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Abstract— Modern wireless communication networks are
threatened by new generations of radio hackers. These are
skilled attackers equipped with low-cost software radios, suitably
instrumented so as to monitor, degrade, or even alter the
radio signals. The aim of this paper is to devise innovative
detection architectures against the most common classes of
threats: broadband noise jammers, whose goal is to reduce
the signal-to-noise ratio, and spoofing/meaconing attacks, which
aim to inject false or incorrect information into the receiver.
To this end, we resort to the hypothesis testing theory and
solve the associated problems by means of the GLRT possibly
accounting for penalty terms. The resulting decision schemes
represent the main technical novelty of this work. The analysis
of their performance focuses on a location security case study for
4G/5G cellular networks. To this end, we leverage measurement
models from the cellular localization literature and generate
data according to these models. The numerical results show
the effectiveness of the proposed approaches in comparison with
suitable counterparts.

Index Terms— Attack detection, generalized likelihood ratio
test, location security, meaconing, model order selection, noise
jamming, spoofing, wireless networks, 4G/5G.

I. INTRODUCTION

THE availability of ultra-cheap software-defined radio
boards along with the simultaneous development of open-

source implementations of the standard protocol stacks, such
as for the 5G cellular standard, come with a bleak side: these
instruments may also be used to attack deployed systems. As a
matter of fact, there exists a plethora of works in the open
literature [1]–[13] showing how easy is for a tech-savvy oppo-
nent to build ultra-low cost jammers or even LTE/5G “rogue”
base stations [14] capable of generating fake signals (with
counterfeit information) or interfering with the legitimate ones
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(with a consequent quality of service degradation). It readily
follows that next generation networks should be empowered
with suitable countermeasures acting at different stack layers
and that can preserve data integrity. A tangible example of
the aforementioned situations is provided by the 5G location
services where the user equipment (UE) position is estimated
by combining timing, angle, and power measurements of the
signals received by other UEs and/or gNBs (either in uplink or
downlink). Specifically, the location management function is
responsible for such a combination [15]. Now, in the presence
of an attack, the quality of the UE position estimate might
be heavily impaired due to induced low signal-to-noise ratio
(SNR) values or false measurements. It is also important to
observe that other kinds of information can be targeted by
hostile platforms.

Generally speaking, an electronic attack consists of two
main activities:1 Jamming and Deception [16]. The attacks
belonging to the first category intentionally inject noise into
the channel with the consequent reduction of the SNR and,
hence, disruption of the receiver functionalities [17]–[19].
They comprise the transmission of wideband noise, also
known as broadband noise jammer (BBNJ), partial-band noise,
and narrowband noise. The first two cases apply to a nonagile
jammer where the interfering signals occupy a portion of or
the entire spectrum in use by the communication system and
stay in one place of the spectrum. The third case is associated
with a jammer attempting to follow a frequency-hopping
target [20]. Most of the existing detection and mitigation
strategies against noise-like jamming take place at physical
and/or protocol layer in (see [21, and references therein]).
For instance, in [21], the authors investigate the effects of
noise-like interference on the Physical Uplink Control Channel
in LTE and propose a mitigation strategy based upon the
Radio Link Control protocol. Anti-jamming techniques in the
context of cognitive radio networks are addressed in [22],
where several mitigation techniques are reviewed and a new
anti-jamming protocol relying on probabilistic pairing and
frequency tuning is proposed. Other examples of electronic
counter-countermeasures are given in [23], [24] where an
approach based on game theory is applied at the design stage.
Mitigation solutions conceived at the physical layer can be

1Actually, this classification is not exhaustive since other kinds of electronic
attacks are possible such as directed energy whose application leads to the
permanent destruction of the communication equipment.
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found in [25], where the received signal is classified by means
of a deep convolutional neural network fed by the signal
features in the wavelet domain. In [26], the authors leverage
random matrix theory tools to conceive a multiple hypothesis
test for jamming detection. To this end, they estimate the
jammer subspace through the sample covariance matrix [27]
and project the received data onto the user subspace in order
to mitigate the jamming components. Finally, the authors
of [20] apply change-point detection algorithms to power-
related (high-level) measurements provided by the UE in order
to declare that a jamming attack is ongoing. More importantly,
such algorithms are rather general and (almost completely)
disregard the underlying wireless technology.

The intent of the deception attacks is to mislead an opponent
by creating a ruse (spoofing/meaconing) [19], [28], [29].
To this end, fake information is injected into the victim system.
False communication signals are an important part of any
tactical deception activity. For instance, in respect of location
services, a spoofer can intercept the positioning messages
exchanged by two legitimate actors and suitably delay or
modify them to generate false positions. The received signal
strength (RSS) information is widely used for spoofing detec-
tion in wireless networks [30]–[32, and references therein].
In [30], the authors apply K-means cluster analysis to detect
the spoofer and exploit this detector also for localization
purposes. The detection of spoofing attacks in mobile wireless
networks is addressed in [31], where the proposed algorithm
cluster the RSS readings using the Otsu method. Detection
algorithms relying on the spatial correlation properties of
RSS are conceived in [32]. More recently, in [33], physical-
layer authentication exploiting radio channel information to
detect spoofing attacks in wireless networks is investigated.
In addition, reinforcement learning techniques are used to find
the optimal strategy in a dynamic environment with incomplete
information. Finally, in [34], [35], algorithms against pilot
spoofing attacks based upon the likelihood ratio test are
proposed. These algorithms are fed by raw data collected by
(possibly massive) Multiple-Input-Multiple-Output systems.

Summarizing, these attacks (jamming and spoofing) can
be thwarted at data and/or signal levels, which differ in the
amount of both the available information and data samples
to be processed. In fact, if on one side, at signal level,
data contains all the available information, on the other
side, such volume of samples might require time-demanding
algorithms [21], [25], [26]. On the contrary, at data level,
an estimation has been already performed with a consequent
loss of information (with respect to signal samples) and
a lightening of the computational load. More importantly,
in many situations of practical interest raw data are not
available due to several factors that limit the access to
them.

With the above remarks in mind and given the in-progress
development of the new generations communication networks,
we further extend the ideas behind [20] and devise new
decision schemes operating on high-level data and tailored
to specific attacks. The main difference with respect to [20]
resides in the models assumed at the design stage that, in this
case, more accurately adhere to the real behavior of the

considered threats. As a result, the proposed decision rules rep-
resent an improvement of the baseline in [20]. Thus, to define
such models, we need to clarify the possible effects of the two
main disturbance activities on collected data. Starting from
jamming attacks, we notice that the impairment of the SNR
generated by the jammer might lead to an increase of the mea-
surement/information uncertainty and, hence, of the related
variance. On the other hand, a spoofer would leave unaltered
measurement/information uncertainty while replacing part or
decrease the entire set of the expected values with counterfeit
measurement/information. Now, assuming an adaptive moni-
toring of the incoming data within a suitable temporal sliding
window, when an attack takes place at a given time instant, the
window under test will contain a discontinuity point in data
distribution. Otherwise stated, data window can be partitioned
into two subsets whose distribution parameters are affected
by an abrupt change depending on the situation before the
attack and on the attack itself. As a consequence, we are faced
with a change detection problem containing only one change
time instant that can be estimated through a linear search grid
[36]–[40, and references therein]. This problem is solved by
means of parametric methods and, in the specific case, we
resort to a suboptimal design criterion since a uniformly most
powerful test (if exists) is difficult to find. To be more definite,
we apply the generalized likelihood ratio test (GLRT) that
is widely adopted in signal processing and, in most cases,
returns excellent detection performance [36]. Although the
GLRT is a well-established design technique, its application
to the considered change point detection problems leads to
new detection architectures and derivations that represent the
main technical novelty of this paper. In fact, the GLRT for
BBNJ attack detection does not admit closed-form expression
(at least to the best of authors’ knowledge) and, hence, we
exploit suitable approximations that are a good compromise
between computational load and detection performance. As for
the spoofer detection, the considered problem still contains
a single change point but it comprises one null hypothesis
and several alternative hypotheses arising from the fact that
not all the components of the mean vector are counterfeit.
This new problem is solved by applying the elegant design
framework developed in [41] where the so-called penalized
GLRT is introduced. Such an approach allows us to overcome
the limitation of the maximum likelihood framework in the
presence of nested hypotheses and, as side information, returns
which components are spoofed. Remarkably, such components
can be discarded by the system. Finally, the effectiveness
of the proposed techniques also in comparison with conven-
tional competitors is proved exploiting a case study related
to location security in 5G networks, where data are generated
according to the state-of-the-art experimental models from the
literature.

The remainder of the paper is organized as follows.
Section II is devoted to sensor model description and to the
formal statement of the detection problems at hand, while
the detection rules for jamming and spoofing attacks are
provided in Section III and IV, respectively. In Section V,
some numerical results related to a location security example
are given to show the effectiveness of the proposed strategies.
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Section VI contains concluding remarks and charts a course
for future works. Analytical derivations are confined to the
appendices (the supplemental material contains the derivations
of the considered competitors).

A. Notation

In the sequel, vectors and matrices are denoted by bold-
face lower-case and upper-case letters, respectively. Symbols
det(·), Tr (·), and (·)T denote the determinant, trace, and trans-
pose, respectively. R is the set of real numbers and RN×M is
the Euclidean space of (N×M)-dimensional real matrices (or
vectors if M = 1). The Euclidean norm of a generic vector x
is denoted by ‖x‖ whereas the modulus of a real number x is
denoted by |x|. If A is a set, then its cardinality is |A|, while ·\·
denotes the difference between sets. For any N -dimensional
vector x, X = diag {x} is a (N × N)-dimensional diagonal
matrix whose principal diagonal contains the elements of x.
The gradient of a real-valued function with vector argument,
g(x), is denoted by ∂g(x)/∂x. Symbols I and 0 indicate
the identity matrix and the null matrix or vector, respectively,
whose size depends on the context; 1 is a vector whose
entries are equal to 1. For any Hermitian matrix A, A � 0
means that A is a positive definite matrix. Finally, we write
x ∼ NN (m,Σ) if x is a N -dimensional Gaussian vector
with mean m and covariance matrix Σ � 0, whereas, if X ∈
RN×K , X ∼ NN,K(m,Σ, I) means that the columns of
X are Independent and Identically Distributed (IID) random
vectors following the Gaussian distribution with mean m and
covariance matrix Σ � 0.

