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Abstract—Mobile positioning is a fundamental service of 5G
as it enables a number of applications that rely on location
information and location-based analytics. In many applications,
it is important to quantify the uncertainty associated with
position estimation, for example, for confidence assessment on the
location data and anomaly detection, as well as for location data
fusion from heterogenous technologies. In this paper, we propose
uncertainty quantification as a location data analytics function.
First, we introduce an indicator of positioning uncertainty based
on the residual measurement error, which does not require
the ground truth knowledge. Then, we train and update an
uncertainty map of a monitored environment by leveraging the
position estimates and location-based measurements collected by
multiple users. Such uncertainty map can be used to predict
the positioning uncertainty level in any point of a monitored
environment. Finally, we propose an implementation of such
functionality as an analytics function within the 5G architecture.
The functionality is then deployed in a virtualized environment
and, using system-level simulations under different propagation
conditions, we show how the uncertainty predicted through the
proposed method is highly correlated with the true positioning
error.

I. INTRODUCTION

Mobile positioning is fundamental to a number of applica-
tions and services that rely on the location of users served by
cellular networks. The 3GPP is indeed enhancing 5G networks
and devices with localization capabilities starting from Release
16 [1]. The 5G standard, combined with the integration of
heterogeneous technologies, enables accurate location-based
analytics that empower a plethora of new 5G services and
optimize network utilization. Location-based analytics rely on
the positional information from multiple users in one or more
monitored environments in order, for instance, to analyze flows
or improve network performance through the extraction of
complex features and mobility patterns. The deployment of
location-based analytics in the 5G architecture calls for a re-
visit and enhancement of the 5G network functions to interface
with location data through a flexible multilayer architecture
that facilitates secure sharing of accurate location and context
data for localization, and that combines information from
different network functions for location-based analytics [2].

According to the 3GPP standardization, positioning in 5G
is targeting sub-meter accuracy or better in nearly 95% of
the time, thanks to the capability to operate in both sub-6
GHz and millimeter wave (mmWave) frequency bands and the
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Fig. 1. Example uncertainty map obtained by simulating 5G positioning in
a monitored area of Bologna, Italy.

use of massive antenna arrays [3]-[6]. This makes 5G a key
enabler for many location-based services and for the extraction
of analytics that require very high levels of accuracy, see,
e.g., safety-critical vehicular applications. However, cluttered
environments, such as urban ones, can yet negatively impact
positioning accuracy due to obstructions caused by non-line-
of-sight and multipath propagation [6].

Assessing the degree of uncertainty associated with the
position estimate is important in several scenarios. For ex-
ample, a location-based decision can be based on the level
of uncertainty expected in the particular location. Another
example is when one particular positioning service fails at
delivering a required accuracy level; in such a case, more
resources could be deployed to enhance its performance, or
an alternative positioning service can be triggered if available.
The ability to quantify the expected uncertainty associated with
a particular deployment of resources is key for implementing
complex interaction with other 5G functions, where the best
possible level of uncertainty as a function of resources, timing,
etc, must be found. In other cases, if the uncertainty in a
considered position is very high in comparison to what is
expected, then this can be an indication that there may be
a spoofing or meaconing attack [7], [8]. Recently, within
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the definition of positioning and timing service of ETSI for
vehicular scenarios, a lot of effort has been dedicated to the
detection of failure occurring when the position and time entity
are unable to estimate location with an error less than the
maximum tolerable threshold. In addition, an important KPI is
defined as the positioning integrity, which measures the trust
that can be placed in the correctness and confidence of the
estimated position [9].

The knowledge of the true positioning error would require
to know the true position of the UE, which is unknown in prac-
tical applications. Therefore, the quantification of uncertainty
in the absence of the ground truth is an important research topic
for location-based services [10], [11]. For example, in [11], the
authors proposed a maximum likelihood (ML)-based method
for uncertainty prediction. The model is trained with a dataset
that includes the ground truth position and leads to a predicted
uncertainty that is highly correlated with the actual positioning
error. In [10] the authors proposed a comprehensive analysis
of estimators for the positioning error, which do not require
the ground truth knowledge but rely on multiple estimates from
each gNB; such estimators cannot be applied to the case where
a single estimate is available.

