the radio interface. As discussed in [11] [12],
Ton can be set to a constant value e.g. 5s on current
smartphones, also considering the time needed to switch
the radio interface on and off.

Toff : Properly setting the sleeping time is slightly more tricky
since it involves a trade-off between the performance
of discovery and the amount of energy saved. Let us
consider the special case in which all the encounters last
more than Toff . In this case, the sleeping time introduces
only a gain because it increments the battery duration of
the device without influencing the number of discovered
contacts. In general, the number of missed contacts
due to the duty cycle depends on the statistic of the
contact duration: increasing the value of Toff generally
corresponds to a higher probability of missing short
contacts. At the same time, as shown in figure 2, long
Toff saves a significant share of the smartphone energy
budget, allowing a longer duration of the discovery
process.
Which is better: a longer discovery process with high
contact loss probability or a shorter discovery process
with low contact loss probability?

The answer clearly depends on contact statistics as will be
formalized in the next section.

3. This obviously holds only for small data-rates; neighbor discovery is
typically interested in sending small presence packets once in a while.

4. For the sake of this work, the availability of better synchronization
between nodes, for instance by using GPS or other network synchronization,
allows smaller Ton values that in turn results in increased energy saving

4

3 THE ANALYTICAL MODEL

Our goal is to find the optimum cycle period T that maximizes
the number of detected unique contacts with a given energy
budget.

3.1 Assumptions

We assume that the meeting process between nodes is char-
acterized as follows:
• inter-meeting time between each pair of nodes follows an

exponential distribution (Poisson process) with rate λ;
• the meeting duration follows a generic distribution FD(t);
• for ease of presentation and without loss of generality, we

consider the discovery process to be instantaneous; the
duration of a cycle is T , the power consumption during
the ON phase is constant and equal to α̂, while power
consumption during the OFF phase is β × T .

We point out that literature studies such as [14], [15], [16]
and [17], proved that inter-contact time distribution between a
pair of nodes can be reasonably assumed to be exponentially
distributed, if we consider human mobility. In particular, [14]
analyzed several popular real world traces showing that 85%
of pair distributions fit an exponential law according to χ2 test.
in addition, both [15] and [16] demonstrated that this is not in
contrast with the well known heavy tailed distribution (with
or without the exponential cut-off) of the aggregated inter-
meeting time. In fact, a Pareto distribution can be achieved
by aggregating several exponential distributions weighted by
their rates (i.e. the reciprocal of the averages).

3.2 The renewal process

According to these hypotheses we model the point of view of
one node as a M/G/∞ queue. Other nodes meet that node
with a λ rate and the meeting duration is a random variable D
distributed according to a generic distribution function FD(t).

We define n(t) as the number of ongoing meetings at time
t, assuming n(t) = 0 for t ≤ 0, i.e. assuming an initially
empty system, as represented in figure 3.

Proposition 1: In a initially empty M/G/∞ queue system,
with λ as the average rate of arrival and FD(t) as the cdf of
waiting time, the average number of users in the system at
time T is:

E[n(T)] = λ

∫ T

0

[1− FD(τ)] dτ (1)

Proof: Let us consider a small interval ∆τ at distance
T − τ from the origin, as depicted in figure 4. For the
Markovian assumption, during ∆τ only one new user can enter
the system and this event occurs with probability λ∆τ . The
probability that this user is still in the system at time T is
1 − FD(τ) and thus the contribution to n(T) of an interval
∆τ is 1 with probability ∆τ [1− FD(τ)] and 0 otherwise. The
average is thus ∆τ [1− FT (τ)]. If we repeat this operation on
infinitesimal intervals ∆τ → δτ in [0, T], we obtain formula
1.

Proposition 2: A M/G/∞ queue system, with λ as the
average rate of arrival and FD(x) the cdf of waiting time, that
is sampled every T time, the average number of new users at
any given time is specified by Equation 1.

Proof: Given that we are interested in new users entering
the system, every sample time we need to retrieve all discov-
ered users from the queue. Thus we can consider the truncated
contact distribution F ∗D(x) defined as FD(x) for x ≤ T and
F ∗D(x) = 1 for x > T (i.e. no contact can last more that T).
Considering the memoryless property of the arrival process,
we can restrict the analysis to the interval [0, T] while it holds
for [0−∞] because of the periodicity of the system.

Indeed, in our case we are interested in the transitory part
and, in particular, the contact time process is renewed every
period T as shown in figure 3.

In general, note that as T →∞ we obtain the famous Little
Result.

E[n] = λ

∫ ∞
0

[1− FD(τ)] dτ = λE[D]

Fig. 3. Representation of the renewal process

Fig. 4. Representation of the methodology adopted to
calculate the average number of users over a period T

3.3 The optimum point
We can formalize the optimum value of the duty cycle that
matches our optimization goal under the above-mentioned
hypotheses as:

arg maxT
E[n(T)]

α̂+ Tβ
(2)

where E[n(T)] is given by Eq. 1.
Thus, the optimum point is given by the solution of the

following differential equation:

∂

∂T

λ
∫ T
0

[1− FD(τ)] dτ

α̂+ Tβ
= 0 (3)

whose solution is n(T ∗) = C(α̂+ T ∗β) for C ∈ Z .

5

0 100 200 300 400 500 600 700
0

1000

2000

3000

4000

5000
C

o
n
ta

ct
s

se
en

/b
at

te
ry

 d
ra

in

Cycle Time (seconds)

Exponential

Uniform

Fig. 5. Optimum in well known distributions: uniform
distribution with µ = 1/378s−1 (optimum for T = 274s)
exponential distribution with parameters µ = 1/378s−1

(optimum for T = 219.3s)

We note that:
• the optimum point is independent of λ.
• since both E[n(t)] and α̂ + tβ are two monotonic in-

creasing functions, there is exactly one optimum point
for every environment

Definition 1: We define an environment as a physical place
where the nodes move, characterized by a inter new contact
time distribution and a contact duration distribution.

The discussion regarding the right model to describe human
mobility is still open as it greatly depends on the considered
scenario [18] [19] [20]. Below, we analyze the case where
the node contact time follows some well known distributions
as well as the case where it follows the distribution inferred
from some real human mobility traces. We point out that the
analysis reported in this section still remains valid for any
contact duration distribution considered.

Uniform distribution

If we consider the node contact time as uniformly distributed
in the interval [0, 2/µ]:

FD(t) =

0, t ≤ 0
µt
2 , if 0 ≤ t ≤ 1

1, t ≥ 0

then, by applying eq 3, the optimum point is:

T ∗ =
−α̂µ

√
4α̂βµ+ α̂2µ2

βµ
(4)

Figure 5 shows the behavior of E[n(T)]
α̂+Tβ varying T for a

uniform distribution with parameter µ = 1/378s−1.

Exponential distribution

In the case of exponentially distributed contact duration:

FD(t) = 1− e−µt

In this case the optimum point can be expressed in terms of
the Lambert function W (z) 5:

T ∗ = −β − α̂µ− βW−1
(
−e−

β+α̂µ
β

)
(5)

Figure 5 shows the behavior of E[n(T)]
α̂+Tβ varying T for an

exponential distribution with parameter µ = 1/378.