II. SENSOR MODEL AND PROBLEM FORMULATION

Let us assume that an UE is gathering information from the
network infrastructure and denote by Z = [z1, z2, . . . , zK ] ∈
RN×K the data matrix whose kth column, k ∈ Ω =
{1, . . . , K}, contains the values of the (high-level) measure-
ments of interest acquired at the kth discrete time instant.
For instance, in a localization system, such measurements can
include the direction of arrival (DOA), the time of arrival
(TOA), the observed time difference of arrival (OTDOA), the
reference signal received power (RSRP), or other parameters
useful for localization purposes (see [42]–[44, and references
therein]). Moreover, we assume that the measurement errors
are statistically independent over the time and obey the
Gaussian distribution with zero mean and positive definite
covariance matrix.2

Therefore, when data are collected in the absence of inten-
tional interfering signals (namely, under the null hypothesis),
all the measurements are IID within the observation time
window, namely3 Z ∼ NN,K(m0,Σ0, I), where m0 ∈
RN×1 contains the actual values of the parameters of interest
and Σ0 ∈ RN×N is the positive definite error covariance

2This assumption is useful for the analytical tractability of the problems.
Nevertheless, the performance of the proposed methods will be assessed also
under non-Gaussian models inferred from real data that can be found in the
open literature.

3Notice also that we are assuming that the unintentional interference
affecting the received signals is stationary at least within the observation time
interval.

matrix, which can exhibit either a generic symmetric or
diagonal structure. The first structure accounts for a possible
correlation among the measurements, whereas the second one
is used to model independent parameters. Under the alternative
hypothesis, namely in the presence of a BBNJ or spoofing
attack, the distribution of Z modifies as described in the next
subsections.

A. BBNJ Attack Model

When at a certain time index K0 + 1 ∈ Ω, a BBNJ
attack aimed at disrupting the receiver functionalities is per-
formed, the quality of the measurements provided by the
sensors would impair due to an increase of the disturbance
power or, equivalently, a decrease of the SNR. Otherwise
stated, an abrupt change in the measurement covariance matrix
occurs. As a consequence, data matrix can be partitioned as
Z = [Z1:K0 , ZK0+1:K ], where Z1:K0 = [z1, . . . , zK0 ] ∼
NN,K0(m1,Σ1, I) and ZK0+1:K = [zK0+1, . . . , zK ] ∼
NN,K1(m1,Σ2, I) with K1 = K − K0, Σ2 − Σ1 � 0, and
K0 ∈ Ω being unknown. Finally, m1 and Σi, i = 1, 2, are the
unknown mean vector (containing the information of interest)
and the unknown covariance matrices under H1, respectively.
As a consequence, we can formulate the following binary
hypothesis test⎧⎪⎨⎪⎩

H0 : Z ∼ NN,K(m0,Σ0, I),

H1 :

{
Z1:K0 ∼ NN,K0(m1,Σ1, I),
ZK0+1:K ∼ NN,K1(m1,Σ2, I).

(1)

Finally, we stress that Σ2 −Σ1 � 0, namely, data affected by
BBNJ might exhibit an increased uncertainty.

B. Spoofing/Meaconing Attack Model

The second situation under consideration encompasses the
presence of a spoofing/meaconing attack that consists of
injecting false information into the network receivers. This
injection is modeled in terms of a variation of the mean vectors
starting from a time instant K0 + 1 ∈ Ω. However, it is
important to highlight that even a subset of components of
the mean vector can be falsified by the spoofer. For instance,
focusing on the location data, the spoofer might counterfeit
either DOA or TOA or both measurements. Thus, let us define
ΓN = {1, . . . , N} and denote by P(ΓN ) the set obtained by
excluding the empty set from the powerset of ΓN ; it follows
that |P(ΓN )| = NΓ = 2N − 1. The generic element of
P(ΓN ) is indicated with Γi, i = 1, . . . , NΓ. Now, given a
value of i, we assume that a spoofing attack can affect only
the components of the mean vector indexed by Γi. Therefore,
denoting by mΓi ∈ RN×1 the mean vector of zk, k > K0

(i.e., after the attack), it has the same values as the components
of m1 ∈ RN×1 (that is the mean value of zk for k ≤ K0)
except for those indexed by Γi, that are spoofed. It follows
that we can model the spoofer detection problem as a multiple
hypothesis testing problem with only one null hypothesis and
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several (possibly nested) alternative hypotheses, namely⎧⎪⎨⎪⎩
H0 : Z ∼ NN,K(m0,Σ0, I),

H1,i :

{
Z1:K0 ∼ NN,K0(m1,Σ1, I),
ZK0+1:K ∼ NN,K1(mΓi ,Σ1, I),

i = 1, . . . , NΓ,

(2)

where m0, m1, and Σ0 have been already defined and Σ1 ∈
RN×N is the unknown covariance matrix of Z under H1,i.

Before concluding this section, we provide some
definitions which are used in the ensuing developments.
More precisely, the probability density function (PDF)
of Z under H0 for all the considered problems has the
following expression f0(Z; m0,Σ0) =

∏K
k=1f(zk; m0,Σ0),

while the PDF of Z under H1 for problem (1) and
that under the generic H1,i for problem (2) are given
by f1(Z; m1,Σ1,Σ2, K0) =

∏K0
k=1 f(zk; m1,Σ1)

×∏K
k=K0+1 f(zk; m1,Σ2) and f1,i(Z; m1, mΓi ,Σ1, K0) =∏K0

k=1f(zk; m1,Σ1)
∏K

k=K0+1f(zk; mΓi ,Σ1), respectively,
where

f(z; m,Σ) =
exp

{
−1

2
Tr [Σ−1(z − m)(z − m)T ]

}
(2π)N/2[det(Σ)]1/2

.

(3)

III. BBNJ DETECTOR DESIGNS

In this section, we focus on problem (1) and solve it by
applying design procedures grounded on the GLRT, whose
general structure is

max
K0∈Ω0

max
m1

max
Σ1

max
Σ2

f1(Z; m1,Σ1,Σ2, K0)

max
m0

max
Σ0

f0(Z; m0,Σ0)

H1
>
<
H0

η, (4)

where η is the detection threshold4 to be set in order to ensure
a preassigned probability of false alarm (Pfa). Moreover,
as stated before, two classes for the covariance structure are
considered: (i) the available measurements are uncorrelated
leading to diagonal covariance matrices; (ii) there exists a cor-
relation among the measurements, i.e., the covariance matrices
are generally symmetric and, in this case, we also assume that
min{K0, K1} > N (see Appendix B).

A. BBNJ Detector: Uncorrelated Measurements

Let us assume that measurements are uncorrelated,
then, we can write Σ0 = diag {σ2

0,1, . . . , σ
2
0,N},

Σ1 = diag {σ2
1,1, . . . , σ

2
1,N}, and Σ2 = diag {σ2

1,1 +
Δσ2

1 , . . . , σ2
1,N + Δσ2

N} with Δσ2
n > 0, n = 1, . . . , N .

As shown in Appendix A, the application of the plain GLRT
to this case leads to time demanding estimation procedures for
the unknown parameters. For this reason, we resort to a sub-
optimal approximation of the compressed log-likelihood under
H1 allowing for a reasonable compromise between detection

4Hereafter, we denote by η the generic detection threshold.

performance and computational requirements. Specifically,
such an approximation has the following expression

max
K0

{
− K0

2

∑
n∈Γ̃(�B)

log

[
1

K0

K0∑
k=1

(zk,n − m̂1,n)2
]

−K1

2

∑
n∈Γ̃(�B)

log

[
1

K1

K∑
k=K0+1

(zk,n − m̂1,n)2
]

+
K

2

∑
n∈Γ̃(�B)

log

[
1
K

K∑
k=1

(zk,n − m̂0,n)2
]}H1

>
<
H0

η, (5)

where zk,n is the nth component of vector zk, m̂i,n, i =
0, 1, is the estimate of the nth component of mi under Hi

(Appendix A), and Γ̃(B̂) is a suitable estimate of Γ(B) defined
by (16). Note that if Γ̃(B̂) = ∅, then the decision statistic is
equal to zero.

In the following, we refer to this decision rule as BBNJ
detector for uncorrelated measurements (BBNJ-D-UM).

B. BBNJ Detector: Correlated Measurements

In this subsection, Σi, i = 0, 1, 2, in (1) are no longer
diagonal but positive definite symmetric matrices. In addition,
we assume that min{K0, K1} > N . This constraint ensures
that the sample covariance matrices based upon Z1:K0 and
ZK0+1:K are nonsingular with probability 1 [45] as required
in Appendix B. It follows that K0 ∈ Ω0 = {N + 1, . . . , K −
N − 1}.5

In this case, the likelihood maximization under H1 cannot
be conducted in closed form (at least to the best of authors’
knowledge) due to the intractable mathematics. For this reason,
we again resort to an approximate GLRT that allows us
to come up with a simplified expression for the decision
statistic. In Appendix B, we devise such a decision rule whose
expression is

max
K0∈Ω0

Λ(Z; K0)
H1
>
<
H0

η, (6)

where

Λ(Z; K0)

= −K0

2
log det

[
1

K0

K0∑
k=1

(zk − m̄1)(zk − m̄1)T

]

−K1

2
log det

[
1

K1

K∑
k=K0+1

(zk − m̄1)(zk − m̄1)T

]

+
K0N

2
log K0

+
K

2
log det

[
K∑

k=1

(zk − m̄0)(zk − m̄0)T

]

+
K1N

2
log K1, (7)

5From an operating point of view and for sufficiently wide data windows,
the above requirement can be fulfilled.
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if 1
K1

∑K
k=K0+1(zk − m̄1)(zk − m̄1)T − 1

K0

∑K0
k=1(zk −

m̄1)(zk − m̄1)T � 0, and Λ(Z; K0) = 0, otherwise.
In (7), m̄0 is the maximum likelihood estimate (MLE) of m0,
whereas m̄1 is the estimate of m1 given by (34).

In what follows, we refer to this decision scheme as BBNJ
detector for correlated measurements (BBNJ-D-CM).