The key contributions of this paper are: (i) we introduce the
positioning uncertainty as an analytics function by exploiting
the location information of multiple users; (ii) we propose an
example of uncertainty quantification based on the residual
error in 5G positioning which allows to build an uncertainty
map; (iii) we propose ML-based regression for the prediction
of uncertainty and use a goodness-of-fit test for the online
updating of the model; (iii) we define a possible deployment
of the uncertainty quantification within the 5G architecture as a
Location Data Analytics Function (LDAF); (iv) we implement
and test the proposed algorithms in a virtualized environment.
Numerical results are obtained through system-level simula-
tions that take into account the accuracy of 5G positioning
according to the 3GPP standard. Then, the quantification of
uncertainty is proposed through a ML-based regression model
trained on a dataset of position estimates.

II. 5G POSITIONING
A. System Model

The UE position in 5G is estimated based on location-
dependent measurements (e.g., time of arrivals or angles)
performed between the UE to be located and one or mul-
tiple gNBs [1], [6]. Specifically, two signals have been de-
fined for the purpose of UE positioning, namely downlink
positioning reference signal (DL-PRS) and uplink sounding
reference signal (UL-SRS). Nevertheless, it is possible to
take advantage of other reference signals for positioning.
Time-difference-of-arrival (TDOA), angle-of-arrival (AOA),
and angle-of-departure (AOD) measurements are taken at a
single or multiple reception points. The TDOA is measured
with respect to a reference base station. The angle measure-
ments are obtained by measuring the received signal power
from different beams pointing in distinct directions.

We consider a network of N, gNode-Bs (gNBs) that are
operating in a monitored environment. The ¢th gNBs is at péQB,
while the true unknown position of a generic user is at pyg. A

location-dependent measurement is performed for each gNBs,
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and corresponds to m(® (pyg). For example, m(®) (pyg) can
be a time measurement from DL-PRS between the ith gNBs
and the user equipment (UE). The measurement model for
m( (pyg) can be described as

m' (p) = m¥ (p) + n(p) (1)

where 1" (p) is a deterministic and known function and
n()(p) is the measurement noise. In the case of DL-TDOA,
m@(p) = ||p(gB — pugl|, and the TDOA is calculated as

m®(p) — m(”%(p), where the rth gNBs is considered as
reference gNBs. The measurement noise n(*)(p) is generally
dependent on the position, on the line-of-sight (LOS) condi-
tions between the transmitter and receiver, and the signal-to-
noise ratio (SNR) of the received signal.

Then, from the vector of measurements from the different
gNBS, i.e. m(pUE) = [m(l)(pUE) m(2) (pUE) Ce m(Ng)(pUE)],
we obtain an estimate of the UE position as pyg. As an
example, in the DL-TDOA based positioning, the pyg is
obtained as the point that intersects the hyperbolas defined
as the set of points whose distances from the reference gNB
and the ith gNB is equal to () (p) — (") (p))c, where
c is the speed-of-light. Then, the positioning error is defined
as the Euclidean distance between the true and estimated UE

position, i.e. e(pug, Pue) = ||Pue — PuEl-

B. Architectural Aspects

5G consists of the next-generation radio access network
and the 5G core network. The enhanced 3GPP Location
Service architecture defines the location-related functionalities
for any UE. An UE in 5G can either be positioned by itself or
by the network. Location services are initiated by the access
and mobility management function (AMF), either on behalf of
a particular UE or by a location services client, which can be
any network element that interacts with the gateway mobile
location center (GMLC) to access and process location data.
Clients can be anywhere in the architecture, even within the
UE. The location service request is then communicated to
the location management function (LMF), i.e., the location
server, which coordinates and calculates the UE position.
The positioning assistance information and measurements are
transferred between the UE and the TRP to and from the LMF.