Pareto distribution
If the contact times are distributed according to a Pareto
distribution (power law) with scale k and shape γ :

FD(t) =

{
0, t ≤ k
1− (k/t)γ , t ≥ k

the optimum value of T can be found numerically by
solving the equation:

λT−γ (−kT γβγ + kγ (α̂(γ − 1) + tβγ))

(α̂+ Tβ)
2

(1− γ)
= 0 (6)

Real human mobility traces
We aim to calculate the optimum cycle for some real cases
using mobility traces available in literature.

Unfortunately, most traces have a granularity that is too
coarse for our purposes: for instance, [5] has an inter scanning
period of 5 minutes, while in [21] it is 2 minutes.

This problem has been tackled in [7] and overcome by
adopting different methods to record the encounters, such as
using IEEE 802.15.4 instead of Bluetooth scanning.

Nevertheless, it is worth noting that in all these traces
the cumulative distribution of contact duration times
approximately follows a power law (Pareto) distribution
whose parameters hardly depend on the scenario we are
considering. The appropriate value that the authors found in
the Haggle IMote trace [21] is γ = 1.5, in NUS data [22] γ
= 0.84, while for USC data [7] we have γ = 0.6.

0 100 200 300 400 500 600 700
0

1000

2000

3000

4000

5000

C
o

n
ta

ct
s

se
en

/b
at

te
ry

 d
ra

in

Cycle Time (seconds)

USC

NUS

Haggle

Fig. 6. Contacts detected during battery drain as a func-
tion of the cycle, varying the mobility model and according
to three different real mobility traces

5. Please note that the Lambert function is the solution of the transcendental
equation z = wew . In particular, given that t > 0, we need to find the solution
in the negative branch W−1(z) that returns a negative value less than −1

6

Figure 6 shows the contact ratio detected over the battery
drain period varying time T for the distribution inferred from
three mobility traces: Haggle Imode [21] γ = 1.5k = 126,
NUS data [22] γ = 0.84k = 18, and USC data [7] γ =
0.6k = 49.8.

As we can see, the optimum point largely depends on the
considered scenario and typically changes over time. For this
reason, in the next section we devise a distributed algorithm
that automatically tracks the optimum duty cycle to set on
each node.

4 ADAPTIVE DUTY CYCLE
Up until now, we have presented the existence of an optimum
cycle where, if all the nodes use that duty cycle, they maximize
the number of contacts discovered in a given environment. In
this section, we address the problem of how the devices can
discover or estimate this optimum cycle.

A straightforward solution could be to use dedicated in-
frastructure nodes (probes) for neighbor discovery, to measure
the mobility characteristics of the environments and provide
the smartphones with the optimum cycle. But requiring the
presence of an infrastructure node in each environment is not
easily satisfied.

A more practical solution would be to provide each node
with an adaptive distributed algorithm to track the optimum
cycle value since it varies dramatically over time according
to user movement. Consider, for instance, an application that
needs to discover new contacts and that runs during the day,
when the user is in the subway or in the office, and during the
night, when there are no new contacts for hours.

Moreover, we have to note that if all nodes use the same
cycle they discover each other, but in a real scenario we need
to deal with the possibility of nodes using different cycles.
Therefore, when a node wakes up, it can see a subset of the
available contacts because some of its neighbor nodes can be
asleep.

4.1 Exponential cycles
We developed a solution with a finite set of possible cycles
T1...Tn which the nodes can choose from. For instance,
the cycles could be 15, 30, 60, 120, 240, 480 seconds. Using
exponential cycles (i.e. Ti = 2Ti−1) we realize a hierarchy in
such a way that when a node with cycle T = Ti wakes up, it
detects all the nodes in its visibility range with Tk ≤ Ti and
some nodes with Tk > Ti. In particular, when it wakes up,
one out of two times it can discover nodes with Ti+1, one out
of four times it can discover nodes with Ti+2 and so on.
Nodes could easily discover the time they should wake up
using their global loosely synchronized clock, as previously
explained. For example, a node with T = 60s can wake
up when mod(currT ime, 60) = 0 where currTime are the
seconds elapsed from Epoch Time (1/1/1970), a typical repre-
sentation of current time on several operating systems (e.g. on
the Android platform, the function System.currentTimeMillis()
returns the ms from Epoch Time).
This solution was also adopted in [12] and proved to be
optimum in terms of discovery latency for discovering new
nodes with heterogeneous duty cycles.

4.2 CATNAP Adaptive distributed algorithm
Here we present a very simple 3-rules distributed algorithm
that runs on each node with the goal of detecting and tracking
the optimum duty cycle, since the environment surrounding a
node could change. We call this algorithm CATNAP.

4.2.1 CATNAP Rules
With reference to a node with an initial cycle Tj , whenever
a node wakes up, the proposed algorithm performs these
operations:

1 estimates a score E[n(Tx)]
α̂+Txβ

for all Tx ≥ Tj .
2 finds the cycle Tk corresponding to the maximum score
3 sets the node cycle as Tk−1
where E[n(Tx)] is the average number of nodes discovered

when the node wakes up and mod(currentT ime, Tx) = 0.
Thanks to the exponential cycles, a node with cycle Tj can
correctly estimate all the scores for all the cycles Tx ≥ Tj .

4.2.2 Numerical example
Let us clarify with an example. We consider a node with an
initial cycle T = 60s. This means that this node wakes up
every 60 seconds, when mod(currentT ime, 60) = 0.
The node records the average number of new nodes discovered
every time it wakes up, namely E[n(60)], and then calculates a
score for T = 60 as score(T = 60) = E[n(60)]/ (α+ 60β).
This is the contact ratio seen over battery drain as shown in
figure 6
Once every two times it wakes up, if
mod(currentT ime, 120) = 0, the nodes could “simulate”
the average number of nodes it would have discovered if its
cycle were T = 120. It can thus calculate score(T = 120)
and all the other scores for any Tx > 60. However, a node
can not simulate what happens for Tx < 60 because it is
sleeping, so it sets the score for these cycles to 0.
According to the three rules of the CATNAP algorithm, the
node sets its cycle to the cycle immediately before the one
with the optimum score. For instance, if score(T = 15) = 0,
score(T = 30) = 0, score(T = 60) = 2.5×10−2, score(T =
120) = 3.58 × 10−2, score(T = 240) = 1.42 × 10−1 and
score(T = 480) = 9.71× 10−2, we have that T = 240 is the
cycle that maximizes the ratio of newly discovered peers per
amount of energy consumed. Consequently, according to the
algorithm, the node sets its cycle to T = 120.

4.2.3 Convergence and stability
In a static environment all nodes converge to the same cy-
cle and tend to stabilize at the sub-optimal cycle, as will
be showed numerically in section 5 and discussed in what
follows.

Let us assume that N nodes have correctly estimated the
optimum cycle to the value Tj and correspondingly set their
own operating cycles to the value Tj−1.