IV. SPOOFING DETECTOR DESIGNS

Before providing the expressions of the spoofer detectors,
it is worth noticing that problem (2) is a multiple hypothesis
test with only one null hypothesis and several (possibly nested)
alternative hypotheses. In this case, the GLRT, which is based
upon the maximum likelihood (ML) approach, might prevent
a reliable estimation of the actual alternative hypothesis.
Therefore, in this case, we resort to the elegant and systematic
framework devised in [41] that provides a theoretical justifi-
cation for the so-called penalized likelihood ratio tests. The
general structure of such decision statistics is the difference
between a compressed log-likelihood ratio and a penalty term
borrowed from the model order selection (MOS) rules [46] as
the Akaike information criterion (AIC), Bayesian information
criterion (BIC), and generalized information criterion (GIC),
namely

max
i=1,...,NΓ

{log Λi(Z) − γ · Np,i}
H1,̂i
>
<
H0

η, (8)

where î is the maximizer of the left-hand side of (8),

Λi(Z) =
max

K0∈Ω0
max
m1

max
m2

max
Σ1

f1,i(Z; m1, mΓi ,Σ1, K0)

max
m0

max
Σ0

f0(Z; m0,Σ0)
,

(9)

Np,i is the number of unknown parameters under H1,i, and
γ is a factor depending on which MOS rule is used to
obtain (8) [41], namely γ = 1 for AIC-based detector,
γ = log(NK)/2 for BIC-based detector, and γ = (1 + ρ)/2,
ρ > 1, for GIC-based detector. Similarly to the BBNJ detection
problem, we consider uncorrelated and correlated measure-
ments and, in the last case, we also assume that K > N + 1.
Finally, notice that in some cases we approximate Λi(Z) (and,
hence, (8)) since solving the related maximization problems
involves intractable mathematics.

A. Spoofing Detector: Uncorrelated Measurements

Uncorrelated measurements yield the following covariance
matrices: Σ0 = diag {σ2

0,1, σ
2
0,2, . . . , σ

2
0,N} under H0 and

Σ1 = diag {σ2
1,1, σ

2
1,2, . . . , σ

2
1,N} under H1,i, i = 1, . . . , NΓ.

In Appendix C, we prove that the logarithm of (9) can be
written as

log Λi(Z)

= max
K0

{
K

2

N∑
n=1

log

[
1
K

K∑
k=1

(zk,n − m̂0,n)2
]

−K

2

{ ∑
n∈ΓN\Γi

log

[
1
K

K∑
k=1

(zk,n − m̂1,n)2
]

+
∑
n∈Γi

log

[
1
K

(
K0∑
k=1

(zk,n − m̂1,n)2

+
K∑

k=K0+1

(zk,n − m̂Γi,n)2
)]}}

, (10)

where m̂0,n, m̂1,n, and m̂Γi,n are given by (13), (38), and
(39), respectively. Finally, in order to write (8), we need the
number of unknown parameters under H1,i that is given by
Np,i = 2N + |Γi|.

In the next sections, we will refer to this decision scheme as
AIC/BIC/GIC-based spoofing detector for uncorrelated mea-
surements (SP-D-UM).

B. Spoofing Detector: Correlated Measurements

In this last subsection, we address the case that data covari-
ance matrices exhibit a general symmetric structure. Similarly
to what observed in Subsection III-B, obtaining closed-form
expression for Λi(Z) is not an easy task due to the fact that
the maximization of its numerator leads to intractable mathe-
matics (at least to the best of authors’ knowledge). Therefore,
we resort to an approximation of Λi(Z) where the unknown
parameters are estimated by means of an alternating procedure
that returns a nondecreasing sequence of log-likelihood values
as described in Appendix D. Moreover, we assume that K >
N + 1. The final result is

log Λi(Z) ≈ −K

2
log det

[
K0∑
k=1

(zk − m̂1)(zk − m̂1)T

+
K∑

k=K0+1

(zk − m̂Γi)(zk − m̂Γi)
T

]

+
K

2
log det

[
K∑

k=1

(zk − m̄0)(zk − m̄0)T

]
(11)

where m̄0 is computed in Appendix B, while m̂Γi and
m̂1 are the estimates obtained through the cyclic procedure
of Appendix D. Finally, notice that in this case Np,i =
N(N + 1)/2 + N + |Γi|.

The above decision scheme is referred to in the following
as AIC/BIC/GIC-based spoofing detector for correlated mea-
surements (SP-D-CM).

V. AN APPLICATION: LOCATION SECURITY

In this section, we present a performance evaluation of the
proposed detectors by focusing on two different operating
scenarios that differ in data distribution models: (i) a general
Gaussian scenario (i.e., data are generated according to the
design assumptions) and (ii) a 5G localization scenario (i.e.,
data are generated by exploiting experimental models from
the literature of cellular localization). The Gaussian scenario
allows us to gain an assessment of the nominal detectors’ per-
formance, whereas the analysis based on experimental models
allows us to appreciate the performance sensitivity with respect
to realistic operating conditions. The performance metrics are
the probability of detection (Pd) given a pre-assigned value for

Authorized licensed use limited to: Universita degli Studi di Roma Tor Vergata. Downloaded on February 10,2023 at 13:12:16 UTC from IEEE Xplore.  Restrictions apply. 



210 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2023

the Pfa, the root-mean-square error (RMSE) for the estimates
of the parameter of interest, and the probability of correct
classification of the spoofed components (see the next sub-
sections for the precise definition). For comparison purposes,
we consider other parametric change point detection schemes
that can be obtained through straightforward generalizations of
existing/conventional approaches (and, hence, can be consid-
ered a baseline); in addition, more advanced competitors based
upon a clustering approach are considered for both kinds of
attacks. Due to the lack of space, we confine the derivations
and final expressions of these competitors to the supplemental
material. In what follows, they are referred to as BBNJ naive
change detector (BBNJ-NCD), BBNJ latent variable model
(LVM) change detector (BBNJ-LVM), spoofing naive detector
for uncorrelated measurements (SP-NCD-UM), spoofing naive
detector for correlated measurements (SP-NCD-CM), and the
spoofing LVM change detector (SP-LVM).

A. Simulation Setting and Operating Scenarios

We assume a slow-moving UE, which is being tracked
by the network infrastructure. UE derives range and DOA
positioning measurements from signals sent by access node
(AN) nodes. As described in Section II, we assume that at a
certain time instant a malicious platform performs a jamming
or a spoofing attack. According to 3GPP standard, we consider
a scenario with the UE localized exploiting range (RSRP
measurements) and DOA estimates (azimuth and elevation
angles). As a consequence, the size of the generic vector zk

is N = 3 and the procedure to generate it is described below.
Since closed-form expressions for the performance metrics

are not available, we resort to standard Monte Carlo counting
techniques. More precisely, we exploit 5000 independent trials
to estimate the Pd and the probability of correct classification,
1000 independent trials for the RMSE values, and 100/Pfa

independent trials for the detection thresholds with Pfa =
10−2. The proposed decision schemes are assessed accounting
for two different lengths of the sliding window (namely,
K = 24, 32) and several values for K0. The BBNJ attack
is simulated by varying the variance of the noise affect-
ing the measurements. Specifically, starting from a diagonal
covariance matrix, Σ0 say, set using the results of [47], [48],
we modify the latter through a scaling factor γ such that6

Σ1 = Σ0 and Σ2 = γΣ0 in (1). Further details on the
construction of the covariance matrices are given with the
5G-based Scenario below.

On the other hand, in the case of spoofing attack, the
numerical examples are obtained by varying the mean value
of the original signal. More precisely, after the change point,
the entries of the mean measurement vector under H0 are
scaled by a factor ν, which represents “the amount of fake
information” injected by the spoofer. As for the operating
scenarios, we consider two cases.

1) Gaussian Scenario: time difference of arrival (TDOA)
and DOA measurements are modeled as statistically indepen-
dent Gaussian random variables with m0 and Σ0 obtained

6Actually, γ is related to the BBNJ transmitted power and is a function of
the SNR through the underlying physical model.

Fig. 1. Pd versus γ assuming K = 32 and K0 = 16 (BBNJ detectors).

from the exemplary models of the 5G-based scenario as
described below.

2) 5G-Based Scenario: we borrow distribution models from
existing literature [47] where ranging is performed through
downlink (DL)-TDOA measurements of 5G positioning ref-
erence signal in a urban macro environment with line-of-
sight conditions (the SNR is 20 dB); and [48] where the
angle estimates are obtained through a beam-RSRP of DL
with 16 UE beams (the SNR is 20 dB). In particular, the
ranging and angle errors used in the simulations are generated
using the empirical cumulative distribution function (CDF)
of elevation/azimuth angle error and 2D ranging error from
papers [47], [48], respectively. As for the realization of the
range and angle measurements, we consider the true range and
true DOA (elevation and azimuth) when the distance between
the AN and UE is equal to d0 = 200 m and the DOA is
0 degrees. Then, the measurement error is added as two mutu-
ally independent random variables modeled according to the
exemplary error PDFs proposed in [47] for the TDOA and [48]
for the DOA. Finally, a dataset composed of 104 TDOA
and DOA realizations is used to compute the empirical mean
m0 = m1 and the empirical covariance matrix Σ0 = Σ1.

B. Performance of the BBNJ Detection Architectures

The performance of the BBNJ-D-UM, BBNJ-D-CM, BBNJ-
NCD, and BBNJ-LVM is shown in Figs. 1 and 2 under both the
Gaussian and 5G models. Fig. 1 shows Pd versus the parameter
γ for K = 32 and K0 = 16. The figure indicates that the
nominal behavior of the considered decision rules is quite
similar to that obtained in the 5G scenario. The BBNJ-D-CM
exhibits the best performance and both BBNJ-D-CM and
BBNJ-D-UM outperform the (baseline) BBNJ-NCD and the
BBNJ-LVM. Fig. 2 shows the RMSE for the estimate of K0 as
a function of γ. Notice that the estimation performance of the
LVM-based detector is not reported due to the fact that it does
not return an estimate of K0 but it clusters data without any
constraint. Thus, a further processing stage would be required
to estimate the change point position by means of the assigned
labels. The figure shows that the estimation performance under
the nominal conditions is comparable to that obtained using 5G
measurement distributions. The BBNJ-D-CM exhibits higher
RMSE values than the BBNJ-NCD, whereas the BBNJ-D-UM
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Fig. 2. RMSE versus γ for K = 32 and true value K0 = 16 (BBNJ
detectors).

Fig. 3. Pd versus γ assuming K = 32, K0 = 8, 24, and the 5G scenario
(BBNJ detectors).