III. UNCERTAINTY QUANTIFICATION
A. Residual Error for Uncertainty Assessment

Following an inverse problem approach, we propose to
quantify the uncertainty considering the measurement model
in (1) and following the data processing scheme illustrated in
Fig. 2. Given the estimated position pyg and the measurement
vector m(pyg), for the ith gNB, we can consider the discrep-
ancy function

m (pug) — M (Pug) 2

which is the difference between the ideal measurement that
is expected at pyg and the true measurement m () (pyg)
and represents the residual error for the measurement model
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Fig. 2. Tllustration of the data processing for uncertainty quantification.

(1) given the estimated position. Then, the standard error is
considered as the uncertainty indicator and calculated as'

Ny
1 S o 1/2
¥, 3 2 tpur) - D (pu))?|

s(bue) = | 3)

In time-based positioning, a geometrical interpretation of
such an indicator can be provided using the law of cosines.
In such a case, the positioning error can be expressed as a
function of the estimated and true position from the point of
view of each gNB [10] as

o o) =( )+ (30’

— 2 (pue)m” (Bue)” cos(¢s (Pue, Puk))
“)

where ¢;(Pug, pug) is the angle formed between the true

position pyg, the gNB position p(I\?B, and the estimated

position pyg. As (¥ (pug) is unknown, each squared residual
(m@ (pyg) — M (pyk))? in (3) can be considered as an
approximation of e?(pyg, pue) when ¢;(pug, Pue) == 0 (i.e.,
we are assuming that the true position is on the same line that
intersects pyg and pg\?B) and ¥ (pug) ~ m® (pug) (.e., we
have a small measurement error). Then, we average among the
measurements available from each gNB, i.e. varying ¢ to obtain
an estimate of e(pug, pug) through (3).

B. Uncertainty as an Analytic Function

If a dataset of estimated positions and associated standard
errors from several UEs is collected in a monitored area, the
residual standard error s(p) in (3) can be learned as a function
of p by applying a regression analysis. This can allow us
to predict the uncertainty in any possible estimated position.
To this aim, any ML algorithm for regression can be used,
e.g. random forest, or Gaussian process. As the standard error
changes with the measurement noise model, i.e. under different
propagation conditions, the learned function s(p) could be
updated online to reflect the new measurement model.

We start with a dataset D(©) = {f)g ), s (pUE)
position estimates from N(°) UEs. Then, we generate a
regression model based on such a dataset and we obtain
$(p) from which we can construct a map by predicting the
uncertainty values over different positions. When a new dataset
D® = {p{) s(pU)}Y} at time index k is obtained, we
can calculate the fraction of variance unexplained (FVU) of the

}N(O)

IThe denominator Ng — 2 represents the degrees of fredom, which are
equal to the number of measurements minus the number of parameters to be
estimated.
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latest model or of a set of available models. The FVU is the
fraction of variance of the observed data that can be explained
by a regression model and is calculated as

DY (s(pi?) (b &é))
S (stel) — 5

where 5(F) = -5 ZN * (f)UE) Specifically, small values
for F,, indicate that the regress10n model considered is able
to explain most of the variance of the observed data. Then, a
threshold &,y can be set such that if Fiy > &y, @ new model
is generated. Alternatively, if any model is available for which
Fou < &, the model with lowest value of Fy, is considered.

Fvu:

&)

IV. LOCATION DATA ANALYTICS

3GPP has introduced a general framework for data ana-
Iytics in 5G infrastructures starting from the Releases 15 and
16. In particular the 3GPP TR 23.791 [12] defined a dedicated
function within the 5G core, called Network Data Analytics
Function (NWDAF) for the collection of data from the other
network functions (and external data sources) and the delivery
of data analytics services.

The NWDAF can apply different levels of analytics granu-
larity (e.g. global, per network slice), and can be deployed as
a centralised core-based instance alongside distributed edge
instances. It collects metrics or data analytics information
locally elaborated from heterogeneous sources, such as 5G
network functions, application functions, the management sys-
tem as well as from external data repositories. All this data
is processed by means of aggregation mechanisms, prediction
algorithms, etc., with the aim of generating further analytics
data to be then offered to other network functions or if needed
stored in dedicated data repositories. Starting from Release
16, the 3GPP TS 23.288 specification [13] is standardizing
the NWDAF interfaces and the procedures enabling the con-
sumption of data analytics services.