A new node entering into the system can measure the scores
for all the cycles Tx ≥ Tj−1 while it estimates E[n(Tx)] = 0
for all Tx < Tj−1 because it finds all the other nodes sleeping

7

during those intervals. However, the new node can correctly
calculate the optimum point since it is greater than Tj−1 and
correctly sets its operating cycles to Tj−1.

In other words, the sleeping time of the nodes does not
affect the estimation of the scores in the interesting duty cycles
(in which the optimum can be identified) hence the nodes’
perceived view of the environment statistics.

We also note that if the new node enters the system with
a cycle Tx that is greater than Tj , it will see the greater
score for Tx and set its cycle to Tx−1 according to rule 3
of the algorithm. Iterating, the node decrements its cycle until
it selects Tj−1 that allows the optimum estimation. On the
other hand, if the new node enters with Tx < Tj−1 it can
immediately detect the optimum and set its cycle accordingly.

Finally, given that each node continuously monitors the
optimum in the system, it can follow the changes in the
environment statics that modify the optimum.

We point out that the presented algorithm does not only
converge under theoretical hypotheses, but this propriety holds
also in the case of errors and fluctuations of the estima-
tions/scores. Let us consider for instance the most challenging
scenario in which all the nodes in the network start by wrongly
considering Tx as the optimum cycle, while the real optimum
cycle is Tx̂. From rule 1, at each time slot, they calculate the
score for cycles Tx−1...Tn. Then if x̂ is in the range [x−1, n]
they can immediately discover the optimum and change their
cycle accordingly by moving to Tx̂−1; otherwise they jump
back to Tx−2 according to rule 3 and start this reasoning again.
This scenario is very similar to the one simulated in figure 8.

4.2.4 Discussion
The basic ideas behind the algorithms are:
• we do not want to alternate environment estimation and

a subsequent exploitation but design an algorithm that
performs exploration and exploitation at the same time

• we do not need to estimate the environmental parameters
(such as the distribution of contact duration) and then
analytically calculate the optimum cycle, but directly
track the optimum point. This can be done thanks to the
theory that tells us that there are no local maximum points
that do not correspond to the global maximum point.

• we want the algorithm to be distributed on nodes and to
be auto-adaptive to the case of a non-stationary environ-
ment6

• we deliberately want to keep it simple, optionally sacri-
ficing optimality

• the node chooses the cycle that is immediately below
the optimum to solve the problem of investigating the
performance of a shorter cycle. Theory shows us that
scores distribute as a concave function so we decided
to keep the optimum point in the visibility scope. This
way we can react to environment changes that move the
optimum point towards either shorter or longer cycles.

As a final remark, if the optimum value does not correspond
to one of the available duty cycles, the algorithm approaches

6. This can be easily achieved by using a moving average technique to
estimate nodes E[n(T)], such as an exponential moving average.

the optimum by choosing the cycle with the best score among
all the available cycles, resulting in a sub-sampling of the
contacts seen over battery drain process.

5 PERFORMANCE ASSESSMENT

We developed a custom event-driven simulator that allowed
us to tune the simulation parameters (hence the statistic laws
that regulate node mobility) so that we can theoretically
calculate the optimum value of the duty cycle for the simulated
environment.

The environment is the place where nodes can meet each
other, but an encounter between nodes does not necessarily
happen. For example, an environment could represent a cam-
pus area or the subway.
Moreover, even if there is an encounter, nodes might not detect
it because of the duty cycle.
An environment is characterized by some statistics: new nodes
arrive with rate λe (Poisson) and stay for a certain time
(constant or exponentially distributed) with mean µe.
Inside the environment visibility is incomplete, but nodes meet
with rate λu (Poisson) and their encounters last D seconds
where D is an RV distributed according to a generic cdf FD(t).
Nodes do not have any a-priori knowledge of these parameters.
The rationale behind this model is that we need a dynamic
environment where nodes enter and exit the system because we
are interested in discovering new contacts. At the same time,
because of the learning process of the proposed algorithm, a
contact between two nodes modifies their state (in particular
their score, as described in 4) and could modify their cycle
which in turn affects how these nodes could meet others. To
see what happens with this “chain reaction”, nodes should stay
in the environment for a given time and keep meeting other
nodes and mutually modifying their state. More details on the
simulation process can be found in [23].

5.1 Adaptive algorithm performance assessment
We conducted a simulation campaign with the following
parameters: µe = 1/7200 (const), λe = 1/120 (exp neg).
In this scenario the optimum cycle is T = 120. Nodes
enter into the system with a random cycle taken from the
list of available cycles: 15, 30, 60, 120, 240 and 480 seconds.
They then try to auto adapt their duty cycle according to the
proposed adaptive algorithm. We plot the average cycle chosen
by nodes, grouping nodes by the same initial cycle.

In figure 7 we show how nodes change their cycle during
the relative time, i.e. after t seconds they enter the system, in
different cases: i) figure 7(a) shows exponentially distributed
inter-contact time and contact duration (λu = 1/140, µu =
1/130); ii) figure 7(b) shows exponentially distributed inter-
contact time and Pareto distributed contact duration (λu =
1/140, γ = 1.2 and k = 72), and; iii) figure 7(c) shows
Pareto distributed inter-contact time (γ = 1.06, k = 8) and
contact duration (γ = 1.2, k = 72).

Without regard to the initial cycle, all nodes converge to
the cycle T = 60s that is immediately below the optimum
T = 120s. However, nodes with initial cycles equal to
T = 480 converge more slowly because they sample the

8

system every 480 seconds. Figure 7(c) shows a slower con-
verge time because of the heavy tail of the Pareto distribution,
however this case tests the resiliency of the algorithm under
a non-markovian arrival process for which it is not expressly
designed to work with.

0 1000 2000 3000 4000 5000 6000 7000
0

100

200

300

400

500

Relative Time (s)

A
v

er
ag

e
cy

cl
e

(s
)

Initial DC=480

Initial DC=240

Initial DC=120

Initial DC=60

Initial DC=30
Initial DC=15

(a) Exponential inter-contact time/Exponential contact duration

0 1000 2000 3000 4000 5000 6000 7000
0

100

200

300

400

500

Relative Time (s)

A
v
er

ag
e

cy
cl

e
(s

)

Initial DC=480

Initial DC=240

Initial DC=120

Initial DC=60

Initial DC=30
Initial DC=15

(b) Exponential inter-contact time/Pareto contact duration

0 1000 2000 3000 4000 5000 6000 7000
0

100

200

300

400

500

Relative Time (s)

A
v
er

ag
e

cy
cl

e
(s

)

Initial DC=480

Initial DC=240

Initial DC=120

Initial DC=60

Initial DC=30
Initial DC=15

(c) Pareto inter-contact time/Pareto contact duration

Fig. 7. Average cycle of nodes for different distributions
of inter-contact time and contact duration. According to
the proposed algorithm, all nodes converge to the cycle
T = 60s that is immediately below the optimum T = 120s

We tested the proposed algorithm in a non-stationary en-
vironment where we varied the optimum cycle value over
time. In particular, we ran a simulation in the same scenario
described for figure 7(b), with contact durations following a