Fig. 4. RMSE versus γ assuming K = 32, K0 = 8, 24, and the 5G scenario
(BBNJ detectors).

provides the lowest RMSE values. The behavior of the
BBNJ-D-CM observed in this figure can be explained by the
fact that it is an approximation of the GLRT that breaks
the maximum likelihood principle (MLP). Thus, the related
estimates can be considered suboptimum with respect to the
MLP.

Since the performance obtained under the general Gaussian
assumption is comparable to that obtained using 5G data
distributions, in the next figures we will report only the
results obtained under the 5G scenario. Fig. 3 is analogous to

Fig. 5. Pd versus γ assuming K0 = 0.5K , K = 24, 32, and the 5G
scenario (BBNJ detectors).

Fig. 6. RMSE versus γ assuming K0 = 0.5K , for K = 24, 32, and the
5G scenario (BBNJ detectors).

Fig. 1 but different values for K0 are considered. It turns out
that the Pd increases with K0 for BBNJ-D-UM and BBNJ-
NCD, whereas it decreases with K0 for the BBNJ-D-CM.
For K0 = 24, the curves of BBNJ-D-CM and BBNJ-D-UM
are almost overlapped. In all the other cases, the BBNJ-D-
CM outperforms both BBNJ-D-UM, BBNJ-NCD, and BBNJ-
LVM. Fig. 4 shows the RMSE curves as a function of γ
for K0 = 8 and K0 = 24 (again, we do not consider the
BBNJ-LVM). It is possible to observe that the effect of the
true value of K0 on the related estimate is more evident for
lower values of γ. The BBNJ-D-UM outperforms both the
BBNJ-D-CM and BBNJ-NCD, at least when γ > 6 dB. For
K0 = 8 and γ < 6 dB, the BBNJ-D-CM experiences better
performance than the BBNJ-D-UM. In any configurations, the
proposed schemes are superior to the naive detector. Finally,
in Figs. 5 and 6, we analyze the effect of K on the detec-
tion and estimation performance, respectively. These figures
corroborate the hierarchy arisen from the previous examples
and show that, as expected, increasing K is a blessing and
a curse. In fact, high values of K improve the estimation
quality of parameters such as the mean and the covariance
matrix (and, hence, the detection performance), but, at the
same time, extend the range of possible values for K0 yielding
more uncertainty and computational complexity.

As final remark, it is important to underline that the
BBNJ-D-CM is designed assuming the most general structure
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for the covariance matrix and its detection performance is bet-
ter than those provided by the BBNJ-D-UM under the 5G data,
even though the data was uncorrelated. Therefore, we would
single out the BBNJ-D-CM as the best architecture in terms
of detection probability. Nevertheless, the BBNJ-D-UM shows
better estimation performance due to the fact that the BBNJ-
D-CM is an approximation of the GLRT.

C. Performance of the Spoofing Detection Architectures

This last subsection deals with the performance assessment
of the AIC/BIC/GIC-based SP-D-UM and SP-D-CM also in
comparison with the counterparts mentioned at the beginning
of this section and derived in the supplemental material. In the
following, the scenario is generated according to the 5G model
only because the performances under the general Gaussian
model are rather similar (at least for the considered parame-
ters) and, hence, are not reported here for brevity; in addition,
we set K = 32, K0 = 16, and evaluate the performance
metrics by varying the parameter ν, which represents the level
of fake information (see Subsection V-A).

In Fig. 7, we show the detection probability versus ν.
It turns out that all the considered detectors share the same
detection performance except for the SP-LVM that returns
the lowest Pd values confirming what observed for the BBNJ
attacks. Notice also that there exists a first floor of 0.65 when
0.2 dB < ν < 2 dB, which depends on the fact that at
each Monte Carlo trial we counterfeit a random number of
components. Specifically, we have verified that when all the
three components are spoofed, a spoofer attack is detected
even with small value of ν, i.e., ν ≤ 1 dB, while when one or
two components are spoofed, the attack is detected only for
higher values of ν, e.g., ν ≥ 2 dB.

The RMSE values for the estimate of K0 are provided in
Fig. 8, where it can be observed that the RMSE curves are
bounded from above by 1.1 and for ν > 5 the errors are lower
than 1 and experience a limited variability. Moreover, a local
maximum for the the RMSE around ν = 3 dB is present.
Indeed, when ν ≤ 2 dB, the error only accounts for the cases
where all the components are spoofed (i.e., they are the only
detected ones), while for ν ≥ 2 dB also the cases where less
than three spoofed components are detected. Therefore, the
error, when all the components are spoofed, is lower than
the error obtained when fewer than three components are
spoofed for low values of ν. Then, as ν takes on high value,
as expected, the estimation error decreases.

It is important to underline here that even though all the
considered detectors (excluding the SP-LVM) share almost
the same detection and estimation performance, the competi-
tors are not capable of identifying the spoofed components
unlike the proposed decision schemes. Remarkably, such an
information can be suitably used to mitigate the effects of the
attack on the position estimation. For this reason, in Fig. 9,
we investigate the probability of correct classification of
the spoofed components defined as the percentage of trials
where the spoofed components among the N data components
are correctly detected. It turns out that AIC/BIC/GIC-based
SP-D-UM and SP-D-CM can provide a probability of correct

Fig. 7. Pd versus ν assuming K = 32, K0 = 16, and the 5G scenario
(spoofing detectors).

Fig. 8. RMSE versus ν assuming K = 32, K0 = 16, and the 5G scenario
(spoofing detectors).

classification greater than 0.8 for ν ≥ 1 dB. Additional results
for different values of K0 and K , not reported here for brevity,
confirm the observed behavior.

Summarizing, in the presence of a spoofing attack, the
proposed detectors share almost the same performance as
the naive detectors, while the SP-LVM experiences the worst
detection performance. However, it is important to stress again
that, unlike the considered competitors, the SP-D-CM and
SP-D-UM are capable of establishing which data entry is cor-
rupted. Such an information becomes of primary importance
to counteract the spoofing attacks.

Two concluding remarks are now in order. It is worth
recalling that the attacks considered here lead to an abrupt
change in the measurements of interest (and, hence, are easy
to be implemented). Thus, in the presence of smart attacks
that smoothly modify the information of interest, the proposed
algorithms might fail. Facing this kind of attack requires to
suitably re-formulate the detection problems and to derive new
detection architectures. Finally, it is important to observe that
the proposed methods are rather general from the application
point of view. In fact, another important application can be the
network security, where jammers force the user to disconnect
from the legitimate base station and to connect to a rogue base
station.
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Fig. 9. Probability of correct classification of the spoofed components
assuming K = 32, K0 = 16, and the 5G scenario (spoofing detectors).

VI. CONCLUSION

In this paper, we have devised innovative BBNJ and spoof-
ing detection architectures fed by high-level data in wireless
networks. At the design stage, we framed this problem in
the context of detection theory and formulate it in terms of
a hypothesis test where under the null hypothesis, data are
homogeneous, while under the alternative (possibly multiple)
hypothesis, only one abrupt variation occurs in data under
test. The newly proposed algorithms, which represent the
main technical novelty of this work, have been obtained by
resorting to GLRT-based design procedures that include penal-
ized tests. Due to mathematical and/or computational issues,
we used suitable approximations to come up with closed-form
expressions of practical value. The performance of the pro-
posed detectors has been assessed in a location security case
study and in comparison with natural counterparts. Besides
the analysis under nominal conditions, we simulated a more
realistic scenario adhering to the 5G environment to measure
the deviation from the nominal behavior. In both cases, the
analysis highlighted the superiority of the proposed detectors
over the competitors at least for the considered parameters.
Remarkably, the proposed spoofing detectors are capable of
identifying with high probability the counterfeit components
and such an information can be exploited to counter this kind
of attack.

Future research tracks might include the design of architec-
tures that can deal with smart attacks that slowly modify the
information of interest. In this context, the attack classification
could be useful to draw a complete picture of the operating
scenario.

APPENDIX A
DERIVATION OF BBNJ-D-UM (5)

Let us focus on the left-hand side of (4) and, for com-
putational convenience, consider the logarithm of it. Thus,
neglecting the irrelevant constants, the log-likelihood function
under H0 can be recast as

L0(m0,Σ0; Z)≈−K

2

N∑
n=1

log σ2
0,n

−1
2

K∑
k=1

N∑
n=1

(zk,n−m0,n)2

σ2
0,n

, (12)

where recall that m0,n and zk,n, n = 1, . . . , N , are the entries
of m0 and zk, respectively. It is not difficult to show that the
MLEs of m0,n and σ2

0,n, n = 1, . . . , N , are given by

m̂0,n =
1
K

K∑
k=1

zk,n and σ̂2
0,n =

1
K

K∑
k=1

(zk,n − m̂0,n)2,

(13)

respectively. As for the maximization of the log-likelihood
under H1, notice that, neglecting the irrelevant constants, it
can be written as

L1(m1,Σ1,Σ2, K0; Z)

≈ −K0

2

N∑
n=1

log σ2
1,n

−K1

2

N∑
n=1

log(σ2
1,n + Δσ2

n) − 1
2

K0∑
k=1

N∑
n=1

(zk,n − m1,n)2

σ2
1,n

−1
2

K∑
k=K0+1

N∑
n=1

(zk,n − m1,n)2

σ2
1,n + Δσ2

n

, (14)

where m1,n, n = 1, . . . , N , are the components
of m1. Before proceeding with the search of the
stationary points of the above function, let us notice
that lim‖m‖→+∞ L1(m1,Σ1,Σ2, K0; Z) = −∞,
limσ2

1,n→+∞ L1(m1,Σ1,Σ2, K0; Z) = −∞, n = 1, . . . , N ,
limσ2

1,n→0 L1(m1,Σ1,Σ2, K0; Z) = −∞, n = 1, . . . , N ,
limΔσ2

n→+∞ L1(m1,Σ1,Σ2, K0; Z) = −∞, n = 1, . . . , N ,
and limΔσ2

n→0 L1(m1,Σ1,Σ2, K0; Z) = C ∈ R,
n = 1, . . . , N . Thus, we can search the stationary
points in the interior of the log-likelihood domain. Let
us start from the maximization with respect to Δσ2

n,
n = 1, . . . , N . The maximizers are the solutions of
∂/∂Δσ2

n[L1(m1,Σ1,Σ2, K0; Z)] = 0, n = 1, . . . , N , and
are given by7

̂Δσ2
n(σ2

1,n, m1,n, K0) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

K1

K∑
k=K0+1

(zk,n − m1,n)2 − σ2
1,n,

if ̂Δσ2
n > 0,

0, otherwise,

(15)

n = 1, . . . , N . Given the set B = {K0, σ
2
1, m1} with σ2

1 =
[σ2

1,1, . . . , σ
2
1,N ]T , we define

Γ(B) = {n ∈ ΓN : ̂Δσ2
n(σ2

1,n, m1,n, K0) > 0}, (16)

Γ̄(B) = ΓN \ Γ(B), (17)

and recast the right-hand side of (14) as (neglecting the
constants)

(14)≈−K0

2

N∑
n=1

log σ2
1,n

7From the sign of the derivative, it is possible to show that (15) is a
maximum point.
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−K1

2

∑
n∈Γ(B)

log

[
1

K1

K∑
k=K0+1

(zk,n − m1,n)2
]

−K1

2

∑
n∈Γ̄(B)

log σ2
1,n − 1

2

N∑
n=1

K0∑
k=1

(zk,n − m1,n)2

σ2
1,n

−1
2
K1|Γ(B)| − 1

2

∑
n∈Γ̄(B)

K∑
k=K0+1

(zk,n − m1,n)2

σ2
1,n

.