A. LDAF architecture and functional split

The use cases currently identified by 3GPP for the
NWDAF, as well as the related services (data types, seman-
tics), do not cover the UE positioning information for further
contextualized, location-enriched analytics that would generate
an added value from the raw location information, including
enabling the realization of new location-based services. We
propose to fill this gap in contextualized and location-enriched
analytics, by trying to enrich the basic NWDAF functionalities
with specific localization information and analytics.
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In practice, we model functions that mainly provide data
analytics on top of UE positioning data (like the uncertainty
quantification described above) as Localization Data Analytics
Functions (LDAFs), to cover the part of data analytics exclu-
sively associated with localization-awareness within the 5G
core architecture [2]. Therefore, the LDAF considers as main
input UE positioning information produced by the LMF, but
other related data can also be pulled if available and neces-
sary. For location based analytics, such external data could
include video surveillance streams, mapping information, and
telemetry data from urban infrastructures and the like, that
can enhance the positioning accuracy and analytics output by
correlating and anchoring the network data with the physical
environment. From a 5G core architecture point of view, we
define the LDAF as a specialized NWDAF, thus following
the service-based paradigm and its standard interfaces and
procedures (based on pub/sub and HTTP-based mechanisms).
However, the LDAF produces specific new analytics informa-
tion, and can then be associated to new analytics identifiers
and data structures to be added as part of the input/output data
of analytics services described in [13].

Beyond the alignment with the NWDAF basic functional-
ities, and since the adoption of ML techniques is becoming
more and more relevant in the context of 5G networks, the
proposed LDAF is split into two logical functions, to clearly
separate the pure analytics logic from the ML model training
and management. This follows the evolved NWDAF approach
proposed in [13], and allows to separate ML model and
pipeline management functionalities (e.g., for training and
creating new versions of the same model) from the actual
analytics functions (i.e., pre-trained) ready to be deployed and
operated for specific analytics purposes (e.g., the uncertainty
quantification). As shown in Fig. 3, and inline with services
defined in [13], the LDAF Model Training Logical Function
(MTLF) takes care of ML models training, exposing dedicated
services and APIs for external functions to discover and query
available trained models (ML Model Info) and to provision
them (ML Model Provision). On the other hand, the LDAF
Analytics Logical Function (AnLF) performs inference, elab-
orates statistics or predictions and exposes dedicated services
for analytics information retrieval (Analytics Info), e.g., in the
form of specific location analytics data structures and identi-
fiers. The main source of input of the LDAF MTLF within the
5G core architecture is data coming from he LMF, which can
provide UE positioning information, as well as additional data
collected from other network functions and external sources,
following the data delivery and storage mechanisms defined in
3GPP TS 23.288 [13] and implemented by the combination of
Data Collection Coordination Function (DCCF) and Analytics
Data Repository Function (ADRF).

B. Implementation of Uncertainty Quantification as LDAF

The 5G network architecture brings a new disruptive ap-
proach that considers a high-degree of virtualization of the
network functions and services by design. In particular, the
5G core architecture and its network functions are defined
to be natively deployed and operated on top of virtualized
infrastructures. In line with this design principle, the proposed
LDAF implements the uncertainty quantification functionality
described in Section IIl and is realized as a set of virtual
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Fig. 3. LDAF functional decomposition

functions that allow to deploy AnLF and MTLF as con-
tainerized services in a Kubernetes? [14] based environment.
Fig. 4 shows how the uncertainty quantification LDAF has
been implemented.