2 4 6 8 10 12 14

x 10
4

0

20

40

60

80

100

120

140

160

Time (s)

A
v

er
ag

e
cy

cl
e

(s
)

Optimum value 120s

Optimum value 60s

Optimum value 240s

Fig. 8. Average cycle of all nodes in a non-stationary
system. Nodes track the optimum cycles that move from
T=120, T=60 and T=240 by choosing the immediate sub-
optimal cycle values: T=60, T=30 and T=120

Pareto law with parameters that varied during the simulation:

• γ = 1.2, k = 72 for the first third of the simulation. With
this distribution the optimum cycle is T=120s

• γ = 2.6, k = 42 for the second third of the simulation.
With this distribution the optimum cycle is T=60s

• γ = 2.0, k = 206 for the last third of the simulation.
With this distribution the optimum cycle is T=240s

Given that all nodes enter the system with a random cycle
and stay for two hours, we plot the average cycle of nodes in
the system for nodes that stay in the system for at least one
hour, to give the algorithm time to converge. The result of this
study is depicted in figure 8. As we can see, the algorithm
succeeds in tracking the optimum values by following the
sub-optimal values T=60, T=30 and T=120 even if the nodes
have no a-priori information about the environment and the
environment characteristics change over time. In particular, in
this experiment we show the ability of the algorithm to track
changes in the environment and consequently adapt the chosen
duty cycle, either upward or downward.

5.2 Comparison with the State of the Art

In literature, performance of neighbor discovery protocols is
evaluated according to a set of performance metrics. The most
used are discovery latency or missing probability. To make a
fair comparison, different discovery algorithms are compared
using the same energy budget (or alternatively, the same duty
cycle) while the choice of how much energy to use is usually
not addressed specifically. Instead, in this work we tackle
this issue, to determine the optimum amount of energy that
maximizes the number of contacts discovered.

The algorithm most similar to ours is [12] where the au-
thors present a Recursive Binary Time Partitioning algorithm
(RBTP). Both are synchronous neighbor discovery protocols

9

0 50 100 150
0

500

1000

1500

2000

2500

Time (hours)

N
u

m
b

er
 o

f
n
ew

 c
o
n

ta
ct

s

Always On

Optimum
CATNAP

RBTP−Battery

Fig. 9. Number of contacts discovered using a bat-
tery charge: ALWAYS-ON vs OPTIMUM vs CATNAP vs
RBTP-BATTERY
7. In a certain sense this work can be viewed as an RBTP
protocol where the duty cycle is chosen dynamically according
to the environment.

However, as the authors of [12] state, RBTP allows devices
to adapt their number of wake-up instances independently
based on their respective energy limitations but in [12] they
give no clue as to how a device should choose the number
of “wake-up instances” i.e. the energy budget to dedicate to
discovery purposes. For this reason, we compare our work with
a version of RBTP where the duty cycles change according
to the battery level: devices with a high battery charge have a
higher duty cycle, while devices running low on battery power
increase the sleep time. We call this schema RBTP-BATTERY.
This seems a reasonable choice given that several mobile
applications limit their functionality according to battery level.

Besides the RBTP-BATTERY algorithm, we compare CAT-
NAP with two other schemes to provide baseline references:
OPTIMUM, in which all the nodes use the optimum duty
cycle, and ALWAYS-ON, corresponding to nodes that con-
tinuously try to discover each other without any duty cycling
scheme.

Figure 9 shows the number of discovered contacts during the
whole lifetime of a device. The environment is characterized
by nodes that enter with an exponential inter-arrival time with
an 80s mean, stay in the system for exactly one hour, and have
a charge level distributed uniformly between 1% and 100%.
Inside the environment, each node has new encounters accord-
ing to an exponential distribution with parameter λu = 1/120,
and the duration of each encounter is distributed according to
a power law with parameters (shape: 1.2, index: 72).

The power consumption during the asleep and awake peri-
ods are respectively α = 2.17 × 10−3 and β = 1.39 × 10−4

(percentage/second). Ton is equal to 5s.

7. As shown in [12], even very simple synchronous protocols such as the
PRS protocol presented in that paper, outperform asynchronous protocols
(such as [3], [24]) for almost all the relevant performance metrics. For this
reason we decided to compare with RBTP

100−84 83−66 65−50 49−34 33−17 16−0
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of battery charge

N
ew

 C
o
n

ta
ct

 M
is

si
n

g
 P

ro
b
ab

il
it

y

Optimum

CATNAP

RBTP−Battery

Fig. 10. Probability of missing a contact opportunity
varying the battery charge: OPTIMUM vs CATNAP vs
RBTP-BATTERY

As we can see, an ALWAYS-ON approach is the fastest
strategy to discover new contacts. It however reduces the du-
ration of the battery to only 12.8h, leading to 400 discovered
contacts when the battery runs out of charge. The OPTIMUM
approach discovers nodes more slowly, introducing a high
missing rate. It does though end up with 2100 new nodes
discovered in the life of the battery (125h). The CATNAP
algorithm consumes more battery power than the OPTIMUM
solution collecting 2000 new contacts in about 90 hours.
The RBTP-BATTERY collects ∼1150 new contacts at the
end of the average life of a device, around half the nodes
collected by the OPTIMUM and the CATNAP algorithms.
The reason for this result is quite simple: our approach simply
avoids wasting energy if there are long contacts. Moreover, by
fixing/adapting the duty cycle to the environment, nodes try
to approach the same duty cycle and thus discover each other
more frequently. Instead, if nodes adapt their duty cycle to
their own characteristics (such as their battery charge status),
they present a heterogeneous duty cycle distribution.

For the same reason, if we observe the missing probability
in fig. 10 the presented approach outperforms the battery
adaptive (RBTP-BATTERY) approach. As we can see, OP-
TIMUM exhibits a higher missing probability than CATNAP,
but compensates with more power saving so that at the end of
the battery charge it discovers more contacts.

The value of the latency depicted in figure 11 follows a
similar behavior because latency is connected with the duration
of duty cycles.

6 IMPLEMENTING NEIGHBOR DISCOVERY
To what extent is peer to peer neighbor discovery supported
and ready to be implemented using off-the-shelf mobile de-
vices?
Passing from theory to practice is not straightforward given
the features available on commercial hardware and, most of
all, the limited support of several discovery related functions
by the most used mobile operating systems.

10

100−84 83−66 65−50 49−34 33−17 16−0
20

30

40

50

60

70

80

90

Percentage of battery charge

C
o

n
ta

ct
 L

at
en

cy
 (

s)

Optimum

CATNAP

RBTP−Battery

Fig. 11. Contact latency varying the battery charge:
OPTIMUM vs CATNAP vs RBTP-BATTERY

In this section we show and discuss the current support, both
in terms of hardware and software facilities, for implement-
ing peer-to-peer neighbor discovery on all the main mobile
platforms and devices. Finally, we show an implementation of
the proposed energy saving neighbor discovery mechanism, to
prove its real feasibility and provide technological insights.