(18)

Let us proceed by setting to zero the first derivative of (18)
with respect to σ2

1,n, n ∈ ΓN , to obtain

σ̂2
1,n(m1,n, K0) =

1
K0

K0∑
k=1

(zk,n − m1,n)2, n ∈ Γ(B),

σ̂2
1,n(m1,n, K0) =

1
K

K∑
k=1

(zk,n − m1,n)2, n ∈ Γ̄(B). (19)

It follows that the compressed log-likelihood function can be
approximated as

L1(m1, Σ̂1, Σ̂2, K0; Z)

≈−K0

2

∑
n∈Γ(B)

log

[
1

K0

K0∑
k=1

(zk,n − m1,n)2
]

−K1

2

∑
n∈Γ(B)

log

[
1

K1

K∑
k=K0+1

(zk,n − m1,n)2
]

−K

2

∑
n∈Γ̄(B)

log

[
1
K

K∑
k=1

(zk,n − m1,n)2
]

. (20)

It still remains to maximize the log-likelihood function with
respect to m1 and K0. The latter problem can be carried out
by means of a 1-dimensional grid search, whereas the former
problem can be solved by finding the solutions of

∂

∂m1,n
[L1(m1, Σ̂1, Σ̂2, K0; Z)] = 0, n ∈ ΓN . (21)

Observe that when n ∈ Γ̄(B), the final result is m̂0,n given by
(13). On the other hand, in the case that n ∈ Γ(B), we obtain

1
K1

K∑
k=K0+1

(zk,n − m1,n)2
[

K0∑
k=1

zk,n − K0m1,n

]

+
1

K0

K0∑
k=1

(zk,n − m1,n)2
[

K∑
k=K0+1

zk,n − K1m1,n

]
= 0.

(22)

Now, let us define the following quantities AK0,n =∑K0
k=1 zk,n, BK0,n =

∑K0
k=1 z2

k,n, AK1,n =
∑K

k=K0+1 zk,n,

and BK1,n =
∑K

k=K0+1 z2
k,n, then, (22) can be recast as

C3m
3
1,n + C2m

2
1,n + C1m1,n + C0 = 0, (23)

where C0 = BK1,nAK0,n

K1
+ BK0,nAK1,n

K0
, C1 = −K0

K1
BK1,n −

K1
K0

BK0,n−
(

2
K1

+ 2
K0

)
AK1,nAK0,n, C2 = AK0,n+AK1,n+

2K0
K1

AK1,n+2K1
K0

AK0,n, and C3 = −(K0+K1). The solutions

of the above equations can be explicitly obtained resorting to
Cardano’s method [49] and, then, we choose that one, m̂1

say, leading to the maximum of L1(m1, Σ̂1, Σ̂2, K0; Z), for
all admissible values of K0 ∈ Ω.8

Finally, notice that Γ(B) is not known and, hence, in princi-
ple, the above procedure should be repeated for each K0 and
each partition of ΓN . Then, we can select the combination of
estimates returning the maximum value for the log-likelihood.
However, this approach is prohibitive from a computational
point of view. For this reason, we pursue an alternative strategy
that is suboptimum. To be more precise, given a generic index
n and K0, we proceed by assuming that n ∈ Γ(B) and by
estimating the unknown parameters indexed by n accordingly.
Then, we evaluate the following inequality (see (15))

1
K1

K∑
k=K0+1

(zk,n − m̂1,n)2 − 1
K0

K0∑
k=1

(zk,n − m̂1,n)2 > 0.

(24)

If the above inequality is valid, we repeat the above reasoning
for the next index n+1, otherwise, n is classified as belonging
to Γ̄(B) and the estimation is performed under this assump-
tion. These steps continue until n ≤ N and we denote the
obtained sets by Γ̃(B̂) and ˜̄Γ(B̂) with B̂ the corresponding
estimate of B.

The final expression of the compressed log-likelihood under
H1 (neglecting irrelevant terms) is given by the left-hand side
of (20) with the remaining unknown parameters replaced by
the respective estimates. Decision statistic of (5) naturally
follows.

APPENDIX B
DERIVATION OF BBNJ-D-CM (6)

The optimization problem at the denominator of the
left-hand side of (4) is rather conventional and the MLEs
of m0 and Σ0 are given by m̄0 = 1

K

∑K
k=1 zk and Σ̄0 =

1
K

∑K
k=1(zk − m̄0)(zk − m̄0)T (see, e.g. [45]), respectively.

The situation under H1 is different. As a matter of fact, the
exact expressions for the MLEs of the unknown parameters
are not available (at least to the best of authors’ knowledge).
For this reason, as shown below, we resort to suitable approx-
imations of the partially-compressed log-likelihood function.
Therefore, under H1, the log-likelihood function can be recast
(up to constants) as

L1(m1,Σ1,Σ2, K0; Z)

≈ −K0

2
log det(Σ1)

−K1

2
log det(Σ1 + R)

−1
2

K0∑
k=1

(zk − m1)T Σ−1
1 (zk − m1)

8In the case of uncorrelated measurements, K0 is not subject to any
constraint and, hence, it takes on value in Ω.
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−1
2

K∑
k=K0+1

(zk − m1)T (Σ1 + R)−1(zk − m1),

(25)

where R = Σ2 − Σ1 � 0, and let us proceed as fol-
lows. Assume that Σ1 is known while R is positive definite
and unknown, then Σ2 is a positive definite matrix such
that Σ2 − Σ1 is an arbitrary positive definite matrix. Thus,
we can maximize L1(m1,Σ1,Σ2; Z) with respect to Σ2 to
obtain [45]

Σ̄2(m1, K0) =
1

K1

K∑
k=K0+1

(zk − m1)(zk − m1)T . (26)

It readily follows that

R̄(Σ1, m1, K0) =

{
Σ̄2(m1, K0) − Σ1, if R̄ � 0,

0, otherwise.
(27)

In the case that R̄ = 0 (namely, Σ1 = Σ2), the problem
is tantamount to that under H0. As a consequence, the final
statistic is a constant equal to zero.

In the opposite case (R̄ � 0), we proceed by maximizing

L1(m1,Σ1, Σ̄2, K0; Z)

≈ −K0

2
log det(Σ1) − 1

2
K1N

−K1

2
log det(Σ̄2(m1, K0))

−1
2

K0∑
k=1

‖Σ−1/2
1 (zk − m1)‖2, (28)

with respect to Σ1 to obtain (see [45])

Σ̄1(m1, K0) =
1

K0

K0∑
k=1

(zk − m1)(zk − m1)T . (29)

Replacing the above estimate into (28) yields (up to irrelevant
constants)

L1(m1, Σ̄1, Σ̄2, K0; Z)

≈ −K0

2
log det

[
1

K0

K0∑
k=1

(zk − m1)(zk − m1)T

]

−K1

2
log det

[
1

K1

K∑
k=K0+1

(zk − m1)(zk − m1)T

]
.

(30)

Now, let us focus on the terms depending on m1 and define

g(m1, K0)

= − log det
(
S0 − s0m

T
1 − m1s

T
0 + K0m1m

T
1

)
2/K0

− log det
(
S1 − s1m

T
1 − m1s

T
1 + K1m1m

T
1

)
2/K1

(31)

where S0 =
∑K0

k=1 zkzT
k , S1 =

∑K
k=K0+1 zkzT

k , s0 =∑K0
k=1 zk, and s1 =

∑K
k=K0+1 zk. Completing the quadratic

forms, we can write

(31)=− log det
(
M0 + u0u

T
0

)
2/K0

− log det
(
M1 + u1u

T
1

)
2/K1

,

(32)

where M0 = S0 − (1/K0)s0s
T
0 , M 1 = S1 −

(1/K1)s1s
T
1 , u0 = (1/

√
K0)s0 − √

K0m1, and
u1 = (1/

√
K1)s1 − √

K1m1. Now, since M 0 =
(Z1:K0 − (1/K0)s01T )(Z1:K0 − (1/K0)s01T )T , M 1 =
(ZK0+1:K − (1/K1)s11T )(ZK0+1:K − (1/K1)s11T )T , and
min{K0, K1} > N , they are also positive definite with
probability 1 [45] and, hence, g(m1, K0) becomes

g(m1, K0)

= −K0

2
log det(M 0) − K1

2
log det(M1)

− log
(
1 + uT

0 M−1
0 u0

)
2/K0

− log
(
1 + uT

1 M−1
1 u1

)
2/K1

,

(33)

where the last equality comes from the fact [50] that ∀A ∈
RN×M , B ∈ RM×N : det(I + AB) = det(I + BA).
The most right-hand side of (33) clearly unveils the radially
unbounded nature of g(m1, K0) with respect to m1, thus
we can search the maximum points in the interior of its
domain. However, solving the following system of equations
∂/∂m1[g(m1, K0)] = 0 is not straightforward and can lead
to additional complexity. For this reason, we resort to the
approximation log(1 + x) ≈ x to obtain g̃(m1, K0) =
−K0

2 log det(M0) − K1
2 log det(M 1) − K0

2 uT
0 M−1

0 u0 −
K1
2 uT

1 M−1
1 u1, and solve ∂/∂m1[g̃(m1, K0)] = 0. The

above equation can be recast as K0M
−1
0 (s0 − K0m1) +

K1M
−1
1 (s1 − K1m1) = 0 and, hence,

m̄1 =
(
K2

0M−1
0 +K2

1M−1
1

)−1 (
K0M

−1
0 s0 + K1M

−1
1 s1

)
.