First, the LDAF MTLF makes use of Kubeflow?, a tool for
making deployments of ML workflows on Kubernetes simple,
portable and scalable. In particular, Kubeflow Pipelines allow
to model machine learning workflows, including all of the
components in the workflow and how they combine in the
form of a graph. A pipeline component in Kubeflow is an
implementation of a pipeline task, a self-contained set of user
code, representing a step in the workflow. Each component is
packaged as a Docker [14] container that performs a single step
in the pipeline (e.g., data pre-processing, data transformation,
model training and so on).* In the uncertainty quantification
LDAF, a Kubeflow Pipeline has been implemented for ML
model training, and creates new versions of the model when
new relevant training data is available in the ADRF. For this
reason, the LDAF MTLF also includes a ML model registry
service (implemented through MinlO’), where all available
versions of the ML model are stored. When the Kubeflow
Pipeline is executed, the various components are automatically
executed as a virtualized service in a Kubernetes POD to
perform the model training, and as final steps it deploys the
generated model in the Kubernetes cluster to make it available
as a running AnLF (in a dedicated Kubernetes namespace). The
new generated ML model is also stored in the registry service.
In addition, the LDAF MTLF is equipped with a ML model
evaluation functionality, which computes fraction of variance
unexplained (FVU) scores for all the available models in the
registry service whenever a new training dataset is available.
This allows to perform automated lifecycle management of
the LDAF AnLF, assuring that the best performing uncertainty
quantification ML model is always used in the AnLF.

The LDAF AnLF is represented by the ML model that the
Kubeflow pipeline service automatically deploys as result of
its execution. This is achieved by the integration of Kubeflow
with Seldon®, a tool that allows to package the AnLFs as
Docker containers and be executed and exposed as REST
microservices in Kubernetes to retrieve on-demand the un-
certainty quantification analytics results through the Analytics
Info REST interface.

Zhttps://kubernetes.io/
3https://kubeflow.org/
“https://docker.com/
Shttps://min.io/
Shttps://www.seldon.io/

Authorized licensed use limited to: Universita degli Studi di Roma Tor Vergata. Downloaded on February 10,2023 at 13:11:53 UTC from IEEE Xplore. Restrictions apply.



2022 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit): Vertical Applications and
Internet of Things (VAP)

Analytics Info

MTLF
) ML Model
FVU & Kubeflow Provision ¢
Training iO model " __p  Pipeline & +——p QUnc?"tt_améy
Datasets evaluation Service LRI LT

(version k)

ML model registr: S
T_ LJ ANLF
";"i"‘“ m docker version k
L2 k-1 O

MTLF namespace

AnLF namespace
kubernetes
ML Model Info

Fig. 4. LDAF implementation

V. CASE STUDY
A. Simulation Settings

As simulated scenario we considered a portion of the
Bologna city, in Italy. In particular, a monitored squared area
of 500mx500m is considered, with seven gNBs located as
illustrated in Fig. 1, with an inter-site distance of 200m,
following the example of the 3GPP TR 38.901 [15]. The col-
lection of each dataset has been performed by considering 2000
uniformly distributed positions for the UE in the monitored
area. 5G New Radio positioning is simulated based on the
DL-TDOA algorithm in the 5G Toolbox Matlab environment.

LOS/NLOS conditions between each gNB and UE have
been calculated using the Openstreetmap software. Given the
LOS/NLOS condition, the corresponding tapped delay line
proposed in 3GPP has been considered for simulating channel
propagation (TDL-E for LOS and TDL-A for NLOS) [15].
Such channel models are parameterized with respect to the
delay spread. We have used such parameter to simulate a
change of channel conditions, and in particular, we have
considered four different measurement models that correspond
to four different values of delay spread, i.e. 10ns (Model 1),
30ns (Model 2), 100ns (Model 3), and 300ns (Model 4). Based
on the estimated position and the TOA measurements at each
gNB, the residual error is calculated. The regression algorithm
used to build the uncertainty map is the Extra Trees Classifier.
Such algorithm was chosen because it has comparable perfor-
mance to the random forest regression model, which has been
shown to be suitable in the context of position estimation in
[11], while requiring less time resources.

The LDAF MTLF, implemented as reported in Figure 4,
has been deployed in a single node Kubernetes cluster en-
vironment realized through a Microk8s’ (v1.21.9) available
on a Virtual Machine (16 vCPU, 32GB RAM, 100GB HDD)
instantiated on an OpenStack® cloud computing infrastructure.
Kubeflow was deployed in the Kubernetes cluster using the
official Microk8s add-on while MinlO was instantiated using
the official Helm chart release. As last steps, for the availability
of the components deployed on the cluster, Kubeflow Pipeline
and MinlO have been externally exposed using a NodePort
Kubernetes service type.