6.1 Support of neighbor discovery on mobile plat-
forms

From the hardware perspective, mobile devices and tablets are
general-purpose devices, not explicitly designed for extensive
use in opportunistic and peer-to-peer communications but
rather to connect with remote servers. However, the needs for
location based services and the onset of Internet of Everywhere
started changing the game. The introduction of Bluetooth
Low Energy (BLE) is an example, allowing for instance to
discover the presence of a BLE device and consequently open
a specific page, thus realizing a location based service. Indoor
navigation, home automation and the control of “things” are
other services where this type of communication is needed.

6.1.1 Hardware support: network technologies for peer-
to-peer neighbor discovery

WiFi ad-hoc mode: Historically, one of the most used tech-
nologies allowing peer-to-peer communication is WiFi ad-hoc
mode (IEEE 802.11 Independent Base Service Set, IBSS).
This technology enables peer communication without any
kind of association or asymmetric roles among peers (such
as in 802.11 AP-STA communications) – for this reason this
technology played a relevant role in the field of mobile ad-hoc
networks. Neighbor peers can exchange data at WiFi basic rate
(typically 1Mbps) whenever they are close enough. Although
radio devices equipped in smartphones theoretically support
this mode, the lack of a native operating system support
discourages its real usage.

WiFi Direct: More recently, WiFi Direct, a specification
from the Wi-Fi Alliance, has begun to be supported by An-
droid and Blackberry mobile systems and many other devices
such as laptops or game consoles. Unlike WiFi ad-hoc mode,
a Wi-Fi Direct device has to implement both the role of a
client and the role of an APP (usually referred to as SoftAP).
Communication is provided with security (WPA2) and power
management seeing as it is functionally equivalent to tra-
ditional Wi-Fi infrastructure-based communication. Neighbor
discovery is performed by alternating two states: a search
state in which the device sends Probe Requests on several
channels, and a listen state in which the device listens for other
neighbors’ Probe Requests. A node remains in each state for
a random time typically between 100 ms and 300 ms, but it
is up to the implementation to decide whether to introduce
sleeping cycles for energy saving [25].

Bluetooth: Although having a narrower connection range
than WiFi, Bluetooth plays a prominent role in mobile neigh-
bor discovery due to its historical availability on mobile
devices. Traditionally, implementing neighbor discovery by
means of periodical Bluetooth scan operations can be very
slow [7] and power consuming. However, with the recent intro-
duction of Bluetooth Low Energy, BLE, (Bluetooth Core Spec.
V4.0) in several consumer market products, this is changing.
To implement neighbor discovery, BLE devices periodically
emit advertising information on the three advertising channels
and listen to advertising information originating from other
devices [26]. While the duration of the scanning is bound to
10.24s by the standard, the time between subsequent scanning
operations to achieve energy saving is implementation depen-
dent.

Other technologies: In sensor networks, Wake-On-Radio
(WOR) functionality enables the radio to periodically wake
up from sleep mode and listen for incoming packets with
minimal CPU interaction 8. This functionality enables very
energy efficient neighbor discovery as it allows synchronous
operations. However, to the best of our knowledge, these
technologies are still not available on mobile devices.

6.1.2 Software support: mobile operating systems and
frameworks

We explored native support of the main mobile operating
systems for unattended peer-to-peer discovery. Currently, the
most used mobile platforms introduce several limitations on
what an application can do in the background, mostly for
security and power efficiency reasons.

Android: As for radio interface management, since Android
4.0, WiFi Direct is supported but unattended operations are
not yet possible, requiring explicit user interactions to dis-
cover and associate with new peers. The same issue appears
for Bluetooth when used in stadard configuration, whilst in
Bluetooth Low Energy and since Android 5.0 mode some
workarounds are possibles 9. Android does not support WiFi
Ad-Hoc mode (see Bug82 10) but several Android-based

8. http://www.ti.com.cn/cn/lit/an/slaa459a/slaa459a.pdf
9. http://altbeacon.github.io/android-beacon-library/index.html
10. http://code.google.com/p/android/issues/detail?id=82

11

custom roms provide this support. In particular, Cyanogen mod
(www.cyanogenmod.org/), one of the most used custom roms,
offers a set of APIs to turn on, off and configure the wireless
interface in an ad-hoc mode.
To implement the background operations needed once a neigh-
bor peer is discovered, Android supports background code
execution by means of the Service structure.

iOS: iOS offers only limited support for background oper-
ations. An application can set a “background mode” choosing
among a predefined list and be notified by the operating
system when some events occur (e.g. a location update). Once
notified, the application has at most 10 seconds to execute
its background code, while other facilities (e.g. queues) can
be used to process the previously acquired information when
the user explicitly opens/resumes the application. Currently
iOS supports neither WiFi direct nor WiFi ad-hoc mode. In
the recent iOS 7, multi-peer connectivity has been introduced,
but this functionality is limited to 6 participants and lacks
corresponding background support (no background mode is
currently available). Since the arrival of Bluetooth 4, cross
device communication has become possible also with Android
devices or with embedded BLE devices (e.g. iBeacon [1]).
However, it is still not possible to execute long and complex
background data transmission due to the above mentioned time
limitation.

Cross platform frameworks: One of the most used cross
platform frameworks is the AllSeen Alliance framework 11.
Initially based on the AllJoyn open source project, this frame-
work wants to provide support for implementing the Internet
of Everything, where obviously neighbor discovery plays a
fundamental role. The actual discovery mechanism adopted
in the framework is transport-dependent: on Wi-Fi, it’s a
lightweight IP multicast protocol, and on Bluetooth, it’s an
extended inquiry response (EIR) and suspended discovery
protocol (SDP) query.

6.2 Proof of concept
Based on the above-mentioned support, we proved the feasi-
bility of the proposed neighbor discovery solution by imple-
menting a mobile application on Android Platform. We used
WiFi Ad-hoc mode provided by the Cyanogen Mod described
above.

In particular, we implemented two distinct applications:
• A background service (fig. 12(a)) that implements the

proposed neighbor discovery algorithm. This service pro-
vides the network discovery functionality that can be used
by one or more applications. In this way we separate the
application logic from the discovery implementation.

• A demo application called music share (fig. 12(b), 12(c))
that uses the previous service to be notified when a
contact opportunity occurs. The goal of the application is
to share music files in a given directory with other phones
in the vicinity in an unattended mode, representing an
example of an opportunistic application.

The code is available on a public code repository 12.

11. https://allseenalliance.org/
12. https://github.com/netgroup/hts-cycle

(a) Service screenshot (b) Main screen of the
music share app

(c) Users can choose
the music they want to
download

Fig. 12. The proof-of-concept service and application

6.2.1 Algorithm implementation and pseudocode
We can sum up the proposed discovery operations as follows:
• Every node cycles between an active state (ON) and

a sleep state (OFF). Given a duty cycle T each node
stays ON for Ton = 5s and OFF for T − Ton sec-
onds. A node wakes up when mod(currT ime, T) = 0
where currTime can be obtained by the function Sys-
tem.currentTimeMillis().

• During the ON period, every node frequently emits dis-
covery packets and listens for those coming from other
nodes.