(34)

It is also straightforward to show that the Hessian of
g̃(m1, K0) with respect to m1 is negative definite, in fact,
recalling that M−1

i � 0, i = 0, 1, it turns out that

∂2

∂m1∂mT
1

[g̃(m1, K0)] = −K2
0M−1

0 − K2
1M−1

1 ≺ 0.

(35)

The final expression for the approximate partially-compressed
log-likelihood is obtained by replacing m1 in (30) with m̄1.
Recalling that the compressed log-likelihood under H0 is (up
to irrelevant constants)

−K

2
log det

[
K∑

k=1

(zk − m̄0)(zk − m̄0)T

]
, (36)

(6) naturally follows.

APPENDIX C
DERIVATION OF SP-D-UM (10)

The maximization at the denominator of (9) is the same
as that of Subsection III-A and the estimates of m0 and
Σ0 are given by (13). On the other hand, under the generic
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H1,i, the log-likelihood function can be written (neglecting the
irrelevant constants) as

L1,i(m1, mΓi ,Σ1, K0; Z)

≈ −K

2

N∑
n=1

log σ2
1,n − 1

2

×
K0∑
k=1

∑
n∈Γi

(zk,n − m1,n)2

σ2
1,n

− 1
2

K∑
k=1

∑
n∈ΓN\Γi

(zk,n − m1,n)2

σ2
1,n

−1
2

K∑
k=K0+1

∑
n∈Γi

(zk,n − mΓi,n)2

σ2
1,n

, (37)

where m1,n, n = 1, . . . , N , is the nth entry of m1 and
mΓi,n, n ∈ Γi, is the nth entry of mΓi that is different
from m1,n. It is not difficult to show that the maximization of
L1,i(m1, mΓi ,Σ1, K0; Z) with respect to m1, mΓi , and Σ1,
can be conducted by setting to zero the first derivative with
respect to the unknown parameters. Therefore, starting from
m1 and mΓi , we obtain that

m̂1,n =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

K0

K0∑
k=1

zk,n, if n ∈ Γi,

1
K

K∑
k=1

zk,n, if n ∈ ΓN \ Γi,

(38)

m̂Γi,n =
1

K1

K∑
k=K0+1

zk,n, n ∈ Γi. (39)

It follows that the partially-compressed log-likelihood can be
written as

L1,i(m̂1, m̂Γi ,Σ1, K0; Z)

≈ −K

2

N∑
n=1

log σ2
1,n

−1
2

K0∑
k=1

∑
n∈Γi

(zk,n − m̂1,n)2

σ2
1,n

−1
2

K∑
k=1

∑
n∈ΓN\Γi

(zk,n − m̂1,n)2

σ2
1,n

−1
2

K∑
k=K0+1

∑
n∈Γi

(zk,n − m̂Γi,n)2

σ2
1,n

. (40)

Setting to zero the first derivative of the above function with
respect to σ2

1,n leads to

σ̂2
1,n =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
K

[
K0∑
k=1

(zk,n − m̂1,n)2 +
K∑

k=K0+1

(zk,n − m̂Γi,n)2
]

,

if n ∈ Γi,

1
K

K∑
k=1

(zk,n − m̂1,n)2, if n ∈ ΓN \ Γi.

(41)

The final expression of the log-likelihood function compressed
with respect to m1, mΓi , and Σ1, is (up to constants inde-

pendent of K0 and Γi)

−K

2

{ ∑
n∈ΓN\Γi

log

[
1
K

K∑
k=1

(zk,n − m̂1,n)2
]

+
∑
n∈Γi

log

[
1
K

(
K0∑
k=1

(zk,n − m̂1,n)2 +
K∑

k=K0+1

(zk,n − m̂Γi,n)2
)]}

.

Recalling that the compressed log-likelihood function under
H0 is given by (12) with the unknown parameters replaced by
(13), it is straightforward to obtain (10).

APPENDIX D
DERIVATION OF SP-D-CM (11)

First, notice that the maximization under H0 is the same
as that in Appendix B. Thus, we focus on the numerator of
Λi(Z) and write the log-likelihood under H1,i (up to irrelevant
constants) as

L1,i(m1, mΓi ,Σ1, K0; Z)

≈ −K

2
log det(Σ1)

−1
2

Tr

{
Σ−1

1

[
K0∑
k=1

(zk − m1)(zk − m1)T

+
K∑

k=K0+1

(zk − mΓi)(zk − mΓi)
T

]}
. (42)

The maximization of the above function with respect to
Σ1 yields [45]

L1,i(m1, mΓi , Σ̂1, K0; Z)

≈ −K

2
log det

[
K0∑
k=1

(zk − m1)

×(zk − m1)T +
K∑

k=K0+1

(zk − mΓi)(zk − mΓi)
T

]
= g(m1, mΓi , K0; Z). (43)

Now, for each Γi, let us define a permutation matrix, P Γi ∈
RN×N say, such that the first |Γi| components of the vector

m̃Γi = P ΓimΓi =
[
μ̃Γi,1

0

]
+
[

0
μ̃Γi,2

]
= m̃Γi,1 + m̃Γi,2

are those of mΓi indexed by Γi and form μ̃Γi,1 ∈ R|Γi|×1; in
addition, μ̃Γi,2 contains the components of mΓi indexed by
ΓN \ Γi. Similarly, let m̃1 be

m̃1 = P Γim1 =
[
ν̃Γi,1

0

]
+
[

0
μ̃Γi,2

]
= ñΓi,1 + m̃Γi,2,

where ν̃Γi,1 ∈ R|Γi|×1 contains the components of
m1 indexed by Γi. Since P Γi is an orthogonal matrix and
letting z̃k = P Γizk, we can recast (43) as follows

g(m1, mΓi , K0; Z)

= −K

2
log det

{
P Γi

[
K0∑
k=1

(zk − m1)
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×(zk − m1)T +
K∑

k=K0+1

(zk − mΓi)(zk − mΓi)
T

]
P T

Γi

}

= −K

2
log det

[
K0∑
k=1

(z̃k − ñΓi,1 − m̃Γi,2)

×(z̃k − ñΓi,1 − m̃Γi,2)
T +

K∑
k=K0+1

(z̃k − m̃Γi,1 − m̃Γi,2)

×(z̃k−m̃Γi,1−m̃Γi,2)
T

]
=g(ñΓi,1, m̃Γi,1, m̃Γi,2, K0; Z).

The joint maximization of g(·) with respect to ñΓi,1, m̃Γi,1,
and m̃Γi,2 represents a difficult task from a mathematical point
of view (at least to the best of authors’ knowledge). For this
reason, we resort to a cyclic optimization procedure giving
rise to a nondecreasing sequence of values for g(·) [51]. This
procedure consists in repeating the following two steps until
a stopping criterion is not satisfied

• assume that ñΓi,1 and m̃Γi,1 are known (and equal to the
estimates obtained at the previous cycle) and maximize
g(·) with respect to m̃Γi,2;

• assume that m̃Γi,2 is known (and equal to the estimate
at the previous step) and maximize g(·) with respect to
ñΓi,1 and m̃Γi,1.

The entire procedure may terminate when

Δg(h) = |g(̂̃n(h)

Γi,1,
̂̃m(h)

Γi,1,
̂̃m(h)

Γi,2, K0; Z) −
g(̂̃n(h−1)

Γi,1 , ̂̃m(h−1)

Γi,1 , ̂̃m(h−1)

Γi,2 , K0; Z)|/|g(̂̃n(h)

Γi,1,
̂̃m(h)

Γi,1,
̂̃m(h)

Γi,2,

K0; Z)| < ε, where ε > 0, ̂̃n(h)

Γi,1, ̂̃m(h)

Γi,1, and ̂̃m(h)

Γi,2

are the estimates of ñΓi,1, m̃Γi,1, and m̃Γi,2 at the hth
step, respectively; or when h ≥ hmax where hmax is the
maximum allowed number of iterations that could be set to
guarantee a good compromise between estimation fidelity and
computational load.

Therefore, let us start from the first step and maximize g(·)
with respect to m̃Γi,2 (or, equivalently, to μ̃Γi,2) assuming

that ñΓi,1 = ̂̃n(h−1)

Γi,1 and m̃Γi,1 = ̂̃m(h−1)

Γi,1 . To this end, let

xk = z̃k − ̂̃n(h−1)

Γi,1 for k = 1, . . . , K0 and xk = z̃k − ̂̃m(h−1)

Γi,1

for k = K0 + 1, . . . , K . Thus, we obtain that9

g(̂̃n(h−1)

Γi,1 , ̂̃m(h−1)

Γi,1 , m̃Γi,2, K0; Z) = −K

2

× log det

[
X +

(
x̄ −

√
Km̃Γi,2

)(
x̄ −

√
Km̃Γi,2

)T
]
,

(44)

where X =
∑K

k=1 xkxT
k − x̄x̄T and x̄ = (1/

√
K)
∑K

k=1 xk.
Now, observe that

√
Km̃Γi,2 =

[
0√
KI

]
μ̃Γi,2 = H2μ̃Γi,2, (45)

9Actually, xk depends on h, but we omit this dependence in order not to
burden the notation.

where H2 = [0
√

KI]T ∈ RN×(N−|Γi|). It follows that

argmax
µ̃Γi,2

−K

2
log det

[
X +

(
x̄ − H2μ̃Γi,2

) (
x̄ − H2μ̃Γi,2

)T]
= argmin

µ̃Γi,2

K

2
log
[
1 +

(
x̄ − H2μ̃Γi,2

)T
× X−1

(
x̄ − H2μ̃Γi,2

)]
= (HT

2 X−1H2)−1HT
2 X−1x̄ = ̂̃μ(h)

Γi,2, (46)

where we have used the fact that X is positive definite with
probability 1 since K > N +1 and the distribution of the zks
is continuous. The update rule for m̃Γi,2 is

̂̃m(h)

Γi,2 =

[
0̂̃μ(h)