The model evaluation is performed by calculating the FVU
every time a new dataset of 1000 users is collected. The AnLF

7https://microk8s.io/
8https://openstack.org/
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model is then automatically deployed and updated in a dedi-
cated Kubernetes namespace only when the FVU overcomes
the decided threshold {pyy = 0.5 which means that model
explains most of the variability in the measured residual errors.
To appreciate the importance of model updating, we simulate
the use of different measurement models for generating the
training and testing datasets. Then, the results obtained when
the model is updated are compared to those obtained without
updating the model.

As performance metrics, we use: (i) the Pearson correlation
coefficient between the true positioning error and the uncer-
tainty level; (ii) the FVU in (6); and (iii) the root mean square
of the prediction relative error, i.e. $(pug) — S(PuE)-

B. Simulation Results

Figure 5 shows the correlation coefficient between the true
positioning error e(pug, pug) and the measured uncertainty
level s(pug), as well as between the true positioning error and
the predicted uncertainty level §(puyg). Results are obtained
varying the measurement model for generating the dataset
used for training; the same measurement model is used for
generating the dataset used for testing. Note that values above
0.7 represent high correlation, while values between 0.5 and
0.7 are considered medium correlation. The p-value for all
the simulation was below 107°. The figure shows that the
proposed uncertainty indicator is highly correlated with the
true positioning error for all the models considered. Also, the
predicted value is highly correlated with the true error for
models between 1 and 3, and moderately correlated for a delay
spread of 300ns (i.e., Model 4).

Figure 6 shows the FVU varying the measurement model
using for generating both the training and testing datasets.
Results show that the prediction obtained with Models 1-3 have
low FVU even when the model is changed among the same
group of models, i.e. the residual statistics are comparable. Dif-
ferently, if we test the regression model trained with a dataset
generated from Model 4 with dataset generated with any other
model, we have an FVU much higher. Similarly, the regression
model trained with datasets from Models 1-3 is not suitable to
predict the uncertainty when the measurement model is Model
4, i.e. the FVU is higher. Therefore, it is important to update
the regression model when the channel propagation conditions
change. Note that when testing a dataset from Model 4, an
FVU larger than 0.5 is experienced even when the trained
dataset is generated with the same model. This means that
as the delay spread gets larger, there is more variability that
cannot be explained by the prediction model.

Figure 7 shows the root mean square of the prediction
relative error, which measures the goodness of the regression
model. In the example, a first regression model is trained with
a dataset obtained with Model 4 (i.e., delay spread of 300 ns).
Then, it is tested with two datasets generated with different
measurement models. After the second dataset is collected,
the first model is evaluated through the FVU test and might
be updated. When the model is updated, the relative error is
reduced with all the models. With Model 4, the reduction is
smaller as this is the same model used for generating the
training dataset. Furthemore, in agreement with the results
shown in Fig. 6 and Fig. 5, the error obtained with Model
4 is higher than for the other models.
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Fig. 5. The correlation coefficient between the true error and the measured
residual error is compared with the one between the true error and the predicted
residual error varying the data measurement models, i.e., varying the channel
delay spread as 10ns (Model 1), 30ns (Model 2), 100ns (Model 2), and
300 ns (Model 4).
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Fig. 6. Fraction of Variance Unexplained (FVU) obtained by varying the
measurement model of both the training set for the regression model and test
set for its validation.
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Fig. 7. Root mean square of the relative error between the predicted and true
SSR value. Darker bars are obtained when the model is not updated. Lighter
bars are obtained when the model is updated based on the FVU.

VI. FINAL REMARK

In this paper we proposed the positioning uncertainty
quantification as an analytics function in the context of 5G
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positioning. We have proposed a simple yet effective indicator
for the positioning uncertainty level and a ML-based approach
for predicting and updating the uncertainty level and build an
uncertainty map in a monitored environment. We have imple-
mented the proposed approach in a virtualized environment as
a location data analytics function that is compliant with the
5G architecture. Results show that the proposed indicator is
highly correlated with the true positioning error.