• On packet arrival, each node could notify an application
that a new contact is available. The application, in turn,
could decide to perform application dependent operations
such as initiate a file transfer activity with the newly dis-
covered peer. The occurrence of such operations prevents
the nodes from switching to the OFF state for the time
needed to complete the data transfer operation.

• When the ON phase is terminated a node updates its
statistics and computes the next duty cycle, according to
the algorithm described in section 4.

• When the ON phase is terminated and no other communi-
cation is in progress, the node goes into the OFF state by
turning its Wi-Fi radio interface OFF for Toff seconds.

We sum up all the operations, together with the proposed
adaptive algorithm, using the following pseudo-code (algo-
rithm 1):

6.2.2 Implementation details
Specifically, we implemented the algorithm as an Android
Service so that: i) one or more applications could bind to
that service; ii) the service is in charge of emitting/receiving
presence packets during the ON phase; iii) the service notifies
the application when a new contact is discovered; iv) the ap-
plications could prevent the service from turning the wireless
interface off. Before shutting down the wireless interface and
putting the smartphone in sleep mode, the service asks if there
are some applications that still need to use the network (e.g. a
download is in progress) by sending a Broadcast Intent. Then
it sets itself as a Broadcast Receiver to intercept that intent
so that if other apps do not block the intent, the service gets
its intent back and can safely turn the wireless interface off

12

Algorithm 1 Duty cycle algorithm
downloadInProgress ← false
on packet arrival: call application logic
while true do

Turn on and configure the radio interface
Listen for presence packets
for i=1 to i=5 do

emit presence packet
wait 1 sec

end for
Stop listening for presence packets
for cycle IN cycles do

if cycle ≥ MyCycle then
UpdateScore(cycle)

end if
end for
indexCycleWithMaximumScore ← getMax(scores)
MyCycle ← cycle[indexCycleWithMaximumScore - 1]
if not downloadInProgress then

turn off the radio interface
end if
sleepTime← MyCycle - (getCurrentTime() % MyCycle)
sleep(sleepTime)

end while

without interrupting any operations performed by applications.
When we are in the ON state, the service periodically emits
presence packets with the name of the registered applications
and listens for other nodes’ presence packets. When the
service receives a packet containing the name of one of its
registered applications, it notifies the application of the new
contact opportunity through an Intent. The service’s wake-up
procedure is implemented through the Alarm Manager whose
goal is to periodically and automatically acquire the CPU
wakelock, call a function that implements our logic, and then
release the power lock so that the phone can go back to sleep.

6.2.3 System parameters configuration
We set Ton to 5 seconds considering 2 seconds for clock drift,
and 2 seconds for switching on the WiFi interface, plus a
second of margin. We set the list of the possible cycles to
be 15, 30, 60, 120, 240, 480 seconds, as a good balance for the
current battery storage capacity (see fig 2).
During the ON period, the application emits one packet per
second. During experimentation we did not see any meaningful
energy saving margin by modifying the rate of discovery
packet emission: one advertising packet per second seems
enough to cope with the problem that terminals are not
perfectly synchronized.
Finally, we empirically noticed that, using the Android Alarm
Manager rather than other strategies (such as threads and
sleeps) provides the best results in terms of power consumption
as documented in [11].

6.2.4 Discussion
This implementation is a proof-of-concept of the viability of
the proposed solution that however remains communication

technology independent. Indeed, contrary to other techniques
available in literature, the presented algorithm does not use any
specific facility of the underlying network technology. It only
needs the execution of a background discovery service and the
support for sending and receiving broadcast packets and the
ability to set timers. Thus, different technologies can be used
instead of WiFi ad-hoc. Changing the network technology has
an impact on the duration of Ton as it also depends on the
capacity of turning on and off the network interface, and on α
and β that in turn affect the scores in the optimization formula.
As a final remark, the expected variance of the new meeting
process affects the list of possible cycles, although very long
cycles offer a rather negligible benefit in terms of energy
saving, as devices discharge constantly also when in sleeping
mode, as reported in figure 2.

7 RELATED WORK
Discovery protocols can be classified according to their degree
of coordination, in synchronous and asynchronous.

Asynchronous discovery protocols
The great majority of available works (e.g. [27]) makes no
assumption on the presence of a global reference clock among
all the nodes and are thus considered totally independent.
Instead, we focus on modern smartphones that offer global
synchronization by default, as already discussed in section 2,
clearly permitting far better neighbor discovery performance
[12]. However, several analogies with asynchronous discovery
protocols can be drawn as the problem has often been tackled
under several different perspectives.

The problem is often formulated in terms of a trade-off
between energy consumption and missing probability [28] [8]
[29] [3] or the discovery latency [30] [24] [31]. For instance in
[8] the authors propose to choose the inter-probe times based
on the movement speeds of devices so as to detect more than
99% of encounters in their case scenario.
Instead, in this work our goal is to maximize the number
of contacts in the long run, hence we are not interested in
a high detection probability per se, although we too auto-
adapt the duty cycle to the mobility statistics. Similarly, in
[30], the authors propose a scheme that auto adapts the duty
cycle but their goal is to provide a high delivery ratio and
a low delivery latency. Disco [3], U-Connect [24], [32] and
the ”birthday protocols” proposed by McGlynn and Borbash
in [29] adopt a slotted time model and investigate the most
energy efficient way to make two or more nodes wake up in
the same slot. This is a very challenging goal and their results
can be applied to many scenarios, especially wireless sensor
networks. However, in our scenario, the presence of global
synchronization changes this issue and allows us to provide an
easier solution to this problem. In [33], Wang et al. propose
STAR, a contact-probing algorithm that adapts to the contact
arrival process. It only addresses the energy consumption issue
for the data transmission phase while the energy spent for
searching for neighbors is usually far from negligible (99.5%
in the scenario reported by [34]).

A very recent work [10] proposes an adaptive duty cycle
for opportunistic networks based on a cooperative approach

13

and a protocol to schedule the node wake-up intervals. Their
approach adaptively schedules wake-up periods of mobile
nodes so that a node stays asleep during inter-contact times,
when contact probing is unnecessary, and only wakes up when
a contact with another node is likely to happen. The authors
use the statistics of previous encounters to optimize the re-
discovery process between a pair of nodes. They minimize
the duty cycle, assuring that the probability of two nodes to
communicate is above a given threshold “p” (called perfor-
mance requirement) which can be set according to the nodes’
battery life. On the contrary, we tackle the problem of the
initial meetings whose statistics depend on the environment.

In [9], the authors introduce an adaptive scheme specifically
designed for Bluetooth enabled devices. They adjust the Blue-
tooth scan settings according to the measured mobility context
to decrease the overall power consumption of the discovery
process: they reduce the energy consumption by 50%. On
the contrary, our approach is not technology dependent and
allows to save much more energy (e.g. 600% or 1000%)
by performing very slow scans that consequently could lead
to non-negligible missing probability if compared with these
works. We can accept a significant missing contact probability,
given that our goal is to allow a node to discover as many
new nodes as is permitted by its energy budget and the
environmental conditions.