Γi,2

]
(47)

and notice that it depends on ̂̃n(h−1)

Γi,1 and ̂̃m(h−1)

Γi,1 .
Now, we are ready to perform the second step of the

procedure that pertains the maximization over ñΓi,1 and m̃Γi,1

assuming that m̃Γi,2 = ̂̃m(h)

Γi,2. Defining yk = z̃k − ̂̃m(h)

Γi,2,

k = 1, . . . , K , we can recast g(ñΓi,1, m̃Γi,1, ̂̃m(h)

Γi,2, K0; Z)
as

K

2
log det

[
Y +

(
ȳ1 −

√
K0ñΓi,1

)(
ȳ1 −

√
K0ñΓi,1

)T

+
(
ȳ2 −

√
K1m̃Γi,1

)(
ȳ2 −

√
K1m̃Γi,1

)T
]
, (48)

where Y =
∑K

k=1 ykyT
k − ȳ1ȳ

T
1 − ȳ2ȳ

T
2 , ȳ1 =

(1/
√

K0)
∑K0

k=1 yk, and ȳ2 = (1/
√

K1)
∑K

k=K0+1 yk. More-
over, since√

K0ñΓi,1 =
[
I
0

]√
K0ν̃Γi,1 = H1ν̃

′
Γi,1, (49)√

K1m̃Γi,1 =
[
I
0

]√
K1μ̃Γi,1 = H1μ̃

′
Γi,1, (50)

where H1 = [I 0]T ∈ RN×|Γi|, (48) becomes

g

(
ñΓi,1, m̃Γi,1, ̂̃m(h)

Γi,2, K0; Z
)

= −K

2
log det

[
Y +

(
Ȳ − H1V

) (
Ȳ − H1V

)T ]
,

(51)

where Ȳ = [ȳ1 ȳ2] ∈ RN×2 and V = [ν̃ ′
Γi,1 μ̃′

Γi,1] ∈
R|Γi|×2. The constraint K > N + 1 ensures that
Y is positive definite [45] and, hence, maximizing
the above function with respect to V is tantamount
to min

V
det
[
I +

(
Ȳ − H1V

)T
Y −1

(
Ȳ − H1V

)]
. Now,

since

det
[
I +

(
Ȳ − H1V

)T
Y −1

(
Ȳ − H1V

)]
= det

[
I+Ȳ

T
Y −1Ȳ +

(
HT

1 Y −1Ȳ −
(
HT

1 Y −1H1

)
V
)T

×
(
HT

1 Y −1H1

)−1 (
HT

1 Y −1Ȳ −
(
HT

1 Y −1H1

)
V
)
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−Ȳ
T
Y −1H1

(
HT

1 Y −1H1

)−1

HT
1 Y −1Ȳ

]
, (52)

it follows that

V̂ = argmin
V

det
[
I +

(
Ȳ − H1V

)T
Y −1

(
Ȳ − H1V

)]
=
(
HT

1 Y −1H1

)−1

HT
1 Y −1Ȳ =

[̂̃ν′
Γi,1

̂̃μ′
Γi,1

]
. (53)

At the end of the procedure, the final estimates of m1 and
mΓi are denoted by m̂1 and m̂Γi , respectively, and are used
in the compressed log-likelihood under H1,i (up to irrelevant
constants), i.e.,

−K

2
log det

[
K0∑
k=1

(zk − m̂1)(zk − m̂1)T

+
K∑

k=K0+1

(zk − m̂Γi)(zk − m̂Γi)
T

]
. (54)

Exploiting the above result in conjunction with the compressed
log-likelihood under H0 leads to the approximation (11).

REFERENCES

[1] M. Lichtman, R. P. Jover, M. Labib, R. Rao, V. Marojevic, and
J. H. Reed, “LTE/LTE-A jamming, spoofing, and sniffing: Threat assess-
ment and mitigation,” IEEE Commun. Mag., vol. 54, no. 4, pp. 54–61,
Apr. 2016.

[2] F. M. Aziz, J. S. Shamma, and G. L. Stüber, “Resilience of LTE
networks against smart jamming attacks: Wideband model,” in Proc.
IEEE 26th Annu. Int. Symp. Pers., Indoor, Mobile Radio Commun.
(PIMRC), Aug. 2015, pp. 1344–1348.

[3] R. P. Jover, “Security attacks against the availability of LTE mobility
networks: Overview and research directions,” in Proc. 16th Int. Symp.
Wireless Pers. Multimedia Commun. (WPMC), Jun. 2013, pp. 1–9.

[4] D. Rupprecht, K. Kohls, T. Holz, and C. Popper, “Breaking LTE on
layer two,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2019,
pp. 1121–1136.

[5] S. F. Mjølsnes and R. F. Olimid, “Easy 4G/LTE IMSI catchers for non-
programmers,” in Computer Network Security, J. Rak, J. Bay, I. Kotenko,
L. Popyack, V. Skormin, and K. Szczypiorski, Eds. Cham, Switzerland:
Springer, 2017, pp. 235–246.

[6] R. M. Rao, S. Ha, V. Marojevic, and J. H. Reed, “LTE PHY layer
vulnerability analysis and testing using open-source SDR tools,” in Proc.
IEEE Mil. Commun. Conf. (MILCOM), Oct. 2017, pp. 744–749.

[7] R. Borgaonkar, L. Hirschi, S. Park, and A. Shaik, “New privacy threat
on 3G, 4G, and upcoming 5G AKA protocols,” Privacy Enhancing
Technol., vol. 2019, no. 3, pp. 108–127, 2019.

[8] A. Shaik, R. Borgaonkar, S. Park, and J.-P. Seifert, “New vulnerabilities
in 4G and 5G cellular access network protocols: Exposing device
capabilities,” in Proc. 12th Conf. Secur. Privacy Wireless Mobile Netw.,
New York, NY, USA, 2019, pp. 221–231.

[9] A. Shaik, R. Borgaonkar, N. Asokan, V. Niemi, and J.-P. Seifert,
“Practical attacks against privacy and availability in 4G/LTE mobile
communication systems,” in Proc. 23rd Annu. Netw. Distrib. Syst. Secur.
Symp. (NDSS), 2016, pp. 1–16.

[10] I. Palamà, F. Gringoli, G. Bianchi, and N. B. Melazzi, “The diverse
and variegated reactions of different cellular devices to IMSI catching
attacks,” in Proc. 14th Int. Workshop Wireless Netw. Testbeds, Experim.
Eval. Characterization, New York, NY, USA, Sep. 2020, pp. 80–86.

[11] R. P. Jover, “LTE security, protocol exploits and location tracking
experimentation with low-cost software radio,” 2016, arXiv:1607.05171.

[12] S. R. Hussain, O. Chowdhury, S. Mehnaz, and E. Bertino, “LTEInspec-
tor: A systematic approach for adversarial testing of 4G LTE,” in Proc.
Netw. Distrib. Syst. Secur. Symp., 2018, pp. 1–15.

[13] C. Yu, S. Chen, Z. Cai, and J. Díaz-Verdejo, “LTE phone number
catcher: A practical attack against mobile privacy,” Secur. Commun.
Netw., vol. 2019, Sep. 2019, Art. no. 7425235.

[14] Study on 5G Security Enhancements Against False Base Stations,
document ETSI 3GPP TR 33.809 V0.11.0 (2020-10), 3GPP, Oct. 2020.

[15] Study on NR Positioning Support, document ETSI TR 138 855 V16.0.0,
3GPP, Dec. 2019.

[16] R. Poisel, Modern Communications Jamming Principles and Tech-
niques (Artech House Intelligence and Information Operations Series).
Norwood, MA, USA: Artech House, 2011.

[17] D. Margaria, B. Motella, M. Anghileri, J.-J. Floch,
I. Fernandez-Hernandez, and M. Paonni, “Signal structure-based
authentication for civil GNSSs: Recent solutions and perspectives,”
IEEE Signal Process. Mag., vol. 34, no. 5, pp. 27–37, Sep. 2017.

[18] L. Heng, J. J. Makela, A. D. Domínguez-García, R. B. Bobba,
W. H. Sanders, and G. X. Gao, “Reliable GPS-based timing for power
systems: A multi-layered multi-receiver architecture,” in Proc. Power
Energy Conf. at Illinois (PECI), Champaign, IL, USA, Feb. 2014,
pp. 1–7.

[19] R. Morales-Ferre, P. Richter, E. Falletti, A. de la Fuente, and
E. S. Lohan, “A survey on coping with intentional interference in satellite
navigation for manned and unmanned aircraft,” IEEE Commun. Surveys
Tuts., vol. 22, pp. 249–291, 2020.

[20] D. Orlando, I. Palama, S. Bartoletti, G. Bianchi, and N. B. Melazzi,
“Design and experimental assessment of detection schemes for air
interface attacks in adverse scenarios,” IEEE Wireless Commun. Lett.,
vol. 10, no. 9, pp. 1989–1993, Sep. 2021.

[21] M. Lichtman, T. Czauski, S. Ha, P. David, and J. H. Reed, “Detection
and mitigation of uplink control channel jamming in LTE,” in Proc.
IEEE Mil. Commun. Conf., Oct. 2014, pp. 1187–1194.

[22] R. Di Pietro and G. Oligeri, “Jamming mitigation in cognitive radio
networks,” IEEE Netw., vol. 27, no. 3, pp. 10–15, May/Jun. 2013.

[23] F. M. Aziz, J. S. Shamma, and G. L. Stuber, “Jammer-type estimation in
LTE with a smart jammer repeated game,” IEEE Trans. Veh. Technol.,
vol. 66, no. 8, pp. 7422–7431, Aug. 2017.

[24] K. Firouzbakht, G. Noubir, and M. Salehi, “On the performance of adap-
tive packetized wireless communication links under jamming,” IEEE
Trans. Wireless Commun., vol. 13, no. 7, pp. 3481–3495, Jul. 2014.

[25] O. A. Topal, S. Gecgel, E. M. Eksioglu, and G. Karabulut Kurt, “Iden-
tification of smart jammers: Learning-based approaches using wavelet
preprocessing,” Phys. Commun., vol. 39, Apr. 2020, Art. no. 101029.

[26] J. Vinogradova, E. Björnson, and E. G. Larsson, “Detection and mitiga-
tion of jamming attacks in massive MIMO systems using random matrix
theory,” in Proc. IEEE 17th Int. Workshop Signal Process. Adv. Wireless
Commun. (SPAWC), Jul. 2016, pp. 1–5.