ACKNOWLEDGEMENTS

This work was supported by the European Union’s Horizon
2020 research and innovation programme under Grant no.
871249.

REFERENCES

[1]1 Study on NR positioning support, 3rd Generation Partnership Project
3GPP™ ETSI TR 138 955 V16.0.0, Dec. 2019, release 16.

[2] S. Bartoletti, L. Chiaraviglio, S. Fortes, T. E. Kennouche, G. Solmaz,
G. Bernini, D. Giustiniano, J. Widmer, R. Barco, G. Siracusano,
A. Conti, and N. Blefari-Melazzi, “Location-based analytics in 5g and
beyond,” IEEE Communications Magazine, vol. 59, no. 7, pp. 3843,
2021.

[31 3GPP, “5G System (5GS) Location Services (LCS); Stage 2,” 3rd
Generation Partnership Project (3GPP), Technical Specification (TS)
23.273, 7 2020, version 16.4.0.

[4] ——, “Universal Terrestrial Radio Access (UTRA) and Evolved UTRA
(E-UTRA); User Equipment (UE) performance requirements for Radio
Access Technology (RAT) Independent Positioning Enhancements,”
3GPP, Technical Specification (TS) 37.171, 10 2020, version 16.1.0.

[5] H. Sarieddeen, N. Saeed, T. Y. Al-Naffouri, and M. Alouini, “Next gen-
eration Terahertz communications: A rendezvous of sensing, imaging,
and localization,” IEEE Communications Magazine, vol. 58, no. 5, pp.
69-75, 2020.

[6] S.Dwivedi, R. Shreevastav, F. Munier, J. Nygren, I. Siomina, Y. Lyazidi,
D. Shrestha, G. Lindmark, P. Ernstrom, E. Stare, S. M. Razavi,
S. Muruganathan, G. Masini, Busin, and F. Gunnarsson, “Positioning
in 5G networks,” IEEE Communications Magazine, vol. 59, no. 11, pp.
38-44, 2021.

[71 R. Morales-Ferre, P. Richter, E. Falletti, A. de la Fuente, and E. S.
Lohan, “A survey on coping with intentional interference in satellite
navigation for manned and unmanned aircraft,” IEEE Communications
Surveys Tutorials, vol. 22, no. 1, pp. 249-291, 2020.

[8] S. Bartoletti, G. Bianchi, D. Orlando, I. Palama, and N. Blefari-
Melazzi, “Location security under reference signals’ spoofing attacks:
Threat model and bounds,” in The 16th International Conference on
Availability, Reliability and Security, ser. ARES 2021, 2021.

[9] “Intelligent transport systems (ITS); facilities layer function; Part 2:
Position and time management (PoTi); release 2,” ETSI EN 302 890-2,
Mar. 2020.

[10] J. Nounagnon and T. Pratt, “Improving position MSE estimation for
biased estimators without true position knowledge,” in 2016 IEEE/ION
Position, Location and Navigation Symposium (PLANS), 2016, pp. 100—
105.

[11] Y. Zhao and D. Shrestha, “Uncertainty in position estimation using ma-
chine learning,” in 2021 International Conference on Indoor Positioning
and Indoor Navigation (IPIN), 2021, pp. 1-7.

[12] Study of enablers for Network Automation for 5G, 3rd Generation
Partnership Project 3GPP™ ETSI TR 23 791 V16.2.0, Jun. 2019,
release 16.

[13] 3GPP, “Architecture enhancements for 5G System (5GS) to support
network data analytics services,” 3GPP, Technical Specification (TS)
23.288, 11 2021, version 17.3.0.

[14] D. Bernstein, “Containers and cloud: From LXC to docker to kuber-
netes,” IEEE Cloud Computing, vol. 1, no. 3, pp. 81-84, 2014.

[15] Study on channel model for frequencies from 0.5 to 100 GHz, 3rd
Generation Partnership Project 3GPP™ ETSI TR 138 900 V16.1.0
(2019-12), Dec. 2019, release 16.

Authorized licensed use limited to: Universita degli Studi di Roma Tor Vergata. Downloaded on February 10,2023 at 13:11:53 UTC from IEEE Xplore. Restrictions apply.