In [4], the authors present eDiscovery a discovery protocol
for energy efficient discovery using Bluetooth technology. In
that work, they use recent android smartphones like we do, but
they do not exploit the synchronization facility offered by the
operating system. Moreover, once again, we have a different
goal: theirs is to maximize the ratio of discovered peers.

Finally, since most smartphones have accelerometers, in
[35] authors pursue a different strategy and trigger Bluetooth
scanning operations according to user movements that in turn
result in user contact changes.

Synchronous discovery protocols

To improve the performance of the discovery protocol, very
few recent works have been carried out proposing the syn-
chronous discovery protocol, because the requirement of a
global clock source is often considered unrealistic for many
application scenarios. This consideration is changing with the
arrival of smartphones.

RBTP [12], like our solution, is the only other discovery
protocol specifically designed for mobile phones. Indeed,
they propose a synchronous discovery protocol based on the
presence of loose synchronization, easily available by using
the NTP protocol. Their experiments show that smartphones
can be synchronized within 100ms if the synchronization is
performed every 6 hours; this is near our experimental findings
[11], even though the delay of wireless activation/deactivation
is in the order of seconds. Their solution is based on a
duty cycle scheme where the ON periods are distributed
according to a binary slotted configuration. Nodes can select
their own duty cycle independently, ”based on their respective
energy limitations”, but how to choose the right duty cycle
given the energy budget is not discussed in the paper. They

show that their quasi-synchronous solution outperforms any
other asynchronous discovery protocols in terms of missing
probability and discovery latency. Their simulations are based
on a random walk mobility model. Our proposal differs in a
few key ways.

In [36], Campus-mur and Loureiro proposed a synchronous
Energy efficient Wi-Fi Discovery technique based on the
presence of an infrastructure of access points to provide the
nodes with a reference clock. This protocol is designed for
cluster and not individual discovery.

In the context of mobile opportunistic networks, to the best
of our knowledge, this is the first work that i) formalizes the
problem of a maximum discoverable number of peers with
an energy budget; ii) provides a theoretical analysis of this
problem, and; iii) presents a simple yet effective and easily
deployable algorithm to address this problem.

Analytic works and models
In [37] the authors propose a general model to derive the
pairwise inter-contact times modified by a duty cycling policy.
That work presents the same scenario as ours, but their goal is
different: they want to improve message forwarding delays and
network lifetime. Finally, there are also many works that study
the statistics of contacts between nodes, such as [14], [15],
[16] and [17] both from practical (trace-based) and theoretical
(stochastic process) points of view.

8 CONCLUSIONS

In this paper we presented an energy saving solution to
discover new contacts on opportunistic and delay tolerant net-
works by means of duty cycling. We discovered the presence
of a natural optimum cycle that maximizes the number of
detected contacts over the whole life of the mobile device.
Through an analytic model we provided handy formulas to
calculate this optimum value using several mobility models,
including some derived from three real mobility traces. We
proposed an adaptive distributed 3-rules algorithm that tracks
the optimum cycle to use in stationary and non-stationary
environments. Finally, we evaluated the performance and the
convergence time of the proposed algorithm and compared it
with the state of the art. We implemented the proposed strategy
on Android devices to demonstrate its feasibility.

REFERENCES
[1] A. Inc. Ibeacon. [Online]. Available: https://developer.apple.com/

ibeacon/
[2] W. Wang, V. Srinivasan, and M. Motani, “Adaptive contact probing

mechanisms for delay tolerant applications,” in Proceedings of the
13th annual ACM international conference on Mobile computing and
networking, ser. MobiCom ’07. New York, NY, USA: ACM, 2007, pp.
230–241.

[3] P. Dutta and D. Culler, “Practical asynchronous neighbor discovery and
rendezvous for mobile sensing applications,” in Proceedings of the 6th
ACM Conference on Embedded Network Sensor Systems, ser. SenSys
’08. New York, NY, USA: ACM, 2008, pp. 71–84.

[4] B. Han and A. Srinivasan, “ediscovery: Energy efficient device discovery
for mobile opportunistic communications,” in Proceedings of the 2012
20th IEEE International Conference on Network Protocols (ICNP), ser.
ICNP ’12. Washington, DC, USA: IEEE Computer Society, 2012, pp.
1–10.

14

[5] N. Eagle and A. (Sandy) Pentland, “Reality mining: sensing complex
social systems,” Personal Ubiquitous Comput., vol. 10, no. 4, pp. 255–
268, Mar. 2006.

[6] J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, and A. Chaintreau,
“CRAWDAD data set cambridge/haggle (v. 2009-05-29),” May 2009.

[7] Y. Wang, B. Krishnamachari, and T. Valente, “Findings from an empiri-
cal study of fine-grained human social contacts,” in Wireless On-Demand
Network Systems and Services, 2009. WONS 2009. Sixth International
Conference on, 2009, pp. 153–160.

[8] M. Orlinski and N. Filer, “Movement speed based inter-probe times for
neighbour discovery in mobile ad-hoc networks,” in Ad Hoc Networks,
ser. Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering, J. Zheng, N. Mitton,
J. Li, and P. Lorenz, Eds. Springer Berlin Heidelberg, 2013, vol. 111,
pp. 316–331.

[9] C. Drula, C. Amza, F. Rousseau, and A. Duda, “Adaptive energy
conserving algorithms for neighbor discovery in opportunistic bluetooth
networks,” Selected Areas in Communications, IEEE Journal on, vol. 25,
no. 1, pp. 96–107, Jan 2007.

[10] W. Gao and Q. Li, “Wakeup scheduling for energy-efficient communica-
tion in opportunistic mobile networks,” in Proceedings of the 32th IEEE
Conference on Computer Communications, ser. INFOCOM, 2013.

[11] L. Bracciale, P. Loreti, and G. Bianchi, “Human time-scale duty cycle
for opportunistic wifi based mobile networks,” in Proceedings of the
Tyrrhenian International Workshop on Digital Communications, 2013.

[12] D. Li and P. Sinha, “Rbtp: Low-power mobile discovery protocol through
recursive binary time partitioning,” IEEE Transactions on Mobile Com-
puting, vol. 13, no. 2, pp. 263–273, 2014.

[13] P. Serrano, A. Garcia-Saavedra, G. Bianchi, A. Banchs, and A. Azcorra,
“Per-frame energy consumption in 802.11 devices and its implication on
modeling and design,” Networking, IEEE/ACM Transactions on, vol. PP,
no. 99, pp. 1–1, 2014.

[14] W. Gao, Q. Li, B. Zhao, and G. Cao, “Multicasting in delay tolerant
networks: a social network perspective,” in Proceedings of MobiHoc
’09. New York, NY, USA: ACM, 2009, pp. 299–308.

[15] A. Passarella and M. Conti, “Characterising aggregate inter-contact times
in heterogeneous opportunistic networks,” in Proceedings of the 10th
international IFIP TC 6 conference on Networking - Volume Part II,
ser. NETWORKING’11. Berlin, Heidelberg: Springer-Verlag, 2011.