[27] H. L. Van Trees, Optimum Array Processing (Detection, Estimation, and
Modulation Theory, Part IV). Hoboken, NJ, USA: Wiley, 2002.

[28] M. Liyanage, I. Ahmad, A. B. Abro, A. Gurtov, and M. Ylianttila, A
Comprehensive Guide to 5G Security, 1st ed. Hoboken, NJ, USA: Wiley,
2017.

[29] Y. Arjoune and S. Faruque, “Smart jamming attacks in 5G new radio:
A review,” in Proc. 10th Annu. Comput. Commun. Workshop Conf.
(CCWC), Jan. 2020, pp. 1010–1015.

[30] Y. Chen, W. Trappe, and R. P. Martin, “Detecting and localizing wireless
spoofing attacks,” in Proc. 4th Annu. IEEE Commun. Soc. Conf. Sensor,
Mesh Ad Hoc Commun. Netw., Jun. 2007, pp. 193–202.

[31] J. Yang, Y. Chen, and W. Trappe, “Detecting spoofing attacks in mobile
wireless environments,” in Proc. 6th Annu. IEEE Commun. Soc. Conf.
Sensor, Mesh Ad Hoc Commun. Netw., Jun. 2009, pp. 1–9.

[32] P. Jokar, N. Arianpoo, and V. C. M. Leung, “Spoofing detection in IEEE
802.15.4 networks based on received signal strength,” Ad Hoc Netw.,
vol. 11, no. 8, pp. 2648–2660, Nov. 2013.

[33] L. Xiao, Y. Li, G. Han, G. Liu, and W. Zhuang, “PHY-layer spoofing
detection with reinforcement learning in wireless networks,” IEEE Trans.
Veh. Technol., vol. 65, no. 12, pp. 10037–10047, Dec. 2016.

[34] H. Akhlaghpasand, S. M. Razavizadeh, E. Björnson, and T. T. Do, “Jam-
ming detection in massive MIMO systems,” IEEE Wireless Commun.
Lett., vol. 7, no. 2, pp. 242–245, Apr. 2018.

[35] W. Xu, C. Yuan, S. Xu, H. Q. Ngo, and W. Xiang, “On pilot spoofing
attack in massive MIMO systems: Detection and countermeasure,” IEEE
Trans. Inf. Forensics Security, vol. 16, pp. 1396–1409, 2021.

[36] S. M. Kay, Fundamentals of Statistical Signal Processing: Detection
Theory, vol. 2, P. Hall, Ed. Upper Saddle River, NJ, USA: Prentice-
Hall, 1998.

[37] M. Basseville and I. Nikiforov, Detection of Abrupt Changes: The-
ory and Application, (Information and System Sciences Series).
Upper Saddle River, NJ, USA: Prentice-Hall, 1993.

[38] C. Truong, L. Oudre, and N. Vayatis, “Selective review of offline
change point detection methods,” Signal Process., vol. 167, Feb. 2020,
Art. no. 107299.

[39] J. H. Sullivan and W. H. Woodall, “Change-point detection of mean
vector or covariance matrix shifts using multivariate individual observa-
tions,” IIE Trans., vol. 32, no. 6, pp. 537–549, Jun. 2000.

Authorized licensed use limited to: Universita degli Studi di Roma Tor Vergata. Downloaded on February 10,2023 at 13:12:16 UTC from IEEE Xplore.  Restrictions apply. 



ORLANDO et al.: INNOVATIVE ATTACK DETECTION SOLUTIONS FOR WIRELESS NETWORKS WITH APPLICATION TO LOCATION SECURITY 219

[40] A. Sen and M. S. Srivastava, “On tests for detecting change in mean,”
Ann. Statist., vol. 3, no. 1, pp. 98–108, Jan. 1975.

[41] P. Addabbo, S. Han, F. Biondi, G. Giunta, and D. Orlando, “Adaptive
radar detection in the presence of multiple alternative hypotheses using
Kullback–Leibler information criterion—Part I: Detector designs,” IEEE
Trans. Signal Process., vol. 69, pp. 3730–3741, 2021.

[42] S. Dwivedi et al., “Positioning in 5G networks,” IEEE Commun. Mag.,
vol. 59, no. 11, pp. 38–44, Dec. 2021.

[43] S. Bartoletti et al., “Positioning and sensing for vehicular safety appli-
cations in 5G and beyond,” IEEE Commun. Mag., vol. 59, no. 11,
pp. 15–21, Nov. 2021.

[44] I. Lapin, G. Seco-Granados, O. Renaudin, F. Zanier, and L. Ries, “Joint
delay and phase discriminator based on ESPRIT for 5G NR positioning,”
IEEE Access, vol. 9, pp. 126550–126563, 2021.

[45] L. J. Gleser, “Aspects of multivariate statistical theory,” Technometrics,
vol. 26, no. 2, pp. 191–192, May 1984.

[46] P. Stoica and Y. Selen, “Model-order selection: A review of information
criterion rules,” IEEE Signal Process. Mag., vol. 21, no. 4, pp. 36–47,
Jul. 2004.

[47] J. A. del Peral-Rosado et al., “Physical-layer abstraction for hybrid
GNSS and 5G positioning evaluations,” in Proc. IEEE 90th Veh. Technol.
Conf. (VTC-Fall), Sep. 2019, pp. 1–6.

[48] E. Rastorgueva-Foi, M. Costa, M. Koivisto, K. Leppanen, and
M. Valkama, “User positioning in mmW 5G networks using beam-RSRP
measurements and Kalman filtering,” in Proc. 21st Int. Conf. Inf. Fusion
(FUSION), Jul. 2018, pp. 1–7.

[49] L. Childs, A Concrete Introduction to Higher Algebra (Undergraduate
Texts in Mathematics). New York, NY, USA: Springer 2008.

[50] H. Lütkepohl, Handbook Matrices. Hoboken, NJ, USA: Wiley, 1997.
[51] P. Stoica and Y. Selén, “Cyclic minimizers, majorization techniques,

and the expectation-maximization algorithm: A refresher,” IEEE Signal
Process. Mag., vol. 21, no. 1, pp. 112–114, Jan. 2004.

Danilo Orlando (Senior Member, IEEE) was born
in Gagliano del Capo, Italy, in August 1978.
He received the Dr. Eng. degree (Hons.) in com-
puter engineering and the Ph.D. degree (Hons.)
in information engineering from the University of
Salento (formerly University of Lecce), Lecce, Italy,
in 2004 and 2008, respectively. From July 2007 to
July 2010, he was with the University of Cassino,
Cassino, Italy, engaged in a research project on algo-
rithms for track-before-detect of multiple targets in
uncertain scenarios. From September to November

2009, he was a Visiting Scientist with the NATO Undersea Research Centre,
La Spezia, Italy. From September 2011 to April 2015, he was with Elettronica
S.p.A. engaged as a System Analyst in the field of electronic warfare. In May
2015, he joined the Università degli Studi Niccolò Cusano, Rome, Italy,
where he is currently an Associate Professor. In 2007, he has held visiting
positions with the Department of Avionics and Systems, ENSICA (now
Institut Supérieur de l’Aéronautique et de l’Espace, ISAE), Toulouse, France,
and from 2017 to 2019, he was with the Chinese Academy of Science, Beijing,
China. He is the author or coauthor of more than 150 scientific publications
in international journals, conferences, and books. His main research interests
include statistical signal processing with more emphasis on adaptive detection
and tracking of multiple targets in multisensor scenarios. He was a Senior
Area Editor of the IEEE TRANSACTIONS ON SIGNAL PROCESSING. He is
currently an Associate Editor for the IEEE OPEN JOURNAL ON SIGNAL

PROCESSING, EURASIP Journal on Advances in Signal Processing, and
Remote Sensing (MDPI).

Stefania Bartoletti (Member, IEEE) received the
Laurea degree (summa cum laude) in electronics
and telecommunications engineering and the Ph.D.
degree in information engineering from the Univer-
sity of Ferrara, Italy, in 2011 and 2015, respectively.
She is currently a Researcher with the Institute
of Electronics, Computer and Telecommunication
Engineering (IEIIT), National Research Council of
Italy (CNR). She was a Marie Skłodowska-Curie
Global Fellow within the Horizon 2020 European
Framework for a research project with the Wire-

less Information & Network Science Laboratory, Massachusetts Institute of
Technology (MIT) and the University of Ferrara, from 2016 to 2019. Her
research interests include theory and experimentation of wireless networks
for passive localization and physical behavior analysis. She was a recipient
of the 2016 Paul Baran Young Scholar Award of the Marconi Society.
She served as the Chair of the TPC for the IEEE ICC and Globecom
Workshops on Advances in Network Localization and Navigation (ANLN)
from 2017 to 2021, and as a reviewer for numerous IEEE journals and inter-
national conferences. She is Associate Editor of the IEEE COMMUNICATIONS

LETTERS.

Ivan Palamà was born in Rome, Italy, in 1996.
He received the master’s degree (cum laude) in
ICT and internet engineering from the University of
Rome “Tor Vergata”, Italy, in October 2020. He is
currently pursuing the Ph.D. degree in electronic
engineering. He has been a CNIT Researcher since
January 2018.

Giuseppe Bianchi is currently a Full Professor in
networking with the University of Rome Tor Ver-
gata, Rome, Italy. He has coordinated six large-scale
EU projects. His research activities include wire-
less networks (an area where he has carried out
pioneering research work on WLAN modeling and
assessment), programmable network systems, secu-
rity monitoring and vulnerability assessment, and
traffic modeling and control, and is documented in
about 280 peer-reviewed international journal arti-
cles and conference papers, accounting for more than

20000 citations. He has been (or still is) an Editor for several journals in
his field, including IEEE/ACM TRANSACTIONS ON NETWORKING, IEEE
TRANSACTIONS ON WIRELESS COMMUNICATIONS, IEEE TRANSACTIONS
ON NETWORK AND SERVICE MANAGEMENT, and Computer Communica-
tions (Elsevier).

Nicola Blefari Melazzi is currently a Professor in
telecommunications with the University of Roma
Tor Vergata and the Director of CNIT, a non-profit
consortium of 38 Italian universities.

Authorized licensed use limited to: Universita degli Studi di Roma Tor Vergata. Downloaded on February 10,2023 at 13:12:16 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