[16] V. Conan, J. Leguay, and T. Friedman, “Characterizing pairwise inter-
contact patterns in delay tolerant networks,” in Proceedings of AUTO-
NOMICS07, ICST, Brussels, Belgium, Belgium, 2007, pp. 19:1–19:9.

[17] H. Cai and D. Y. Eun, “Crossing over the bounded domain: From
exponential to power-law intermeeting time in mobile ad hoc networks,”
Networking, IEEE/ACM Transactions on, vol. 17, no. 5, pp. 1578–1591,
Oct 2009.

[18] K. Zhao, M. Musolesi, P. Hui, W. Rao, and S. Tarkoma, “Explaining
the power-law distribution of human mobility through transportation
modality decomposition,” arXiv preprint arXiv:1408.4910, 2014.

[19] M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi, “Understanding
individual human mobility patterns,” Nature, vol. 453, no. 7196, pp.
779–782, 2008.

[20] T. Karagiannis, J.-Y. Le Boudec, and M. Vojnovic, “Power law and
exponential decay of intercontact times between mobile devices,” Mobile
Computing, IEEE Transactions on, vol. 9, no. 10, pp. 1377–1390, 2010.

[21] P. H. Augustin Chaintreau, “Pocket Switched Networks: Real-world
mobility and its consequences for opportunistic forwarding,” 2006
Computer Laboratory, University of Cambridge, Tech. Rep., Feb. 2005.

[22] A. Natarajan, M. Motani, and V. Srinivasan, “Understanding urban inter-
actions from bluetooth phone contact traces,” in Proceedings of the 8th
international conference on Passive and active network measurement,
ser. PAM’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 115–124.

[23] L. Bracciale, P. Loreti, and G. Bianchi, “Simulating the statistics of the
first meetings using dynamic open environments,” in 4th IEEE Track on
Collaborative Modeling and Simulation (CoMetS’14), 2014.

[24] A. Kandhalu, K. Lakshmanan, and R. R. Rajkumar, “U-connect: A low-
latency energy-efficient asynchronous neighbor discovery protocol,” in
Proceedings of IPSN ’10. New York, NY, USA: ACM, 2010, pp. 350–
361.

[25] D. Camps-Mur, A. Garcia-Saavedra, and P. Serrano, “Device-to-device
communications with wi-fi direct: overview and experimentation,” Wire-
less Communications, IEEE, vol. 20, no. 3, pp. 96–104, June 2013.

[26] J. Liu and C. Chen, “Energy analysis of neighbor discovery in bluetooth
low energy networks,” Nokia.(nd), 2012.

[27] M. Bakht, M. Trower, and R. H. Kravets, “Searchlight: won’t you be my
neighbor?” in Proceedings of the 18th annual international conference
on Mobile computing and networking. ACM, 2012, pp. 185–196.

[28] W. Feng and S. Li, “Energy efficient terminal-discovering in mobile de-
lay tolerant ad-hoc networks,” in Cyber-Enabled Distributed Computing
and Knowledge Discovery (CyberC), 2013 International Conference on,
Oct 2013, pp. 465–470.

[29] M. J. McGlynn and S. A. Borbash, “Birthday protocols for low en-
ergy deployment and flexible neighbor discovery in ad hoc wireless
networks,” in Proceedings of the 2Nd ACM International Symposium
on Mobile Ad Hoc Networking &Amp; Computing, ser. MobiHoc ’01.
New York, NY, USA: ACM, 2001, pp. 137–145.

[30] Y. Xi, M. Chuah, and K. Chang, “Performance evaluation of a power
management scheme for disruption tolerant network,” Mob. Netw. Appl.,
vol. 12, no. 5, pp. 370–380, Dec. 2007.

[31] M.-R. Ra, J. Paek, A. B. Sharma, R. Govindan, M. H. Krieger, and
M. J. Neely, “Energy-delay tradeoffs in smartphone applications,” in
Proceedings of MobiSys ’10. New York, NY, USA: ACM, 2010, pp.
255–270.

[32] B. J. Choi and X. Shen, “Adaptive asynchronous sleep scheduling proto-
cols for delay tolerant networks,” Mobile Computing, IEEE Transactions
on, vol. 10, no. 9, pp. 1283–1296, 2011.

[33] W. Wang, M. Motani, and V. Srinivasan, “Opportunistic energy-efficient
contact probing in delay-tolerant applications,” IEEE/ACM Trans. Netw.,
vol. 17, no. 5, pp. 1592–1605, Oct. 2009.

[34] N. Banerjee, M. Corner, and B. Levine, “An energy-efficient architecture
for dtn throwboxes,” in INFOCOM 2007, May 2007, pp. 776–784.

[35] W. Hu, G. Cao, S. Krishanamurthy, and P. Mohapatra, in ICDCS, July
2013, pp. 155–164.

[36] D. Camps-Mur and P. Loureiro, “E2d wi-fi: A mechanism to achieve
energy efficient discovery in wi-fi,” 2014.

[37] E. Biondi, C. Boldrini, A. Passarella, and M. Conti, “Duty cycling in
opportunistic networks: intercontact times and energy-delay tradeoff,”
CNR, Tech. Rep., December 2013.

Lorenzo Bracciale has been an Assistant Pro-
fessor in the University of Rome Tor Vergata
since June 2013. He obtained his Ph.D. with a
thesis on peer-to-peer multimedia communica-
tions. He collaborated with several companies
and other researchers worldwide for projects
regarding delay tolerant networking and mobile
applications. His current research interests in-
clude autonomous and self-organizing systems,
either in Wireless Sensor Networks or in Mobile
Networks.

Pierpaolo Loreti received his Degree in Elec-
tronic Engineering (cum laude) in July 1998 and
his Ph.D. in telecommunications and microelec-
tronics in June 2002, from the University of
Rome Tor Vergata. From 2002 to 2005 he was a
Researcher at the National Telecommunications
Inter-University Consortium (CNIT). Since 2006
he has been a Researcher of the Dep. of Elec-
tronic Engineering and an Adjunct Professor at
the Internet Engineering Course at the Univer-
sity of Rome Tor Vergata. Since 1998 he has

worked on several European and national projects performing research
and coordination activities. His research activity spans different topics in
the areas of wireless and mobile networks, framework design, analytic
modeling, performance evaluation through simulation and test-bedding.

Giuseppe Bianchi has been Full Professor of
Networking at the University of Rome Tor Ver-
gata since January 2007. His research activity
includes Wireless LANs, IP networking, privacy
and security, traffic monitoring, and is docu-
mented in about 200 peer-reviewed international
journals and conference papers. He has had
(and has) coordination roles in many large scale
European research projects in the FP6, FP7
and in the upcoming H2020 programs. He has
served as associate editor for IEEE/ACM Trans-

actions on Networking, area editor for IEEE Transactions on Wireless
Communication, and area editor for Elsevier Computer Communication.
He has chaired several international networking conferences and work-
shops, including IEEE Infocom 2014, ACM SRIF 2013, ACM Wintech
2011, IEEE WoWMoM 2010, etc.

